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Abstract. This paper deals with the propagation of waves around a circular obstacle. The
medium is heterogeneous: the velocity is smaller in the inner region and greater in the outer
region. The interface separating the two regions is also circular, and the obstacle is located
eccentrically inside it. The different front portraits are classified.

1. Introduction. Waves in different fields of natural sciences can be described by

partial differential equations which have solutions of the form

u(t, r) = A(r)f(t − S(r)).

Here A is the amplitude, f is the phase, and S is the eikonal. There are several equations

having this type of solution; e.g. wave equation, Hamilton-Jacobi equation [1], reaction-

diffusion equation [5, 10, 12, 13], heat equation [4, 3].

The process of propagation can be described without involving the amplitude. In the

geometric theory of waves we can define rays and fronts, we can establish the evolution

of fronts provided that the velocity is known [2, 15]. From a mathematical point of view,

this approach is flourishing, and produces a lot of interesting results (see e.g. [7, 14] and

the other articles of this volume).

The first application of the geometrical approach to biology goes back to Wiener and

Rosenblueth [16]. They constructed a model to the propagation of excitations in nerve

system and cardiac muscle.

Chemical waves are very similar to the waves of excitations in biology. A simple

analogue which illustrates the most striking character of chemical waves is the process of
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prairie fire. Starting from an initial burning front, the process is easily predicted if the

velocity is known.

Chemical waves rotating around an obstacle (chemical pinwheels) had been observed

experimentally by Noszticzius and his co-workers [9, 8, 11]. Those may have importance

in understanding of some characteristics of a heart disorder, ‘flutter’ [8, 16].

Simple mathematical models of chemical waves rotating around an obstacle in a ho-

mogeneous medium (the velocity is constant) were described by several authors, e.g.

[2, 9, 14, 16]. The case of heterogeneous annular region (the obstacle surrounded by an

inner slow and an outer fast region) was investigated experimentally and theoretically [8].

Here we describe wave propagation in a heterogeneous asymmetric annular region (the

obstacle is not concentric with the interface). The arrangement and notations are depicted

in Fig. 1.

The paper is organized as follows. In Section 2 we describe the model and the problem

to be investigated in exact terms. In Section 3 we collect some important consequences of

the geometrical theory of waves to the case of heterogeneous medium (where the velocity

is piecewise constant). We deal with the properties of extremals, and introduce the local

break point dynamics which is a tool for the investigation of wave front evolution in

heterogeneous media. Section 4 contains the main results. The stationary wave fronts are

calculated in the different cases (according to the position of the obstacle and the value

of the refractive index).

2. The model. In this section we determine formally the region in which our waves

evolve, and the velocity of propagation. Then we formulate the most important notions

and the problem under investigation.

Let us denote by S(r, P ) the circle with radius r centred at P , and by B(r, P ) the

open disk with radius r centred at P .

R

Obstacle Interface

O

C

I B
RO

CO

S

F

Figure 1: Asymmetric arrangement. The circular obstacle O with the centre at CO
and radius RO is surrounded by a heterogeneous medium. The circular interfacial
boundary I of radius R and centre C separates an inner ‘slower’ annular region S (with
propagation velocity v1) and an outer ‘faster’ annular region F (with propagation
velocity v2 > v1). The reactor V , where the waves propagate, is bounded by the
circle B.
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Definition 1. Let C and CO be points on the plane and RO < R < RB be positive

numbers for which R − RO is greater than the distance of C and CO. The circle O :=

S(RO, CO) is called obstacle, I := S(R, C) is called interface (or interfacial boundary),

B := S(RB , C) is called (outer) boundary. Let S := B(R, C) \ B(RO, CO), F := B ∪

B(RB, C) \ B(R, C) and V := S ∪ F . (See Fig. 1.)

Definition 2. Let v1 < v2 be positive numbers. We define the velocity as the func-

tion v : V → R

v(x) :=

{

v1 if x ∈ S

v2 if x ∈ F .

Remark that if a part of the path lies on the interfacial boundary, then we should

insert the greater velocity for that part due to Fermat’s principle.

Definition 3. Let f0 ⊂ V be a straight segment, the endpoints of which are on O

and B respectively; this will be referred to as initial front .

Definition 4. Let G be the set of piecewise smooth curves in V for which the fol-

lowing two conditions hold:

1. The starting point of the curve is on f0.

2. The curve can intersect f0 only in positive direction, that is a small arc of the curve

after the intersection point is on the local positive side. (The points on the local positive

side can be obtained from the points of f0 by a small anticlockwise rotation around CO.)

These curves will be called admissible curves.

The assumption that f0 is a straight segment is only a technical condition. Assump-

tion 2 in Definition 4 ensures that starting from the initial front the propagation is allowed

only in the anticlockwise direction, thus the front rotates around the obstacle, see Fig. 2.

f1

f0

Figure 2: The initial front f0 is a line segment. The front moves in the anticlockwise
direction.

Definition 5. Let g ∈ G be an admissible curve given in arclength parametric form;

the length of g is denoted by l(g). Let us denote by τ(g) the propagation time along g,

that is

τ(g) =

∫ l(g)

0

1

v(g(s))
ds.
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Definition 6. A simple closed curve surrounding the obstacle in V is called minimal

loop if there is no other closed curve surrounding the obstacle O having less propagation

time. A piecewise smooth curve in V is called Fermat ray or extremal if there is no other

piecewise smooth curve with same endpoints having less propagation time.

In our model the front propagation is determined by Fermat’s principle, therefore the

fronts are defined as the level curves of the following eikonal.

Definition 7. Let σ : V → R+ be the eikonal , that is

σ(P ) = inf{τ(g) : g ∈ G, g(l(g)) = P}.

Let the wave front at time t be

ft = {P ∈ V : σ(P ) = t}.

The aim of this paper is to determine the shape and evolution of the fronts ft. It turns

out that after a transient interval, the process will be periodic in time with period T ,

that is an ‘asymptotic’ front rotates around the obstacle periodically. During a round the

shape of the front changes (not as in the symmetric case). Our aim is to determine this

asymptotic front portrait. The fronts are orthogonal to the extremals, therefore in order

to get the shape of the fronts it is enough to determine the extremals.

When determining the extremals, certain points of the fronts (the “leading points”)

play a distinguished role.

Definition 8. The point P of the front ft0 is called a leading point if there exists

t > t0 such that the set of points Q ∈ ft for which there exist an extremal with endpoints

P and Q and with length t − t0 has positive measure.

In previous works [9, 8, 15] we applied the geometric theory based on Fermat’s prin-

ciple to simpler cases. If the medium is homogeneous (v1 = v2), the relevant family of

Fermat rays are the forward tangential half-lines to the obstacle’s boundary. These rays

determine the asymptotic front lines which are just the involutes of the obstacle’s bound-

ary [9, 15, 16]. In [8] the medium was supposed to be heterogeneous, but the arrangement

had circular symmetry (in the present setting it is the special case C = CO). For this sym-

metric arrangement it turned out that there were two relevant families of rays: obstacle

generated rays and interface generated rays.

1. Obstacle generated rays depart anticlockwise from the obstacle tangentially and

continue to the outer region (F ) according to Snell’s law of refraction (v1

v2

= sin α1

sin α2

).

2. Interface generated rays depart anticlockwise from the interfacial boundary tan-

gentially to the outer region (F ) and with the critical angle αcr of total reflection into

the inner region (sinαcr = v1/v2).

That is, two leading points generate the rays determining the asymptotic fronts, one

runs around the obstacle’s boundary with velocity v1, while the other runs around the

interfacial boundary I with velocity v2. The competition of these leading points deter-

mines the asymptotic front in the following way: if the angular velocity ω1 = v1/RO
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is greater than the angular velocity ω2 = v2/R, then the rays of type 1 determine the

asymptotic wave front. On the other hand, if ω2 > ω1, then the rays of type 2 determine

the asymptotic fronts. In other words, the asymptotic front is determined by the minimal

loop. The exact formulation of the statement is Theorem 2 in Section 4. The envelope

of the refracted rays forms a caustic, the refracted rays are tangential to the caustic in

question.

3. Geometric wave theory in a heterogeneous medium. The considerations

detailed in this section are valid, or can be easily generalized to a more general hetero-

geneous medium (where the velocity is piecewise constant), but we restrict ourselves to

the case of the annular region V .

3.1. Properties of Fermat rays. In this subsection we deal with the structure of the

Fermat rays (see Definition 6), and the fronts determined by them. The proofs of the

following two simple lemmas are elementary.

Lemma 1. Every Fermat ray consists of the following four types of arcs:

1. A circular arc on O.

2. A circular arc on I.

3. A line segment in intF .

4. A line segment in intS.

Lemma 2. If a Fermat ray contains two arcs of different type, then these can join

only in the following way (see Fig. 3):

a. Arc 4 joins to Arc 1 tangentially to O.

b. Arc 3 joins to Arc 2 tangentially to I.

c. Arc 4 joins to Arc 2 with the critical angle of total reflection.

d. Arc 3 joins to Arc 4 according to Snell’s law of refraction (v1/v2 = sin α1/ sinα2).
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Figure 3: The arcs of Fermat rays and their combinations.
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In the construction of Fermat rays the caustics play an important role. A caustic is

defined as the envelope of a special family of rays. According to Lemma 2, here three

families of rays have importance:

A-rays: the rays departing tangentially outward from the obstacle,

B-rays: the rays departing tangentially outward from the interface,

C-rays: the rays departing inward from the interface with the angle of the total re-

flection (αcr).

For the tangential rays the caustic is just the borderline itself (obstacle or interface

resp.). For the family of C-rays the caustic is a circle K inside the interface centred

at C with radius R/n, where n = v2/v1 > 1 is the refractive index. Unfortunately the

caustic K ′ of the rays of type 3 joining to rays of type 4 (which could be called D-rays,

corresponding to Lemma 2 d) is not circular, its shape is not discussed here.
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Figure 4: Use of caustic of the family of C-rays departing from the interface. The
obstacle is not indicated here.

With the use of caustic K, the calculation of the propagation time of a heterogeneous

path is an easy task and it has simple geometrical meaning. To formulate this let A, D ∈ I

and denote the tangent point on K of the tangents from A and D by A′ and D′, see Fig. 4.

Let P be a point of the segment DD′. The propagation time of the real heterogeneous

path arc
⌢
AD on the interface with velocity v2 and segment DP with velocity v1 (shortly

⌢
ADP ) is related to that of a corresponding homogeneous path: tangential segment PD′

and arc
⌢

D′A′ (anticlockwise on K) (shortly P
⌢

D′A′) with the same velocity v1. In exact

terms

Proposition 1. Let L = 2Rπ/n+ AA′. Then for every point P of the segment DD′

τ(
⌢
ADP ) = L/v1 − τ(P

⌢
D′A′).

P r o o f.

τ(
⌢
ADP ) =

⌢
AD/v2 + DP/v1 = (

⌢
AD/n + DP )/v1 = (

⌢
A′D′ + DP )/v1

= (2Rπ/n −
⌢

D′A′ + DD′ − PD′)/v1 = (L − P
⌢

D′A′)/v1 = L/v1 − τ(P
⌢

D′A′).

This way the use of caustic made it possible to convert the distances in the fast

medium F (
⌢
AD) into a distance in slow medium S (

⌢
D′A′). As a consequence of this
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proposition, one deduces that the wavefront generated by the C-rays is a reverse involute

of K, see Fig. 4. A wavefront generated by C-rays is the locus of the points to which

the propagation time on C-rays from a given point (A) is constant. (The word reverse

refers to the position of the involute [8], since the C-rays depart from the caustic in the

negative (clockwise) direction, while A-rays generating also involute shape fronts depart

from the obstacle in the positive direction.)

The next lemma is based on the following facts:

• The fronts are orthogonal to the rays.

• The orthogonal trajectories of the tangents of a curve are the involutes of the curve.

Lemma 3.

1. The fronts generated by the family of A-rays are the involutes of O.

2. The fronts generated by the family of B-rays are the involutes of I.

3. The fronts generated by the family of C-rays are the reverse involutes of K.

Definition 9.

1. Let SO be the obstacle generated part (zone) of S, that is the locus of the points

in the neighbourhood of which ft is an involute of O.

2. Let SI be the interface generated part (zone) of S, that is the locus of the points

in the neighbourhood of which ft is a reverse involute of K.

3. Let FO be the obstacle generated part (zone) of F , that is the locus of the points

in the neighbourhood of which ft is a reverse involute of K ′.

4. Let FI be the interface generated part (zone) of F , that is the locus of the points

in the neighbourhood of which ft is an involute of I.

5. Let Sb be the boundary between SO and SI .

6. Let Fb be the boundary between FO and FI .

Theorem 1. For t large enough, the sets S and F can be divided into three connected

subsets S = SO ∪ SI ∪ Sb, F = FO ∪ FI ∪ Fb.

Moreover, SO (FI) consists of tangential segments of O (I), that is if P ∈ SO (FI),

then the entire tangential segment starting from O (I) ending at P is also contained in

SO (FI). Similarly, if P ∈ SI (FO), then the entire tangential segment of K (K ′) between

P and I is also contained in SI (FO).

P r o o f. We prove only the division of S, the case of F is similar. Let P ∈ intS, then

the last arc of the Fermat ray reaching P should be a line segment (of type 4). If t is large

enough then Q, the other endpoint of the segment cannot be on f0, therefore it should

be on O or on I. It is easy to see that the arc of the Fermat ray before the segment QP

is on O (type 1) or on I (type 2). Thus according to Lemma 2 QP is an A-ray or a C-ray.

Because of continuity the points in a small neighbourhood of P are reached by the same

type of rays as P . According to Lemma 3 the front ft (containing the point P ) is an

involute of O (in this case P ∈ SO), or a reverse involute of K (in this case P ∈ SI). The

boundary Sb consists of those points P to which Q can be both on O and I, that is the

points which can be reached on two different Fermat rays.

The fact that subsets SO, SI , FO and FI consist of tangential segments, follows from

the simple statement that any part of a Fermat ray is also a Fermat ray.
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Thus we have proved that, similarly to the symmetric case, the rays departing from

O and I will generate the asymptotic fronts, which consist of two parts: an inner part

(generated by the rays departing from O), and an outer part (generated by the rays

departing from I). (Some front lines may contain only one part.) The two front parts

join each other at a ‘break point’ where their tangents are not the same in a generic case.

In the next subsection we establish the rules governing the motion of the break point, in

order to get more information on the structure of the inner and the outer zones (the sets

SO, FO, and SI , FI).

3.2. Local dynamics of the break point. The following considerations are elementary,

but they are necessary for studying the evolution of wave fronts in question. Since the

motion of the break point is determined locally by a small part of the front in the

neighbourhood of the break point, therefore we can assume that the two front parts

(joining at the break point) are straight segments. The evolution of the break point

depends on the angle (and not on the shape) of the two front parts.

3.2.1. Homogeneous medium. Assume that the velocity is constant in a neighbour-

hood of the break point. Two cases should be distinguished according to the convexity

of the domain behind the front (see Fig. 5).

v∆t

f1

f0

v∆t

v∆t

v*∆t

f1

f1

f0

f0

a. b.

v∆tf0

f1

Figure 5: Evolution of a broken front in a homogeneous medium.
(a) Convex case. The break point immediately ceases to exist, the two parts of the
front will be connected smoothly by a circular arc due to the Huygens-principle.
(b) Concave case. In this case, the break point will move in the direction of the bisector.

Using Fermat’s principle, or equivalently a symmetry consideration we get the follow-

ing so called bisector rule for the motion of the break point.

Proposition 2 (Bisector rule).

1. In the convex case the break point ceases to exist, the two parts of the front will be

connected smoothly by a circular arc.

2. In the concave case the front preserves its broken character, and the break point

will move in the direction of the bisector.
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Note that break points can die or can be born at some exceptional points, which does

not occur in our case. For the exact theory of the singularities of wave fronts see [2].

3.2.2. Heterogeneous medium. Now we investigate the motion of the break point lo-

cated initially at a point of an interface of two homogeneous media. For this moment,

we consider only the concave case. The motion of the break point depends on the virtual

velocity of the two front parts. To define the notion of virtual velocity, let us consider a

front, forming an angle α with a given boundary line, see Fig. 6.

f0

f1

v*∆t

v∆
t

b.

 α

v* = v

b (boundary)

f0 f1 f2

α v*∆t

v∆t

b (boundary)

a.

v*=
 v
sin α

Figure 6: Virtual velocity at a boundary line. The common point of the front with
the boundary will move with the speed v∗. (a) Acute angle, (b) Obtuse angle.

Definition 10. The virtual velocity of the front with respect to that boundary line is

v∗ =

{

v/ sin α if 0 < α ≤ π/2

v if π/2 < α < π.

Now consider a broken front, the break point of which is on the interface. Let us denote

by α1 and α2 the angle of the front parts to the interface (see Fig. 7). These angles are

equal to the angle of incident, that is the angle between the ray and the normal to the

border line. The following proposition can be proved by elementary geometry.
f0

v1∆t

f1

f1f0

v2∆t

α2

α1 v*∆t

v1
v2

=
sinα1
sinα2

Figure 7: The break point remains on the interfacial boundary, provided that the
virtual velocities for the two parts of the front are equal.

Proposition 3. The break point moves

• on the interface if virtual velocities of the front parts are equal, that is

v1/ sinα1 = v2/ sinα2;

• into the region where the virtual velocity of the front part is smaller.
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Thus the front part with the greater virtual velocity will cross the borderline and

continues there according to Snell’s law. The break point (between the incurred front

part and the front part with smaller virtual velocity) will move inward the region in

question following the bisector rule. Thus the boundary of the domains of the original

front parts will move in such a way, that the domain possessing greater virtual velocity at

the interfacial boundary, will increase. Several different patterns are possible depending

on the propagation velocities and the angles of the initial front parts.

3.2.3. The break point portrait. From the general rules of local break point dynamics

follow useful consequences for the special arrangement given in Definition 1 (see Fig. 1).

According to Theorem 1 after enough long time the front ft consists of two parts in the

set S: an inner part which is the involute of O and an outer part which is a reverse

involute of K. A break point (moving in the set Sb) separates the two parts. The motion

of the break point is determined by the bisector rule (Proposition 2) in the homogeneous

region S.

However, an initial break point P can be chosen arbitrarily in S. The position of the

break point P determines an involute of O and a reverse involute of K which contains P .

The direction of the break point motion at P is the bisector of the tangents of the involute

and reverse involute at P . In this way we get a direction field (of break point motion)

in S, which determines (apart from exceptional situations) a phase portrait. This will be

referred to as “break point portrait”. The trajectories on the break point portrait are the

curves on which a break point can move.

C0

C

O K

eK

e*K

P

eO

e*O

bisector

Figure 8: In this situation the rear part of O stays behind that of K, and the forepart
of O stays behind that of K. In other terms, this means that for the “dual” tangential
unit vector e∗K to K and for the tangential unit vector eO to O arg(eO) > arg(e

∗

K).
Consequently, the bisector constitutes an acute angle with the radius r to the point C.
On the other hand, for the “dual” tangential unit vector e∗O and for the tangential
unit vector eK arg(e

∗

O) > arg(eK). Consequently, the bisector constitutes an obtuse
angle with the radius to the point CO .

Now we establish the rules which determine whether the trajectory crosses the circles

centred at C, resp. CO, inward or outward. Let us introduce the tangent unit vectors from
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the break point P to the obstacle (eO and e∗O) and to the caustic (eK and e∗K). More

exactly, eO is the unit vector of the A-ray at point P , eK is the unit vector of the C-ray at

point P . The other unit vectors tangent to O and K are denoted by e∗O e∗K respectively.

These notations corresponds to counterclockwise propagation. The break point P moves

in the direction of the bisector of eO and eK , see Fig. 8.

Proposition 4.

1. The distance between the break point P and C decreases in time if and only if

arg(eO) > arg(e∗K). (Here arg is the usual term for the angle of a vector in polar coordi-

nates.)

2. The distance between the break point P and CO decreases in time if and only if

arg(e∗O) < arg(eK).

Pictorially, the distance of the break point P from C decreases if and only if the rear

of O stays behind that of K. Here the term ‘stays behind’ is used from the viewpoint of

an observer moving counterclockwise at P . That is in Fig. 8 where arg(eO) > arg(e∗K) the

observer sees the rear of O behind that of K. The distance of the break point P from CO

decreases if and only if the forepart of O is before that of K.

e

d

Da

Ea
RO

CO
K

C

Eb

Db

O

Figure 9: The break point moves inward in the arc EaEb, and moves outward in the
arc EbEa of the circle e centred at C. On the other hand, it moves inward in the arc
DaDb, and moves outward in the arc DbDa of the circle d centred at CO.

These rules provide us information about the qualitative character of the “break point

portrait”. One can determine whether the break point moves inward or outward on a circle

around C and CO. It is easy to see that the common tangents of O and K divide any

circle (centred at C or CO respectively) into two parts: the break point moves inward

in one part, and outward on the other part. In Fig. 9 there are two circles (e is centred

at C, d is centred at CO); the arrows show the direction of the break point motion. These



316 A. VOLFORD ET AL.

characteristics of the local break point dynamics can be used to construct the global

portrait similarly to the use of the Lyapunov functions in dynamical systems theory [6].

4. Classification according to the global properties. In general the domain of

the obstacle-generated front parts and the interface-generated front parts may be located

differently, and accordingly to those locations many different classes can be distinguished

depending on the geometric data as well as on the ratio of the velocities. For short, we will

not list all the possible types, our aim is to illustrate the peculiarities of the asymmetric

arrangement.

Three main classes will be termed as weak, moderate and strong asymmetric cases.

Definition 11. The reactor V is called

1. weakly asymmetric, if either the caustic is inside the obstacle or the obstacle is

inside the caustic;

2. moderately asymmetric, if the caustic intersects the obstacle;

3. strongly asymmetric, if the caustic and the obstacle are disjoint sets (and do not

contain each other).

If the caustic (K) is inside the obstacle, then the minimal loop is the interface and the

obstacle-generated domain is empty. On the other hand, if the obstacle is inside the caus-

tic, then the minimal loop is the obstacle, and the interface-generated domain is empty.

These cases are qualitatively equivalent to the corresponding symmetric arrangements [8].

That is, for the weakly asymmetric case we have (after elementary calculations):

Theorem 2 (Weak asymmetry).

1. If K is inside O, then SO = FO = ∅, SI = S and FI = F .

2. If O is inside K, then SI = FI = ∅, SO = S and FO = F .

While in the case of weak asymmetry the minimal loop is either the obstacle or the

caustic, in the case of moderate or strong asymmetry the minimal loop may be of a third

type, a mixed one. If the caustic and the obstacle have common tangents, and these

common tangents do not intersect each other inside S in the direction of the obstacle,

then we can construct a loop M in such a way that it consists of an arc of O, an arc of

I and two segments of the common tangents (see Fig. 10).

Definition 12. The simple closed curve M is called mixed loop if it consists of the

following four arcs (see Fig. 10): the arc ObOa of the obstacle; the segment OaIa; the arc

IaIb of the interface; the segment IbOb.

To classify the different types of the break point portraits, it is important to know

the minimal loop. From now on we shall assume that the reactor V is moderately asym-

metric, the strongly asymmetric case will not be considered here. We also assume that

the propagation time belonging to the obstacle, the interface and the mixed loop are

different.
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Ia

Ib

I*a

I*b

a

bOb

Oa

Ka

Kb

O
C

I

B

Figure 10: Construction of the mixed loop M . This simple closed curve M can be
defined if and only if the common tangents exist (moderate or strong asymmetry),
and they do not intersect each other inside S in the direction of the obstacle (in the
present case on the left side).

Proposition 5. The minimal loop is either the obstacle, or the interface, or the

mixed loop.

P r o o f. It is easy to see that if the minimal loop has no point in intS, then the

minimal loop is the obstacle or the interface. If it has a point P ∈ intS, then the arc

of the minimal loop containing P is a segment the endpoints of which are on O and I.

According to Lemma 2 this segment is tangential both to O and K. Hence the arcs of

the minimal loop are on I, O and on the common tangents of O and K. Comparing the

propagation time of the remaining candidates for the minimal loop, one gets that the

minimal loop is a mixed one.

In the evolution of the front we can distinguish three stages:

• First stage: Starting from the initial front, rays are emanated perpendicularly, one

or two leading points appear. At the end of this stage the front consists of an obstacle

and an interface generated part (maybe only one of them).

• Second stage: Since the front consists of two parts, the rules of break point dynamics

are applied. In our case the break point dynamics determines the motion of the break

point uniquely. Hence, if the front consists of at most two parts (obstacle-generated and

interface-generated part), then all the later fronts possesses this property. Break points

can be born at the obstacle and at the interface, and can die at the obstacle or at the

outer boundary. At the end of this stage the zones take their final form.

• Third stage: Periodic motion of the varying shaped front around the obstacle. The

break point moves along the boundary of the zones (Sb and Fb). This break point tra-

jectory will be referred to as stationary break point curve. This curve may have different

directed branches.

To determine the asymptotic front shapes we use the following tools: break point dy-

namics, comparison of the propagation times belonging to the two zones. The propagation

times for the two zones must equal at the boundary.
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Using these tools the following propositions can be proved with lengthy but straight-

forward consideration. As an illustration we outline only the proof of Proposition 7.

Proposition 6. The starting point of a stationary break point curve can be the point

Ob of the obstacle; or the point Ia of the interface (see Fig. 10).

If the starting point is Ob, then the first part of the arc is the straight segment ObKb.

If the starting point is Ia, then two break point curve start here, one of them is inside S,

the other one is a straight line tangential to I.

Proposition 7. If a stationary break point branch starts from Ob (see Fig. 10), then

the minimal loop is not the obstacle. If this branch reaches the interface, then the minimal

loop is M , while if it ends at another point of O, then the minimal loop is I.

P r o o f. If a stationary break point branch starts from Ob, then the front ft containing

the point Ob is the reverse involute of K at Ob. From Proposition 4 follows that the break

point moves first in the straight segment ObKb, then it moves outside K in the region

above the line KbI
∗

b . Since the stationary break point branch starts from Ob, there are

two possibilities:

i) The break point crosses I somewhere between I∗b and Ia. Then the (entirely obsta-

cle generated) front moves further and a new break point appears at Ia moving downward

and inward. If it crossed the segment IbOb, then Ob would not be a break point in the

next round, which contradicts to the assumption that the stationary break point branch

starts from Ob. Hence the new break point ends at O before Ob, then—as it can be

seen—neither O nor I is the minimal loop.

ii) The break point reaches O at a point O1 before Ob. Then the front at O (O1)

is a reverse involute of K, its common point with K and I is denoted by K0 (K1) and

I0 (I1), respectively. It is easy to see that the length of the arc O1Ob is greater than

the corresponding arc K1K0 on the caustic K. Since the propagation time on the arc

I0I1 is equal to the propagation time of ObO1, therefore the propagation time of O

(= ObO1 + O1Ob) is greater than that of I (= K0K1 + K1K0).

Proposition 8. If a stationary break point branch starts from Ia (see Fig. 10), then

the minimal loop is not the interface. If it reaches O, then another branch must start

from Ob and the minimal loop is M . If it does not reach O, then it reaches I at another

point (beyond I∗b ) and the minimal loop is O.

Now we are in the position to solve our problem (determine the shape of the stationary

fronts) in the case of moderate asymmetry. According to Theorem 1 it is enough to

determine the different zones (SO, SI , FO, FI). The structure of these zones depends on

the minimal loop, hence we have three different cases. Using the above propositions one

gets the following statements.

1. If the minimal loop is I (Fig. 11), then the leading point will rotate in I without any

trouble. Thus F = FI (hence FO = ∅), and SI contains a neighbourhood of I. However,
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there is a zone in which the rays emanating from Ob determine the fronts, that is SO 6= ∅,

but this zone is inside S as an “enclave”, that is SO ⊂ S.

SO

SI FI

Figure 11: Stationary fronts and
zones. The obstacle generated zone
(SO) is dotted. Case: minimal loop
is the interface.

SI

SO
FI

FO

Figure 12: Stationary fronts and
zones. The obstacle generated zone
(SO∪FO) is dotted. Case: minimal
loop is the obstacle.

2. If the minimal loop is O (Fig. 12) then the zone SO engulfs O totally. The leading

point is rotating periodically on O. However, a break point appears at Ia, and from that

another leading point generates the fronts in the “enclave” SI . The nonempty zones FI

and FO are shown in Fig. 12.

3. If the minimal loop is M (Fig. 13), then both SO and SI are nonempty “enclaves”:

the leading points in O and I are not able to make entire rounds, because the other

leading point ignites somewhere before along its path. The nonempty zones FI and FO

are shown in Fig. 13.

FI

FO

SI

SO

Figure 13: Stationary fronts and zones. The obstacle generated zone (SO ∪ FO) is
dotted. Case: minimal loop is the mixed loop.
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