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Abstract. This paper studies the smoothness and the curvature of conflict sets of the dis-
tance function in the plane. Conflict sets are also well known as ‘bisectors’. We prove smoothness
in the case of two convex sets and give a formula for the curvature. We generalize moreover to
weighted distance functions, the so-called Johnson-Mehl model.

1. Introduction. We consider two regions in the Euclidean plane. A classical prob-

lem is to study the set of points of equal distance to the two sets. If the sets are points,

lines or circles we get in this way parabolas, ellipses, hyperbolas and lines.

The sets of equal distance are known under several names: bisectors (in computa-

tional geometry), equi-distance lines, conflict lines of the distance function (in singularity

theory), cut locus, etc.

Definition 1. Let d denote the Euclidean distance function; A and B two closed

sets in the plane E . By d(x,A) we denote the distance from a point x to A.

Conf(A,B) = {x ∈ E | d(x,A) = d(x,B)} Conflict set ,

Terr(A,B) = {x ∈ E | d(x,A) < d(x,B)} Territory of A w.r.t. B,

Terr(B,A) = {x ∈ E | d(x,A) > d(x,B)} Territory of B w.r.t. A.

We can also start from iso-distance lines (sets) with respect to A and B. The conflict

sets are precisely the intersections between iso-distance lines with the same distance. We

can imagine the conflict set as the places where wave fronts from A and B meet at the

first time.

Moreover one can consider circular discs, which are tangent to both A and B. The

centers of the discs are exactly the points on the conflict set. If one considers not discs,

but only circles, tangent to both sets one finds in general a bigger locus of centers, since
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268 D. SIERSMA

then the tangency is also allowed from the ‘inside’ of the circle. The methods of this

paper apply with appropriate changes also to this more general type of bisector.

Below we study first the smoothness of the conflict set. Without differentiability

assumptions about the boundaries this is not always the case, but if the boundaries are

convex there is well defined tangent line. Next we give a formula for the curvature in a

point P of the conflict set. We use as data the distance to the sets, the angle between

the projection lines and the curvatures at the projections of P .

Next we generalize this to weighted distances, and also here we show differentiability

in the convex case and give a formula for the curvature.

The methods of this paper are elementary. We use planar geometry and squeezing

arguments for the smoothness and elementary differential geometry for the curvature

formulas.

Conflict sets play an important role in computational geometry (robotics, etc.). More-

over they have already been thoroughly studied in the history, where ellipses, parabolas,

hyperbolas occurred in this context. This paper relates this old and important part of

geometry with the recent investigations of conflicts sets in the plane.

While preparing this paper we profited from discussions with Aad Goddijn, who

supplied the elementary proof of Theorem 1. This was the starting point of the paper.

We restrict in this paper to curves in the plane. Generalizations to higher dimensions are

work in progress, we refer to [SSG] and [Ma].

2. Smoothness. In several sources the smoothness of the conflict set is mentioned

or supposed in the case of convex sets A and B. In non-convex cases the conflict set is not

always smooth. In a certain sense the smoothness is remarkable since usual differential

topology gives for Ck-boundaries a Ck−1-conflict set. Although the smoothness in the

general convex case without differentiability conditions seems to be ‘folklore’, we could not

find a complete proof in the literature. Goddijn [Go] supplied the following elementary

proof, which gives also information about the position of the tangent lines. Goddijn’s

arguments also apply to the differentiability of iso-distance sets and generalize easily to

higher dimensions and to several situations in the non-convex cases.
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Figure 1. The conflict set and the kite of a point P on it

Definition 2. The kite construction (Figure 1). Let P be a point on Conf(A,B).

Consider the projections Q of P onto A, and R of P onto B. Let a be the line through Q

which is perpendicular to PQ and b be the line through Q which is perpendicular to PR.
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Let S be the intersection point of a and b. The quadrangle PQSR is a kite, the kite

associated to the point P on the conflict set. We call PS the kite-axis. It is the bisector

between the two projection lines PQ and PR.

In case a and b are parallel, we have no finite intersection point, but we assume the

intersection point at infinity. In this analogy we call the line through P which is parallel

to both a and b the axis of the ‘kite’.

Theorem 1. If A and B are convex sets in the Euclidean plane, then their conflict

set is differentiable. Moreover the tangent line is the axis of the associated kite, which is

also the bisector between the projection lines from the corresponding point.
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Figure 2. The construction of A+ and B+

P r o o f. Let P be a point on Conf(A,B). Consider the associated kite PQSR. Let

A+ be the closed half plane, which contains the region A, and is bounded by the line a

(here convexity is used). Let B+ be defined similarly. We continue now by increasing

A to A+, decreasing B to R, doing the same in the other way and comparing their

territories (Figure 2). For an arbitrary point x on Conf(A,B) we have

d(x, A+) ≤ d(x,A) = d(x,B) ≤ d(x, R),

d(x, Q) ≥ d(x,A) = d(x,B) ≥ d(x, B+).

From this it follows that x ∈ Terr(A+, R) and x ∈ Terr(B+, Q). Both territories are

bounded by parabolas, which have only one point in common, namely P (Figure 3).
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Figure 3. The squeezing
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The conflict set Conf(A,B) is included in the closed ‘sector’ defined by (the closure

of) the complements of these territories. The two parabolas have at P the same tangent,

which is also the tangent of the conflict set. We can also consider the bisector between

a and b as part of Conf(A+,B+), which is the axis of the kite. Also this conflict set is

squeezed between A+ and B+, and is therefore the tangent line in P to both parabolas.

The kite-property mentioned above is well known in the classical cases parabola

(point-line); ellipse (circle, point inside); hyperbola (circle, point outside). It is the so-

called tangent property, which can be used to construct the tangent line to a point on

the conic. Moreover this is directly related to the reflection properties (Figure 4).

. .
F1

F2
F1

F2F

Figure 4. Tangent and reflection properties of a conic

R e ma r k 1. The locus of all points P of the kite defines the conflict set. But there

seems to be an interesting duality. One can also consider the locus of the points S, the

base point of the kite. This set can be described as the locus of points where there exist

tangent lines to A and B with the same length. It is quite possible that this set has been

studied before. Also the case of tangency to the same set in two different points is an

interesting subject.

3. Curvature. First we discuss the curvature of a iso-distance set to a region in

the plane. We assume the boundary C2 and also the iso-distance set is now at least

C2-smooth for small distance. More precisely: the iso-distance set is nonsingular and C2

at points which are not on the evolute (or focal set) of the boundary [Mi]. We also refer

to [Be], [BG] and [Po] for background about conic sections and differential geometry.

Remark that this condition is sufficient to define curvature on smooth points of the iso-

distance sets. Examples show that with a lower degree of differentiability of the boundary

curvature can be also defined in lots of points in several other situations, such as ‘corners’,

where the iso-distance sets become arcs of circles.

Proposition 2. Let P ∗ a point on the iso-r-distance set and P the corresponding

foot. Let κ be the curvature and ρ be the radius of curvature of the boundary curve in P

and let κ∗, resp. ρ∗, be the corresponding notions in P ∗ for the iso-distance curve.

Then

ρ∗ = ρ + r and κ∗ =
κ

1 + κr
.
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P r o o f. The statement about the ρ follows from the fact that ρ is the radius of the

best tangential circle.

In the case ρ = −r one has a point of the evolute, where the iso-distance set is not

differentiable. In case of a corner ρ∗ = r.

Proposition 3. Curvature of conflict sets in the plane.

Let A1 and A2 be two disjoint convex sets in the plane with C3 boundaries. Then

κ =
1

2

( κ1

1 + κ1r
−

κ2

1 + κ2r

)

sin φ.

Here κ is the curvature in a point P of the conflict set , κi are the curvatures in the feet

of P on the boundary of Ai, and r is the distance from P to Ai.

P r o o f. We use the kite-construction (cf. Figure 5) in order to determine the normal

vector to the conflict set.
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Figure 5. Definitions of Frenet-Serret frames

We use the notation: n, n1, n2 are the unit-normal vectors, respectively to the conflict

set, the boundary of A1 and A2; t, t1, t2 are the unit-tangents, respectively to the conflict

set, the boundary of A1 and A2. Also φ is the angle between the vectors ni and t.

We have:

n =
n1 − n2

2 sinφ
and t = −

n1 + n2

2 cosφ
.

We replace A1 and A2 by the r-distance sets. The boundaries intersect at P . This does

not influence the conflict set and the tangent and normal vectors.

Let s be arc length for the conflict set and si for the boundaries of the r-distance sets.

dn

ds
=

(dn1

ds1

·
ds1

ds
−

dn2

ds2

·
ds2

ds

) 1

2 sinφ
+ (n1 − n2) · (. . .)

=
(

κ∗
1t1

ds1

ds
− κ∗

2t2

ds2

ds

) 1

2 sin φ
+ (n1 − n2) · (. . .).

In order to compute the curvature κ it is now sufficient to take the inner product with t.

Note that

t1 • n2 = sin 2φ = t2 • n1; (n1 − n2) • t = 0
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and moreover

ds1

ds
=

ds2

ds
= sin φ.

So we get

κ =
(

κ∗
1t1 • n2

ds1

ds
− κ∗

2t2 • n1

ds2

ds

) 1

4 sin φ · cosφ

=
1

2

(

κ∗
1

ds1

ds
− κ∗

2

ds2

ds

)

=
1

2
(κ∗

1 − κ∗
2) sin φ.

This completes the proof.

R e ma r k 2. For a usual hyperbola, considered as the conflict set between a point

and a disc of radius c, we get the following formula:

κ =
1

2

(1

r
−

1

r + c

)

sin φ.

4. Weighted distances, the Johnson-Mehl model. In this model we give weights

a and b to each of the sets A and B. The new distances are defined by

dw(x, A) =
1

a
d(x,A)

where d(x,A) is the Euclidean distance.

In the weighted metric the conflict set is given by

Confa:b(A,B) =
d(x,A)

a
=

d(x,B)

b
.

A B

Con(A,B)

a

Conf_a:b(A,B)

P

R

Q

Figure 6. Weighted conflict sets

For A and B compact sets the weighted conflict set is a compact curve if a 6= b. Only

in the case a = b is the conflict set non-bounded (Figure 6).

We list (cf. Figure 7) the JM-conflict sets in the following cases (we assume a 6= b):

• point-point: The JM-bisector is a circle (the circle of Apollonius).

• line-line: The JM-bisector is a pair of straight lines.

• line-point: The JM-parabola is an (Euclidean) ellipse if a > b or a hyperbola if a < b.



CONFLICT SETS IN THE PLANE 273
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Figure 7. Weighted conflict sets

In fact these give one of the possible definitions for a conic section. According to

Coxeter [Cox] older definitions for a conic, proposed by Menaechmus about 340 B.C. are

reconciled with this one by Pappus of Alexandria (fourth century), or possibly by Euclid.

We next repeat the ‘kite’-construction in the weighted case. This produces for every

point P on Confa:b(A,B) a quadrangle PQSR. This JM-kite has a circumscribed circle.

In Figure 8 we show two different positions of the JM-kite.
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Figure 8. Two JM-kites

Geometrical formulas about the JM-kite. The shape of the JM-kite is determined by

the ratio a : b and the top angle γ = 6 QPR. These data determine α = 6 QPS and

β = 6 RPS :

sin α =
b − a cos γ

c
, sin β =

a − b cos γ

c

where

c =
√

a2 + b2 − 2ab cos(α + β) .
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This recalls to the cosine rule in triangle QPR. The length of the sides and diagonals of

the JM-kite are proportional with the JM-distance r. We have the formulas:

PQ = ra, PR = rb,

QS =
b − a cosγ

sin γ
r, RS =

a − b cos γ

sin γ
r,

QR = rc, PS = r
c

sin γ
.

Theorem 4. If A and B are convex sets in the Euclidean plane, then their conflict

set is differentiable. Moreover the tangent line is the axis of the associated JM-kite, which

is also the JM-bisector between the projection lines from the corresponding point.

P r o o f. This is similar to the Euclidean case. The conflict set is squeezed between

Terr(A+, R) and Terr(B+, Q) (Figure 9). Also the diagonal PS is in the complement.
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Figure 9. Weighted squeezing

R e ma r k 3. In case A and B are points A and B the tangent property has the

following geometric meaning:

Given a triangle ABP . Let the line through A perpendicular to AP and the line

through B perpendicular to BP intersect each other in S. Let K and L be the intersection

points of the outer and inner bisectors of angle APB with the line AB. Then PS is tangent

to the circle with KL as diameter (Figure 10).

A
B

P

S

L K

Figure 10. Illustration of Remark 3
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Proposition 5. Curvature of JM-conflict sets in the plane.

Let A1 and A2 be two disjoint convex sets in the plane with C2 boundaries. Then

κ =
1

√

a2 + b2 − 2ab cos(α + β)

( κ1

1 + κ1ar
b sin2 α −

κ2

1 + κ2br
a sin2 β

)

.

Here κ is the curvature in a point P of the conflict set , κi are the curvatures in the

feet of P on the boundary of Ai, and r is the JM-distance from P to Ai; α is the angle

between the projection line on A1 and the conflict set at P and β similarly with respect

to A2.

P r o o f. We use the kite-construction (cf. Figure 8) in order to determine the normal

vector to the conflict set.

We use the notation n, n1, n2, t, t1 and t2 as before. Let α be the angle between the

normal n1 and t and let β be the angle between the normal n2 and t.

We have

n =
bn1 − an2

c
and t = −

bt1 + at2

c

where

c =
√

a2 + b2 − 2ab cos(α + β) .

We replace A1 and A2 by the r-JM-distance sets. The boundaries intersect at P . This

does not influence the conflict set. Also the tangent and normal vectors are not effected.

Let s be arc length for the conflict set and si for the boundaries of the r-distance sets.

dn

ds
=

(

b
dn1

ds1

·
ds1

ds
− a

dn2

ds2

·
ds2

ds

)1

c
+ (bn1 − an2) · (. . .)

=
(

bκ∗
1t1

ds1

ds
− aκ∗

2t2

ds2

ds

)1

c
+ (bn1 − an2) · (. . .).

In order to compute the curvature κ it is now sufficient to take the inner product with t.

Note that

t1 • t = sin α; t2 • t = sinβ; (bn1 − an2) • t = 0

and moreover
ds1

ds
= sin α ;

ds2

ds
= sin β.

Hence we get

κ =
(

bκ∗
1t1 • t

ds1

ds
− aκ∗

2t2 • t
ds2

ds

)1

c

=
(

bκ∗
1 sin α

ds1

ds
− aκ∗

2 sin β
ds2

ds

)1

c
=

bκ∗
1 sin2 α − aκ∗

2 sin2 β

c
.

This completes the proof.

N.B. With the above geometric formulas one can replace the expressions in α and β

by expressions in γ. Then

κ =
bκ∗

1(b − a cos γ)2 − aκ∗
2(a − b cosγ)2

c3
.
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Example. If the sites are points we get the usual Apolonius situation. The curvature

formula reduces after appropriate computations to

κ =
b2 − a2

rabc
=

b2 − a2

ab · d(A, B)
.

This is in harmony with the formula for the radius of the Appolonius circle

R =
ab

b2 − a2
· d(A, B).

5. The distance foliation. For any point in the plane, we can consider the ratio

d(x,A) : d(x,B). This defines a function from the Euclidean plane E to [0,∞]. The level

lines foliate the plane and they are just the JM-conflict lines for the given weight a : b,

unless a = 0 or b = 0 (cf. Figure 11). The tangent lines to the foliation are given by the

‘kite’-construction.

A B

Con(A,B)
Conf a:b(A,B)

Figure 11. The distance foliation
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