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Abstract. We study affine invariants of plane curves from the view point of the singularity
theory of smooth functions. We describe how affine vertices and affine inflexions are created and
destroyed.

1. Introduction. In [8] we have studied affine invariants for generic convex plane

curves as an application of the singularity theory for affine invariant functions. We have

introduced the notion of affine distance cubed-functions and affine height functions on

convex plane curves and characterized affine vertices and affine inflexions by using these

functions. Affine vertices and affine inflexions have been classically known as sextactic

points and parabolic points, respectively. It has been known that the sextactic point

and the parabolic point are equi-affine invariants. We now have the following natural

question: How are affine vertices and affine inflexions created and destroyed? In this

note, we attempt to give an answer to the question. The basic tools we use here are

families of affine distance-cubed functions and affine height functions.

This paper is divided into four sections. The main result is Theorem 2 which is

formulated in Section 2. The proof of Theorem 2 is given in Section 3. We shall give some

examples with pictures which illustrate the results of Theorem 2 in Section 4. The basic

techniques we use in this paper is based on the paper of J. W. Bruce [3].

All curves and maps considered here are of class C∞ unless otherwise stated.

2. Basic notions. For the basic notions and classical results in affine differential

geometry, see [2, 8, 9].

Let R
2 be an affine plane which adopts coordinates such that the area of the paral-

lelogram spanned by two vectors a = (a1, a2), b = (b1, b2) is given by the determinant of
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a and b, that is | a b | = a1b2 − a2b1. Let S1 be the unit circle in R
2, and γ : S1 −→ R

2

be a smooth plane curve with | γ̇(t) γ̈(t) | > 0, where γ̇(t) = dγ
dt

(t). If we reparametrize

a given curve γ by using s(t) =
∫ t

t0
| γ̇(t) γ̈(t) | 13 dt, then the curve satisfies the con-

dition | γ′(s) γ′′(s) | = 1, where γ′(s) = dγ
ds

(s). We call such a parameter s an affine

(arc-length) parameter . We call γ′(s) an affine tangent vector and γ′′(s) an affine normal

vector . The affine curvature is defined by κ(s) = | γ′′(s) γ′′′(s) |.
We define the notion of affine vertices as follows. We say that the point γ(s0) of

curve γ is an affine vertex of order k − 1 if κ′(s0) = κ′′(s0) = . . . = κ(k−1)(s0) = 0 and

κ(k)(s0) 6= 0. We also say that the order of the affine vertex is k − 1. In particular, the

affine vertex of order 1 is called the ordinary affine vertex . If γ(s0) is not an affine vertex,

we call the point γ(s0) the affine vertex of order 0, or the order of the affine vertex is 0.

We define the notion of affine inflexions as follows. We say that the point γ(s0) of

curve γ is an affine inflexion of order k if κ(s0) = κ′(s0) = . . . = κ(k−1)(s0) = 0 and

κ(k)(s0) 6= 0. We also say that the order of the affine inflexion is k. In particular, the

affine inflexion of order 1 is called the ordinary affine inflexion. If γ(s0) is not affine

inflexion, we call the point γ(s0) the affine inflexion of order 0, or the order of the affine

inflexion is 0.

We assume that γ has the following properties, which are satisfied generically (cf. [5]).

(A-1) There is no conic having greater than six-point contact with γ(S1).

(A-2) The number of points p of γ(S1) where the unique non-singular conic touching

γ(S1) at p with at least five-point contact is a parabola is finite.

(A-3) There is no parabola having six-point contact with γ(S1).

In [8], we have shown the following theorem.

Theorem 1 ([8]). Let γ : S1 −→ R
2 be a smooth plane curve with | γ′(s) γ′′(s) | > 0

satisfying (A-1)–(A-3). Then:

(1) Let p be a point of the affine evolute of γ at s0, then locally at p, the affine

evolute is

(a) diffeomorphic to the line in R
2 if the point γ(s0) is not the affine vertex of γ;

(b) diffeomorphic to the ordinary cusp in R
2 if the point γ(s0) is the ordinary

affine vertex of γ.

(2) Let p be a point of the affine normal curve of γ at s0. Then, locally at p, the affine

normal curve is

(a) diffeomorphic to the line in R
2 if the point γ(s0) is not the affine inflex-

ion of γ;

(b) diffeomorphic to the ordinary cusp in R
2 if the point γ(s0) is the ordinary

affine inflexion of γ.

The ordinary cusp is a curve which is given by C = {(x1, x2) ∈ R
2 | x2

1 = x3
2}.

Theorem 1 means that the affine vertex of a convex curve is characterized by the

singularity of the affine evolute of convex curve and the affine inflexion of a convex curve

is characterized by the singularity of the affine normal curve of convex curve.
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Here, we introduce some notation to describe the main theorem.

Let U be an open interval (−1, 2). We consider the set

Imm+(S1,R2) =
{
i : S1 −→ R

2 | i is an immersion,

∣∣∣∣
di

ds
(s)

d2i

ds2
(s)

∣∣∣∣ > 0
}
.

We also consider the set

C = {Γ : S1 × U −→ R
2 | Γu ∈ Imm+(S1,R2) for any u ∈ U}.

In particular, Γ0 and Γ1 satisfy the above conditions (A-1), (A-2) and (A-3), and Γu(s)

satisfy
∣∣∣ dΓu

ds
(s) d2Γu

ds2 (s)
∣∣∣ = 1 for all u ∈ U .

For any Γ ∈ C, we define AN Γ and AEΓ as follows:

AN Γ =
{(
u,
∂2Γ

∂s2
(s, u)

)
∈ U × R

2 | s ∈ S1
}
,

AEΓ =
{(
u,Γ(s, u) +

1

κ(s, u)

∂2Γ

∂s2
(s, u)

)
∈ U × R

2 | κ(s, u) 6= 0, s ∈ S1
}
.

Let Fi : R × R
r, 0 −→ R, 0 be smooth function germs and (Xi, 0) be set germs in

(R × R
r, 0), where i = 1, 2. We say that (F1, X1) and (F2, X2) are R-equivalent if there

exists a diffeomorphism germ Φ : R × R
r, 0 −→ R × R

r, 0 such that Φ(X1) = X2 and

F1|X1
= F2 ◦ Φ|X1

.

Let πU : U × R
2 −→ U be the canonical projection. The following result is the main

result in this paper.

Theorem 2. There exists a dense subset O ⊂ C such that for any Γ ∈ O, we have

(1) Suppose that Γu0
(s0) is the affine inflexion of order k, then k ≤ 2.

(a) If k = 0, then the pair of germs (πU ,AN Γ) at (u0, nΓu0
(s0)) is R-equivalent

to the pair of germs (π1,P) at (0, 0);

(b) If k = 1, then the pair of germs (πU ,AN Γ) at (u0, nΓu0
(s0)) is R-equivalent

to the pair of germs (π1,C) at (0, 0);

(c) If k = 2, then the pair of germs (πU ,AN Γ) at (u0, nΓu0
(s0)) is R-equivalent

to the pair of germs (π1,T) at (0, 0).

(2) Suppose that Γu0
(s0) is the affine vertex of order k, then k ≤ 2.

(a) If k = 0, then the pair of germs (πU ,AEΓ) at (u0, eΓu0
(s0)) is R-equivalent

to the pair of germs (π1,P) at (0, 0);

(b) If k = 1, then the pair of germs (πU ,AEΓ) at (u0, eΓu0
(s0)) is R-equivalent

to the pair of germs (π1,C) at (0, 0);

(c) If k = 2, then the pair of germs (πU ,AEΓ) at (u0, eΓu0
(s0)) is R-equivalent

to the pair of germs (π1,T) at (0, 0),

where P = {(t, x1, x2) | x2 = 0}, C = {(t, x1, x2) | x2
1 = x3

2}, T = {(t, x1, x2) | x1 =

3u4 + u2v, x2 = 4u3 + 2uv, t = v}, nΓu0
(s0) = ∂2Γ

∂s2 (s0, u0) corresponds to Γu0
at s0,

eΓu0
(s0) = Γ(s0)+ 1

κ(s0,u0)
∂2Γ
∂s2 (s0, u0) corresponds to Γu0

at s0, and π1 : R × R
2, 0 −→ R

is the canonical projection given by π1(t, x1, x2) = t.

We have the following result, as a corollary of Theorem 2.
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Corollary 3. When the parameter passes the bifurcation value two affine inflexions

of order 1 (resp. affine vertices of order 1) collapse into one of order 2 and then disap-

pear. The pair-appearance bifurcation corresponding to the opposite direction of parameter

changing can also occur.

3. Proof of Theorem 2. At first we introduce some basic notions of singularity

theory. For more details on the results, see [1, 3, 4, 6, 7].

Let G : R × R
⋉, 0 −→ R, 0 be a function germ. We call G an unfolding of g(t) =

G(t, 0). We say that g(t) has the Ak-singularity at t if g(p)(t) = 0 for all 1 ≤ p ≤ k, and

g(k+1)(t) 6= 0. The family G is a versal unfolding of the function g with the Ak-singularity

if and only if the truncated Taylor expansions of ∂G
∂ai

(t, 0), 1 ≤ i ≤ n, span the space of

polynomials in t of degree at most k − 1.

We consider an unfolding G(t, u, a) of the potential function G(t, 0, 0) = g(t). The

bifurcation set is defined as

B(G) =
{
(u, a) ∈ U × R

⋉ | ∂G
∂t

(t, u, a) =
∂2G

∂t2
(t, u, a) = 0

}
.

We consider the extended unfolding G̃(t, u, a, c) = G(t, u, a) − c, where c ∈ R. The

discriminant set is defined as

D(G̃) =
{
(u, a, c) ∈ U × R

⋉ × R | G(t, u, a) = c,
∂G

∂t
(t, u, a) = 0

}
.

The unfoldings G and G̃ give rise to families of bifurcation sets (resp. discriminant sets),

obtained by fixing the parameter u. We have natural projections π : U × R
⋉ −→ U (resp.

π1 : U × R
⋉ × R −→ U).

Theorem 4 ([3]). Let G(t, a, u) be as above. If 1, ∂G
∂ai

(t, 0, 0) (1 ≤ i ≤ n) and
∂G
∂u

(t, 0, 0) span R[t]/〈tk〉 as the R-vector space, then G̃ (resp. G) is a versal unfolding of

the function (resp. potential function) g(t). In this case we have

(a) If 1, ∂G
∂ai

(t, 0, 0) span R[t]/〈tk〉, the projection π (resp. π1) is equivalent, via a

bifurcation set (resp. discriminant set) preserving diffeomorphism, to the trivial projection

onto one factor of a product bifurcation (resp. discriminant) set.

(b) If G is of minimal dimension k − 1 and 1, ∂G
∂ai

(t, 0, 0) span R[t]/〈tk〉 then the

projection π1 (resp. π) is equivalent to the projection of the standard discriminant (resp.

bifurcation) set of F̃ (resp. F ) above onto the a1-coordinate,

where F̃ (t, a) = ±tk+1+a1t
k−1+. . .+ak−1t+ak and F (t, a) = ±tk+1+a1t

k−1+. . .+ak−1t.

We now consider the Monge-Taylor map for plane curves. Throughout the remainder

of this section, we fix the canonical inner product on R
2 which gives Euclidean structure

on R
2. We may consider that Euclidean structure is one of the equi-affine structures

on R
2. For any γ ∈ Imm+(S1,R2) increasing t, that is the anticlockwise orientation of S1,

at each point p of γ(S1) choose the positive tangent and outward normal as x and y axes.

The curve near p has a unique representation as the graph y = ft(x), with f ′
t(x) = 0.

Let V k
p be the space of polynomials in single variable of degree d with p ≤ d ≤ k. We

consider a map φ : S1 −→ V k
2 which associates to each t ∈ S1 the k-jet of the function

ft at 0. We call φ a Monge-Taylor map of order k.
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In order to give a proof of Theorem 2, we prepare the following.

3.1. Family of affine height functions. When we study a single curve in the affine

plane, we define the affine height function as follows: For a curve γ : S1 −→ R
2, h :

S1 × S1 −→ R is defined by h(s, a) = | γ′(s) a |. Similarly we now define the one-

parameter family of affine height functions H : S1 × U × S1 −→ R by

H(s, u, a) =

∣∣∣∣
∂Γ

∂s
(s, u) a

∣∣∣∣.

We also define a function H̃ : S1 × U × S1 × R −→ R by

H̃(s, u, a, v) = H(s, u, a)− v.

Under this notation, we denote that

H̃a,v(s, u) = H(s, u, a) − v.

The discriminant set of H̃ is given as

D
±(H̃) =

{(
u, λ(s, u)

∂2Γ

∂s2
(s, u), λ(s, u)

)
∈ U × S1 × R | s ∈ S1

}
,

where λ(s, u) = ± 1√
∂2Γ1

∂s2 (s, u)2 + ∂2Γ2

∂s2 (s, u)2
and Γ(s, u) = (Γ1(s, u),Γ2(s, u)).

We define a map Ψ : U × (R2 − {0}) −→ U × S1 × R by

Ψ(u, x1, x2) =

(
u,

(
x1√
x2

1 + x2
2

,
x2√
x2

1 + x2
2

)
,

1√
x2

1 + x2
2

)
.

It is clear that Ψ is a diffeomorphism and Ψ(AN Γ) = D
+(H̃), where

ANΓ =
{(
u,
∂2Γ

∂s2
(s, u)

)
| s ∈ S1

}

is the family of affine normal curves.

We consider the following singular set of H̃ :

Σ =
{
(s, u, a, v) ∈ S1 × U × S1 × R | a = λ(s, u)

∂2Γ

∂s2
(s, u)

}

and the natural projection

P : Σ −→ U × S1 × R.

Then the set of critical values of P has the structure of the bifurcation set of H .

Without loss of generality, we may consider the germ at u = 0 and t = 0. We write

Γ(t, 0) = (t, c2t
2 + c3t

3 + c4t
4 + c5t

5 + c6t
6 +O(7)) where O(k) denotes a smooth function

on R vanishing at t = 0 to order k − 1. In particular, we assume that c2 6= 0.

We have the following lemma by calculating derivatives of H̃a,v.

Lemma 5. If a =
(
∓ c3√

c2

3
+4c4

2

,± 2c2

2√
c2

3
+4c4

2

)
, the condition for H̃a to have the Ak-

singularity at t = 0 is as follows:

(1) H̃a,v has the A1-singularity if and only if 5c23 − 4c2c4 6= 0,

(2) H̃a,v has the A2-singularity if and only if 5c23 − 4c2c4 = 0 and 7c33 − 4c22c5 6= 0,
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(3) H̃a,v has the A3-singularity if and only if 5c23 − 4c2c4 = 0, 7c33 − 4c22c5 = 0 and

21c43 − 8c32c6 6= 0,

(4) H̃a,v has the A≥4-singularity if and only if 5c23 − 4c2c4 = 0, 7c33 − 4c22c5 = 0 and

21c43 − 8c32c6 = 0.

We now define the function F : S1 × U × R
2 −→ R,

F (s, u, x) =
∂Γ1

∂s
(s, u) sinx1 −

∂Γ2

∂s
(s, u) cosx1 − x2,

where x = (x1, x2) ∈ R. This is considered as a local representation of H̃. We may use F

instead of H̃ .

Differentiating F with respect to unfolding parameters, we obtain

∂F

∂x1
(s, 0) = ± (2c2)

− 1

3

√
c23 + 4c42

(
−c3 + 4c32t+ 6c22c3t

2 + O(3)
)
,

∂F

∂x2
(s, 0) = −1,

∂F

∂u
(s, 0) = ± (2c2)

− 1

3

√
c23 + 4c42

{
(2c22d1 + c3e1)t+ (2c22d2 + c3e2)t

2 + O(3)
}
,

where ∂2Γ1

∂u∂t
(t, 0) = d1t+ d2t

2 + O(3) and ∂2Γ2

∂u∂t
(t, 0) = e1t+ e2t

2 + O(3).

We consider the following two cases:

(1) A1 and A2-singularity: Since c2 6= 0, 1 and ∂F
∂x1

(s, 0) span R[t]/〈t2〉, F is always

a versal unfolding. And the projection is the trivial one by Theorem 4.

(2) A3-singularity: If 2c22d2 − c3e2 6= 0, the condition for a versal unfolding is that 1,
∂F
∂x1

(s, 0), ∂F
∂x2

(s, 0), ∂F
∂u

(s, 0) span R[t]/〈t3〉. The condition for the projection is automat-

ically satisfied because 1 and ∂F
∂x1

(s, 0) span R[t]/〈t2〉.
For each k ≥ 2, we consider a map Φ : S1 −→ V k

2 × V k
0 × V k

0 . The first component of Φ

is the Monge-Taylor map φ. By a change of coordinate we may suppose that Γ(t, u(0)) =

(t, f(t)) for some smooth f with respect to the x and y axes. The second and third

components of Φ are the Taylor expansions of ∂Γ1

∂s
(t, u(0) + s)|s=0,

∂Γ2

∂s
(t, u(0) + s)|s=0

with respect to the above coordinate systems, truncated to degree k. Then we obtain the

following theorem.

Theorem 6 ([3]). Let X be a Whitney (A) regular stratified subset of V k
2 ×V k

0 ×V k
0 .

If Γ(t, u) is a family between the generic curves Γ0(S
1) and Γ1(S

1) then it can be an

arbitrarily small deformation of Γ to a family between the same curves Γ(t, 0) and Γ(t, 1),

and the corresponding Φ transverse to X.

We change the components of ∂Γ
∂u

(t, u(0)) to the components of ∂2Γ
∂u∂t

(t, u(0)) in the

above map Φ : S1 −→ V k
2 × V k

0 × V k
0 . By exactly the same arguments as in the proof of

Theorem 3.2 in [3], we can prove the Theorem 6.

In order to apply Theorem 6 for the proof of the assertion (1) of Theorem 2, we now

seek the stratified set X . We take the strata to be

(1)
{
c2x

2 + c3x
3 +

5c2

3

4c2

x4 +
7c3

3

4c2

2

x5 +
21c4

3

8c3

2

x6
}
× V 6

0 × V 6
0 to ensure Al, l ≤ 3,
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(2)
{
c2x

2 + c3x
3 +

5c2

3

4c2

x4 +
7c3

3

4c2

2

x5 + c6x
6
}
×

{
d1x+ − c3e2

2c2

2

x2 + d3x
3 + d4x

4 + d5x
5 +

d6x
6
}
× V 6

0 to ensure that the projection at an A3-point is generic.

The strata are clearly of codimension at least 3, and hence the Φ is transverse to X

if and only if it misses X , which ensures that the family Γ is generic.

This completes the proof of assertion (1) of Theorem 2.

3.2. Family of affine distance-cubed functions. For the proof of assertion (2) of Theo-

rem 2, we consider the affine invariant function. When we study a single plane curve

in affine plane, we define the affine distance-cubed function d : S1 × R
2 −→ R by

d(s, a) =
∣∣∣ dγ

ds
(s) γ(s) − a

∣∣∣ for the curve γ : S1 −→ R
2 as the above. Similarly we now

define the one-parameter family of affine distance-cubed functions D : S1×U×R2 −→ R

by

D(s, u, a) =

∣∣∣∣
∂Γ

∂s
(s, u) Γ(s, u) − a

∣∣∣∣.

We also define a function, for each a ∈ R
2,

Da(s, u) = D(s, u, a).

The bifurcation set of D is

B(D) =
{(
u,Γ(s, u) +

1

κ(s, u)

∂2Γ

∂s2
(s, u)

)
∈ U × R

2 | κ(s, u) 6= 0, s ∈ S1
}
.

B(D) is the family of affine evolute. We now consider the singular set of D

Σ =
{

(s, u, a) ∈ S1 × U × R
2 | a = Γ(s, u) − λ

∂2Γ

∂s2
(s, u), λ ∈ R

}

and the natural projection P ,

P : Σ −→ U × R
2.

Then we have B(D) = CP , where CP is the critical value set of P .

Without loss of generality we shall work at u = 0 and t = 0. We write Γ(t, 0) =

(t, c2t
2 + c3t

3 + c4t
4 + c5t

5 + c6t
6 + c7t

7 + O(8)). In particular, we assume that c2 6= 0.

By a straightforward computation, we have the following lemma.

Lemma 7. If a =
(
− c2c3

4c2c4−5c2

3

,
2c3

2

4c2c4−5c2

3

)
the condition for Da to have the Ak-singu-

larity at t = 0 is:

(1) Da has the A2-singularity if and only if 3c2c3c4 − 2c33 − c22c5 6= 0,

(2) Da has the A3-singularity if and only if 3c2c3c4 − 2c33 − c22c5 = 0 and 2c2c
2
3c4 +

2c22c
2
4 − 3c43 − c32c6 6= 0,

(3) Da has the A4-singularity if and only if 3c2c3c4−2c33−c22c5 = 0, 2c2c
2
3c4+2c22c

2
4−

3c43 − c32c6 = 0, and 10c2c
3
3c4 − 10c22c3c

2
4 − c53 + c42c7 6= 0,

(4) Da has the A≥5-singularity if and only if 3c2c3c4 − 2c33 − c22c5 = 0, 2c2c
2
3c4 +

2c22c
2
4 − 3c43 − c32c6 = 0 and 10c2c

3
3c4 − 10c22c3c

2
4 − c53 + c42c7 = 0.

Differentiating D with respect to unfolding parameters, we obtain

∂D

∂a1
(s, 0) = (2c2)

− 1

3 (2c2t+ 3c3t
2 + 4c4t

3 + O(4))
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∂D

∂a2
(s, 0) = −(2c2)

− 1

3

∂D

∂u
(s, 0) = −(2c2)

− 1

3

{
(e0 − µ0ρ)

+ (e1 − n0 − 2c2d0 − µ1ρ)t

+ (e2 − n1 − 3c3d0 + c2(m0 − 2d1) − µ2ρ)t
2

+ (e3 − n2 − 4c4d0 + c2(m1 +m0 − 2d2) − 3c3d1 − µ3ρ)t
3 + O(4)

}

where ∂Γ1

∂u
(t, 0) = d0 + d1t + d2t

2 + O(3), ∂Γ2

∂u
(t, 0) = e0 + e1t + e2t

2 + e3t
3 + O(4),

∂2Γ1

∂u∂t
(t, 0) = m0 +m1t+m2t

2 +m3t
3 +O(4), ∂2Γ1

∂u∂t
(t, 0) = n0 +n1t+ n2t

2 +n3t
3 +O(4),

ρ = 1
4c2c4−5c2

3

and µi = c2(2c
2
2mi − c3ni).

We consider the following two cases:

(1) A2 and A3-singularity: Since c2 6= 0, 1 and ∂D
∂a1

(s, 0) span R[t]/〈t3〉, D is always

a versal unfolding if c3 6= 0.

(2) A4-singularity: The condition for a versal unfolding is that 1, ∂D
∂a1

, ∂D
∂a2

and ∂D
∂u

span R[t]/〈t4〉, that is e3 −n2 − 4c4d0 + c2(m1 +m0 − 2d2)− 3c3d1 −µ3ρ 6= 0 and c3 6= 0.

The condition for the projection is automatically satisfied by Theorem 4.

By the above calculation, we need to consider the components of ∂Γ
∂u

(t, u(0)) and
∂2Γ
∂u∂t

(t, u(0)) in the tangent and normal directions at Γ(t, u(0)). Thus for each k ≥ 2

we consider a map Φ̃ : S1 −→ V k
2 × V k

0 × V k
0 × V k

0 × V k
0 . The first, second and third

components of Φ̃ are the map Φ. The fourth and fifth components of Φ̂ are the Tay-

lor expansions of ∂2Γ1

∂s∂t
(t, u(0) + s)|s=0,

∂2Γ2

∂s∂t
(t, u(0) + s)|s=0 with respect to the above

coordinate systems, truncated to degree k. Let Γ be a one-parameter family between

Γ0 and Γ1 as above. By shrinking U , we may suppose that Γ(S1 × U) is contained

in some large ball neighbourhood of the origin B ⊂ R
2. Let P denote the space of

polynomial maps of degree at most d from R
2 to itself, and choose a sufficiently small

convex neighbourhood W of the zero map in P so that for any ψ1, ψ2, ψ3, ψ4 in W ,

id +ψ1 + ψ2 + ψ3 + ψ4 maps the ball 2B of twice the radius of B diffeomorphically onto

its image (where id is the identity). Now consider Γ̂ : S1 × U ×W 4 −→ R
2 defined

by Γ̂(t, u, ψ1, ψ2, ψ3, ψ4) = Γ̃(t, u, ψ1, ψ2)+ψ3(Γ̃(t, u, ψ1, ψ2))+uψ4(Γ̃(t, u, ψ1, ψ2)). Each

(t, u, ψ1, ψ2.ψ3, ψ4) −→ Γ̂(t, u, ψ1, ψ2, ψ3, ψ4) is an embedding of S1 in R
2. We have the

associated mapping Φ̂ : S1 × U ×W 2 −→ V k
2 × V k

0 × V k
0 × V k

0 × V k
0 with respect to Γ̂.

By exactly the same arguments as in the proof of Lemma 3.1 in [3], we have the

following lemma.

Lemma 8. The map Φ̂ is a submersion at (t, 0, 0, 0, 0, 0).

By Lemma 8, we have the following theorem.

Theorem 9. Let X be a Whitney (A) regular stratified subset of V k
2 × V k

0 × V k
0 ×

V k
0 × V k

0 . If Γ(t, u) is a family between the generic curves Γ0(S
1) and Γ1(S

1) then it can

be an arbitrarily small deformation of Γ to a family between the same curves Γ(t, 0) and

Γ(t, 1), and the corresponding Φ̃ transverse to X.
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Since the proof of Theorem 9 is analogous to that of Theorem 6 (Theorem 3.2 in [3]),

we omit it.

For applying Theorem 9, we now adopt the canonical Whitney stratification of the

following algebraic set:

(1) {c2x2 + c4x
4 − 2c2

4

c2

x6} × V 7
0 × V 7

0 × V 7
0 × V 7

0 to ensure Al, l ≤ 3,

(2) {c2x2 + c4x
4− 2c2

4

c2

x6 + c7x
7}×V 7

0 ×{e0 +e1x+e2x
2 + ẽ3x

3 +e4x
4 +e5x

5 +e6x
6 +

e7x
7} × V 7

0 × V 7
0 , where ẽ3 = (n2 + 4c4d0 − c2(m1 +m0 − 2d2) +

2c2

2
m3

2c4

) to ensure that

the projection at an A3-point is generic.

The strata are clearly of codimension at least 3, and hence the map Φ is transverse

to X if and only if it misses X , which ensures that the family Γ is generic.

This completes the proof of assertion (2) of Theorem 2.

4. Examples. The situation described in Theorem 2 is depicted as follows.

The first example is the bifurcation of affine inflexions. So we draw some affine normal

curves. The original family of curves is

γ(t) = (cos 3t+ a cos t− 10 sin t+ cos 2t, sin 3t+ a sin t+ 10 cos t− sin 2t),

where a is the parameter. The real lines of Figure 1 are the affine normal curves of γ. We

draw affine normal curves for the parameters −10, −11.0, −12.0, −12.5, −12.7 and −12.9.

When we draw both of the curve γ and the affine normal curve of γ, the affine normal

curve of γ is drawn as very small pictures. So we draw only the affine normal curves for

each parameter a. Since the ordinary affine inflexion corresponds to the ordinary cusp of

the affine normal curve from Theorem 1, we can recognize the number of affine inflexions

by counting the number of cusps of the affine normal curve.

a=-10.0 a=-11.0 a=-12.0

a=-12.5 a=-12.7 a=-12.9

Figure 1
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The second example is the bifurcation of affine vertices. The original family of curves is

γ(t) = (cos 2t− cos(t+ a), sin 2t+ sin t).

They are drawn by the dotted curves. We draw affine evolutes of γ for the parameters

1.9, 2.0, 2.1, 2.2, 2.3 and 2.4. Affine evolutes are drawn by the real curves.

a=1.9 a=2.0 a=2.1

a=2.2 a=2.3 a=2.4

Figure 2
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