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1. Introduction. The study of controlled infinite-dimensional systems gives rise to
many papers (see for instance [GXL], [GXB], [X]) but it is also motivated by various
mathematical problems: partial differential equations ([BP]), sub-Riemannian geometry
on infinite-dimensional manifolds ([Gr]), deformations in loop-spaces ([AP], [PS]). The
first difference between finite and infinite-dimensional cases is that solutions in general
do not exist (even locally) for every given control function. The aim of this paper is to
study “infinite bilinear systems” on Hilbert spaces for which such a solution always exists.
Moreover, to this particular class of controlled systems a nilpotent Lie algebra of degree 2
is naturally associated. On the other hand, given a Hilbertian nilpotent Lie algebra G
of degree 2 we can associate to it in a natural way a bilinear system corresponding to
left invariant distributions on a connected Lie groups G whose Lie algebra is G. The first
result we obtain is an accessibility one which can be considered as a version of Chow’s
theorem in this situation. If we consider infinite-dimensional time optimal controlled
systems the optimal trajectories are always abnormal curves which can be defined as in
the finite-dimensional case. The second result of this paper is to give a “localization” of
such curves: each of them is actually “normal” in some induced system on a submanifold.
Finally we illustrate these results in the case of classical infinite generalized Heisenberg
algebras.

2. Preliminaries

2.1. Infinite-dimensional controlled systems. Let E be a separable Hilbert space in
which we choose an orthonormal basis {eλ : λ ∈ N}, F a Hilbertian subspace of E and
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{Xi : i ∈ N} a family of smooth vector fields on E such that at each point x in E it is an
orthonormal basis for F .

For every x in E we have a decomposition

Xi(x) =
∑
λ

Xλ
i (x)eλ (i ∈ N, λ ∈ N)

where Xλ
i : E → R are smooth functions.

Let U = {(ui)} be the space of absolute square convergent real series, i.e. U = `2(N).
Consider an open subinterval J of R which contains 0 and a real number c > 0 such
that Jc = [−c,+c] ⊂ J . Given a map u : J → U such that for every 0 < b ≤ c we have
u ∈ L2(Jb,U). Finally, consider the dynamical system

(D) ẋ =
∑
λ

∑
i

ui(t)Xλ
i (x)eλ =

∑
i

uiXi.

Such a system possesses solutions under additional conditions given for instance in
the following quite classical theorem (for a proof see for instance [Be]):

Theorem 2.1. Consider an open subinterval J of R which contains 0. Let V be an
open set of a separable Hilbert space E. Let x0 be a point in V and a ∈ (0, 1) a real number
such that the closed ball centered at x0 with radius 3a, B(x0, 3a) is contained in V .

Then we can find a real number b > 0 such that for every x in B(x0, a) there exists a
unique flow

α : Jb ×B(x0, a)→ V

such that each curve
α( · , x) : Jb → V

is a solution of (D) with α(0, x) = x which is contained in B(x0, 2a) and is of class H1

(i.e. t 7→ d
dt (α(t, x)) is L2), and provided the following conditions are satisfied :

(i) u ∈ L2(Jb; U),
(ii) there exists a linear map M ∈ L

(
`2(N);E

)
such that for every x and y belonging

to V we have
|Xλ

i (x)−Xλ
i (y)| ≤Mλ

i dE(x, y)(1)
where

x =
∑
λ

xλeλ, y =
∑
λ

yλeλ and dE(x, y) =
∑
λ

(xλ − yλ)2,

(iii) the map M ◦ v : Jb → E belongs to L2(Jb, E),
where we use the notation |ui(t)| = vi(t).

R e m a r k 2.1. The set {Xi : i ∈ N} generates in E a distribution F with typical
fiber F . Conversely if F is a trivial fiber on E with typical fiber F , there exists a family
{Xi(x) : i ∈ N} which is an orthonormal basis in each fiber. If we decompose Xi =∑
λ

Xλ
i eλ, for each H1 curve γ which is tangent to F , there exists a family (ui)i∈N ∈ U

such that

(D′) ẋ =
∑
i

uiXi



GEOMETRICAL PROPERTIES OF CONTROLLED SYSTEMS 43

without assuming any additional conditions on the set {Xi : i ∈ N}. Note that for a
general sequence (ui)i∈N ∈ U a curve which is a solution of (D) does not always exist.

2.1.1. Bilinear Hilbert-Schmidt distributions. Denote by L(E;F ) (resp.
LH.S(E;F )) the vector space of linear bounded operators (resp. Hilbert-Schmidt opera-
tors) from E to F and L(F ;L(E;F )) (resp. LH.S(F ;LH.S(E;F ))) the space of bounded
operators (resp. Hilbert-Schmidt operators) from F to L(E;F ) (resp. LH.S(E;F )).
Consider A ∈ L(F ;F ) (u 7→ Au), B ∈ L(F ;L(E;F )) (u 7→ Bu) and the operator
B̃ ∈ L(F × E;F ) associated to B defined by

B̃(u, x) = Bux for every u ∈ F and every x ∈ E.

Denote by {fi : i ∈ N} a Hilbert basis for F and set

Xi(x) = Afi +Bfix.

Consider the associated system (Σ) defined by

(Σ) ẋ = Ax+ B̃(u, x).

We call (Σ) a bilinear system on E. If in addition B ∈ LH.S(F ;LH.S(E;F )) we say that
(Σ) is a bilinear Hilbert-Schmidt system.

Next, we denote by F the distribution generated by {Xi : i ∈ N} and call it a bilinear
distribution. In case B ∈ LH.S(F ;LH.S(E;F ) we say that F is a bilinear Hilbert-Schmidt
distribution.

Now, by application of Theorem 2.1 we have:

Lemma 2.1. If F is a bilinear Hilbert-Schmidt distribution then to each horizontal
curve we can associate a control u(t) and conversely.

R e m a r k 2.2. For the previous family {Xi : i ∈ N} each Lie bracket [Xi, Xj ] is the
constant vector field

∑
λ

{ABfi(eλ) − ABfj (eλ)}. So, the Lie algebra generated by this

family of vector fields is nilpotent of step 2.

2.2. Bilinear distribution and Hilbert 2-step nilpotent Lie groups. Let G be a Hilber-
tian Lie group and G its Lie algebra. If [ · , · ] denotes the Lie bracket, the center of G is
the largest subspace Z such that [Z,G] = 0. Let G0 = G, Gk = [G,Gk−1] for k ≥ 1 integer.
Recall that a Lie algebra G is nilpotent if there exists k ≥ 1 such that Gk = {0}, and G is
nilpotent of step r if Gr = {0} with Gr−1 6= {0}. A Hilbert Lie group is r-step nilpotent
if and only if its Lie algebra is also r-step nilpotent.

Consider now a connected Hilbert 2-step nilpotent Lie group G and let Z be the
center of its Lie algebra G, for which we have of course Z ⊃ G1.

As Z is a closed Lie sub-algebra of G we have

G = F ⊕Z

where F = Z⊥ is the orthogonal complement of Z with respect to the Hilbert inner
product defined on G. The Lie bracket gives rise to a bilinear skew-symmetric map
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Λ : G × G → G which satisfies the Jacobi identity, that is

Λ
(
Λ(u, v), w

)
+ Λ

(
Λ(v, w), u

)
+ Λ

(
Λ(w, u), v

)
= 0 for all u, v, w ∈ G

and we have Im Λ ⊂ Z. If G is 2-step nilpotent then the Jacobi identity is trivially
satisfied. On the other hand if Λ is such a skew-symmetric map on a Hilbert space G we
have a unique 2-step nilpotent Lie algebra associated structure on G.

The exponential map exp : G → G is C∞-surjective and is a diffeomorphism from a
neighborhood of 0 onto a neighborhood of the identity. This map allows us to identify a
neighborhood of the identity G with an open set U in G which contains 0. In this chart
we have dx exp(u) = u+ 1

2 [x, u].
For each u ∈ F and x ∈ G there exists a unique operator B ∈ L(F ×G;F ) defined by

〈v,B(u, x)〉 = 〈[u, v], x〉 = 〈Λ(u, v), x〉 ∀v ∈ F.
The left-invariant distribution F on U induced by F is then equal to d exp(F ). It is
the bilinear distribution associated to A = IdF and B as defined in Subsection 2.1.1 for
system (Σ). Moreover, if Λ is a Hilbert-Schmidt operator then B is also a Hilbert-Schmidt
operator and the associated distribution is a bilinear Hilbert-Schmidt distribution.

Definition 2.1. We say that G is a 2-step nilpotent Hilbert-Schmidt Lie group if the
operator Λ of its Lie algebra is a Hilbert-Schmidt operator.

R e m a r k 2.3. Denote by {fi : i ∈ N} a Hilbert basis for a subspace F of E. If we set
Xi(x) = fi + Bfix where B ∈ L(F ;L(E;F )), and denote by F the bilinear distribution
on E generated by the family Xi, we can define a Lie group structure on E given by the
following product:

G × G → G,

(u, v) 7→ u • v = u+ v +
1
2

[u, v].

The Lie algebra of this structure is of course E with the Lie bracket structure defined by
[fi, fj ] = [Xi, Xj ] which is isomorphic to the Lie algebra associated to F (see Remark 2.2).
It is easy to see that for this structure of Lie group on E, the left-invariant distribution
defined by F is precisely F .

So the study of bilinear systems for which the linear operator A is Hilbert-Schmidt
and invertible is equivalent to the study of left-invariant distributions on 2-step nilpotent
Hilbert Lie groups.

3. Accessibility problems on 2-step nilpotent Hilbert Lie groups

3.1. Introduction. The purpose of this section is to study accessibility problems on a
connected 2-step nilpotent Hilbert Lie group.

Let G be such a group and G its Lie algebra. Recall that we have the decomposition

G = F ⊕Z
where Z is the center of G and F is orthogonal to Z.

Further, denote by Λ : F × F → Z the continuous skew-symmetric bilinear operator
which induces the Lie bracket and by Im Λ the image of Λ.
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Let H be a closed Lie algebra generated by F in G. Obviously we have

H = F ⊕ Im Λ.

One will denote by H the connected Lie subgroup G whose Lie algebra is H. One then
has:

Theorem 3.1. There is a neighborhood U of the identity e and a subset U0 dense
in H ∩ U such that for every g ∈ G and for every h ∈ gU0 there is a horizontal path
of class H1 (i.e. with derivative of class L2) which joins h to g. This path is in fact
contained in gH.

Theorem 3.2. Assume Λ is a Hilbert-Schmidt operator and Im Λ is of finite di-
mension. Then for every g ∈ G and for every h ∈ gH there is a horizontal absolutely
continuous path (i.e. with derivative of class L1) which joins g and h (this path is con-
tained in gH). Conversely , if two points g and h are joined by a horizontal path then
h ∈ gH.

Corollary 3.1 (Chow’s theorem).
1) If Im Λ = Z then there is a neighborhood U of the identity and a subset U0 dense

in U such that for every h ∈ gU0 there is a horizontal path of class H1 joining h and g.
2) Moreover , if Z is of finite dimension and Λ is Hilbert-Schmidt then for every g

and h belonging to G there is a horizontal absolutely continuous path joining g and h.

First we are going to establish a local version of these theorems in the following
subsection.

3.2. Preliminary results. Let {fi : i ∈ N} (resp. {vβ : β ∈ N}) be a Hilbert basis
for F (resp. for Z). There is a non-unique family of pairs of indices {(iα, jα) : α ∈ N}
such that if we put

ziαjα = [fiα , fjα ]
then {ziαjα : α ∈ N} is a topological basis of Z. More precisely, for every α of N there is
(Cµiαjα) ∈ `2(N) such that

ziαjα =
∑
µ

Cµiαjαvµ

with Cµiαjα = −Cµjαiα for all µ ∈ N.

As in Remark 2.3, we can define a Lie structure on G. Let us denote by G̃ the cor-
responding Lie group. It is well known that there exists a diffeomorphism from a neigh-
borhood of the identity of G onto a neighborhood of the identity of G̃. So without loss
of generality we will suppose that G = G̃.

We prove the following result:

Theorem 3.3. There exists a subset D̃ dense in G̃ such that for every y belonging
to D̃ there is a horizontal path of class H1 joining y to the identity element of G̃. More
if Λ is Hilbert-Schmidt and the center of G is of finite dimension, then all points of G̃
can be joined to the identity of G̃ by a horizontal absolutely continuous path.



46 N. BENSALEM AND F. PELLETIER

We denote by
∏

the finite or infinite product with respect to the operation •.

Lemma 3.1. Let u =
∑
i

xifi +
∑
α

λαziαjα be an element of G such that

∑
µ

(∑
i<j

Cµijxixj

)2

<∞,

then

Ψ(u) =
∏
α

φziαjα (λα) •
∏
i

φfi(xi)

is well defined. Moreover , if Λ is a Hilbert-Schmidt operator then Ψ is a local diffeomor-
phism from G to G̃ which is surjective.

P r o o f. It is easy to see that Ψ writes in the basis (fi, vµ) as follows:

Ψ(u) =
∑
i

xifi +
∑
µ

∑
α

Cµiαjαλαvµ +
1
2

∑
µ

∑
i<j

Cµij xi xjvµ

= u+
1
2

∑
µ

∑
i<j

Cµij xixjvµ.

The first assertion is thus obvious. Suppose that Λ is a Hilbert-Schmidt operator. Let us
denote by A : F × F → Z the operator defined by

A(x, y) =
1
2

∑
µ

∑
i<j

Cµijxiyjvµ

with x =
∑
i

xifi and y =
∑
j

yjfj . Then A is a well defined bilinear Hilbert-Schmidt

operator. When identifying G with F ×Z one has for (x, z) ∈ F ×Z

Ψ
(
(x, z)

)
= x+ z +A(x, x).

Therefore, Ψ is C∞. In addition, the differential of Ψ at (0, 0) is

D(0,0)Ψ =
(

Id 0

0 Id

)
.

Thus Ψ is a local diffeomorphism. However if y ∈ G̃ with y =
∑
i

yifi +
∑
α

bαvα then

u =
∑
i

yifi +
∑
α

(
bα −

1
2

∑
i<j

Cαijyiyj

)
vα

is well defined and satisfies Ψ(u) = y.

3.3. Construction of paths. Let u =
∑
i

xifi +
∑
α

λαziαjα be an element of G such

that
∑
µ

(∑
i<j

Cµijxixj

)2

< ∞ and
∑
α

|λα|2 < ∞ (this last condition holds for example

if {ziαjα : α ∈ N} is a Hilbert basis). We shall build an absolutely continuous path
γu : [0, 1]→ G̃ joining the identity of G̃ to Ψ(u).
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Step 1. Let ‖u‖2F =
∑
i

|xi|2. If ‖u‖F = 0, just consider the constant path γu(t) = 0

(identity of G̃) for 0 ≤ t ≤ 1
2 . Suppose that ‖u‖F 6= 0.

Define the sequence (ri)i∈N in
[
0, 1

2

]
by

r0 = 0, ri − ri−1 =
|xi|2

2‖u‖2F
if i > 0,

then
∑
i

(ri − ri−1) =
1
2

= lim
i→∞

ri.

If xi 6= 0, then for all t ∈ [ri−1, ri] we define the path

γu(t) = φfi

(
2(t− ri−1)

‖u‖2F
|xi|2

xi

)
• φfi−1(xi−1) • . . . • φf1(x1)

for which it is clear that

γu(0) = 0.

Let

γu

(1
2

)
= lim
i→∞

γu(ri)

which is well defined because

lim
i→∞

γu(ri) =
∏
i∈N

φfi(xi) =
∑
i

xifi +
1
2

∑
µ

∑
i<j

Cµij xixjvµ.

Let us show that

lim
t→ 1

2

γu(t) = γu

(1
2

)
.

Taking i such that t ∈ [ri−1, ri] we have∥∥∥γu(t)− γu
(1

2

)∥∥∥ ≤ ∥∥∥γu(t)− γu(ri−1)
∥∥∥+

∥∥∥γu(ri−1)− γu
(1

2

)∥∥∥.
However

γu(ri−1) = φf1(x1) • . . . • φfi−1(xi−1)

= x1f1 + . . .+ xi−1fi−1 +
1
2

∑
1≤j<k<i

∑
µ

Cµjkxjxkvµ

and

γu(t) = x1f1 + . . .+ xi−1fi−1 + 2(t− ri−1)
‖u‖2F
|xi|2

xifi

+
1
2

∑
1≤j<k<i

∑
µ

Cµjkxjxkvµ +
i−1∑
h=1

∑
µ

Cµih(t− ri−1)
‖u‖2F
|xi|2

xixhvµ.

Thus

γu(t)− γu(ri−1) = 2(t− ri−1)
‖u‖2F
|xi|2

xifi +
i−1∑
h=1

∑
µ

Cµih(t− ri−1)
‖u‖2F
|xi|2

xixhvµ.
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If we denote by ‖Λ‖ the norm of the continuous bilinear map Λ, we get

‖γu(t)− γu(ri−1)‖ ≤ 2(t− ri−1)
‖u‖2F
|xi|

+
∥∥∥ i−1∑
h=1

∑
µ

Cµih(t− ri−1)
‖u‖2F
|xi|2

xixhvµ

∥∥∥
≤ 2(t− ri−1)

‖u‖2F
|xi|

+
∥∥∥Λ
(

(t− ri−1)
‖u‖2F
|xi|2

xifi,

i−1∑
h=1

xhfh

)∥∥∥
≤ 2(t− ri−1)

‖u‖2F
|xi|

+ ‖Λ‖(t− ri−1)
‖u‖2F
|xi|

∥∥∥ i−1∑
h=1

xhfh

∥∥∥
L2

≤ 2(t− ri−1)
‖u‖2F
|xi|

+ (t− ri−1)
‖u‖2F
|xi|
‖Λ‖

(∑
h

|xh|2
) 1

2
.

Finally one has the estimate∥∥∥γu(t)− γu
(1

2

)∥∥∥ ≤ |xi|(1 +
1
2
‖Λ‖ ‖u‖F

)
+
∥∥∥γu(ri−1)− γu

(1
2

)∥∥∥.
Since lim

i→∞
|xi| = 0 (because

∑
i

|xi|2 <∞) and γu
(

1
2

)
= lim
i→∞

γu(ri), the result is proved.

Step 2. Let us define ‖λ‖2Z =
∑
α

|λα|2. If ‖λ‖Z = 0, we consider γu(t) = γu
(

1
2

)
for

1
2 ≤ t ≤ 1. Suppose that ‖λ‖Z 6= 0.

Define in
[
1
2 , 1
]

the sequence (sα)α∈N by

s0 =
1
2
, sα =

 sα−1 +
|λα|2

2‖λ‖2Z
if α > 0, λα 6= 0,

sα−1 if α > 0, λα = 0,

and consider the subdivision of the interval [sα−1, sα] given by

I1
α =

[
sα−1, sα−1 +

1
4

(sα − sα−1)
]
,

I2
α =

[
sα−1 +

1
4

(sα − sα−1), sα−1 +
1
2

(sα − sα−1)
]
,

I3
α =

[
sα−1 +

1
2

(sα − sα−1), sα−1 +
3
4

(sα − sα−1)
]
,

I4
α =

[
sα−1 +

3
4

(sα − sα−1), sα
]
.

For t ∈ [sα−1, sα] we define the path

γu(t) = Γsα−1sα
iαjα

(λα)(t) • φziα−1jα−1
(λα−1) • . . . • φzi1j1 (λ1) •

∏
i∈N

φfi(xi)

where Γ is the path defined for every λα ≥ 0 as follows:

Γsα−1sα
iαjα

(λα)(t) = φfjα

(
(t− sα−1)

4λ
1
2
α

sα − sα−1

)
if t ∈ I1

α,

Γsα−1sα
iαjα

(λα)(t) = φfiα

((
t− sα−1 − 1

4 (sα − sα−1)
) 4λ

1
2
α

sα − sα−1

)
• φfjα (λ

1
2
α)

if t ∈ I2
α,
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Γsα−1sα
iαjα

(λα)(t) = φfjα

(
−
(
t− sα−1 − 3

4 (sα − sα−1)
) 4λ

1
2
α

sα − sα−1

)
• φfiα (λ

1
2
α) • φfjα (λ

1
2
α) if t ∈ I3

α,

Γsα−1sα
iαjα

(λα)(t) = φfiα

(
−
(
t− sα−1 − 3

4 (sα − sα−1)
) 4λ

1
2
α

sα − sα−1

)
• φfjα (−λ

1
2
α) • φfiα (λ

1
2
α) • φfjα (λ

1
2
α) if t ∈ I4

α,

and for λα < 0 we set

Γsα−1sα
iαjα

(λα)(t) = Γsα−1sα
jαiα

(|λα|)(t).
One can easily check that for every λα positive or negative we have

Γsα−1sα
iαjα

(λα)(sα) = φziαjα (λα).

Let

γu(1) = lim
α→∞

γu(sα).

This is well defined because

lim
α→∞

γu(sα) =
∏
α∈N

φziαjα (λα) •
∏
i∈N

φfi(xi)

=
∑
i

xifi +
∑
α

λαziαjα +
1
2

∑
µ

∑
i<j

Cµijxixjvµ = Ψ(u).

Let us show that

lim
t→1

γu(t) = γu(1)

Fix t ∈
[
1
2 , 1
]
, then there is t ∈ [sα−1, sα] such that

‖γu(t)− γu(1)‖ ≤ ‖γu(t)− γu(sα−1)‖+ ‖γu(sα−1)− γu(1)‖.

with

γu(sα−1) = φziα−1jα−1
(λα−1) • . . . • φzi1j1 (λ1) •

∏
i∈N

φfi(xi)

=
∑
i

xifi +
∑
µ

α−1∑
l=1

Cµiljlλlvµ +
1
2

∑
µ

∑
i<j

Cµijxixjvµ

and

γu(t) = Γsα−1sα
iαjα

(λα)(t) •
(∑

i

xifi +
∑
µ

α−1∑
l=1

Cµiljlλlvµ +
1
2

∑
µ

∑
i<j

Cµijxixjvµ

)
.

We then have four cases:

1) t ∈ I1
α =

[
sα−1, sα−1 +

1
4

(sα − sα−1)
]
,

2) t ∈ I2
α =

[
sα−1 +

1
4

(sα − sα−1), sα−1 +
1
2

(sα − sα−1)
]
,

3) t ∈ I3
α =

[
sα−1 +

1
2

(sα − sα−1), sα−1 +
3
4

(sα − sα−1)
]
,

4) t ∈ I4
α =

[
sα−1 +

3
4

(sα − sα−1), sα
]
.
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By arguments analogous with the ones of Step 1 we show that there is a constant M
independent of t ∈ [sα−1, sα] such that

‖γu(t)− γu(1)‖ ≤ λ
1
2
αM + ‖γu(sα−1)− γu(1)‖.

Since lim
α→∞

λ
1
2
α = 0 (because

∑
α

λ2
α < ∞) and we know that γu(1) = lim

α→∞
γu(sα) the

result is proved.
Thus, the path has been built and by construction, it is absolutely continuous.

3.4. Proof of the results
3.4.1. Proof of Theorem 3.3. For each u ∈ G consider the decomposition u =∑

i

xifi+
∑
α

λαvα. Let D be the set of points u of G such that there is a finite number of

indices i with xi 6= 0 and a finite number of indices α with λiαjα 6= 0. Then it is clear that

Ψ(D) is a dense subset of G̃. Moreover, for any u ∈ D we have
∑
µ

(∑
i<j

Cµijxixj

)2

< ∞

because |Cµij | < ‖Λ‖ and there is a finite number of xi 6= 0. We also have
∑
α

λ2
α < ∞.

The assumptions of Subsection 3.3 are then satisfied. We can also build a path joining
any element y ∈ Ψ(D) to the identity in G̃. It remains to be shown that this path is of
class H1.

On one hand for every t ∈
[
0, 1

2

]
, there is an index j such that t belongs to [rj−1, rj ]

and we can define a sequence w = (wi)i∈N by

wj(t) =

{
2
‖u‖2F
|xj |2

xj if xj 6= 0 and t ∈ [rj−1, rj ]

0 otherwise.
Then ∫ 1

2

0

‖w(t)‖2dt = 2
∑

{j:j≥1,xj 6=0}

‖u‖2F .

As there is a finite number of indices j such that xj 6= 0, the last expression is finite.
On the other hand, for every t ∈

[
1
2 , 1
]

there is an index β such that t belongs to
I(β) where I(β) is one of the four intervals previously defined. We introduce a sequence
w = (wα)α∈N by

wβ(t) =

 4λ
1
2
β

sβ − sβ−1
if sβ − sβ−1 6= 0, λβ 6= 0, t ∈ I(β)

0 otherwise.
Then ∫ 1

1
2

‖w(t)‖2dt = 32‖λ‖2Z
∑

{β:β≥1,λβ 6=0}

1
λβ

and since by assumption, there is a finite number of indices β such that λβ 6= 0, the last
expression is finite, and then the proof of the general case is complete.

Suppose that Λ is Hilbert-Schmidt and the center of G is a finite-dimensional space.
Then the map Ψ : G → G̃ is C∞ surjective (Lemma 3.1). Take y ∈ G̃ and u ∈ G such that
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Ψ(u) = y. We have u =
∑
i

xifi +
∑
α

λαvα. Since Λ is a Hilbert-Schmidt operator and

dimZ is finite, the assumptions of the last paragraph are satisfied: the horizontal path
γu associated to u joins the identity to Ψ(u). By construction, this path is absolutely
continuous (but not H1 in general).

3.4.2. Proof of Theorem 3.1 and the first part of Chow’s theorem. Let
G be a Hilbertian 2-step nilpotent Lie group and G = F ⊕ Z its Lie algebra. Since for
every g the left translation Lg takes the horizontal path, joining the identity e to h, into
a horizontal path joining g at Lg(h), it is enough to show the theorem with g = e.

Let H be the connected Lie subgroup whose Lie algebra is H = F ⊕ Im Λ. As there
exists a diffeomorphism θ from a neighborhood of the identity in G̃ onto a neighborhood
of the identity in G, by restriction, θ induces a diffeomorphism from a neighborhood of
the identity in H̃ onto a neighborhood of the identity in H, if H̃ is the Lie group structure
constructed on the Lie algebra H as in Subsection 3.2. Theorem 3.1 and the first part of
Chow’s theorem are proved by application of Theorem 3.3 to H and H̃ via θ.

3.4.3. Proof of Theorem 3.2 and the second part of Chow’s theorem. We
have to prove our result for g = e.

Again we use the local diffeomorphism θ between G̃ and G mentioned in the previous
subsection. As it induces a local diffeomorphism between H̃ and H, we can apply Theo-
rem 3.3 to H̃ and then we get a neighborhood U of e in H such that every point h ∈ H
can be joined to e by a horizontal absolutely continuous path.

Now if h is an arbitrary point of H, we consider a continuous path c : [0, 1] → H

joining e to h in H (H is supposed to be connected). From the open covering Lc(t)(U) of
c([0, 1]) we can extract a finite subcover

Vi = Lc(ti)(U), 0 ≤ t0 ≤ t1 ≤ . . . ≤ tN = 1.

Then take the points:

h0 = e, h1 ∈ V0 ∩ V1, h2 = c(t1), h3 ∈ V1 ∩ V2, . . . ,

h2i = c(ti), h2i+1 ∈ Vi ∩ Vi+1, . . . , h2N = h.

From Theorem 3.1 there is a horizontal absolutely continuous path γi joining hi
to hi+1, i = 0, . . . , 2N . By concatenation we obtain a horizontal absolutely continuous
path γ joining e to h. Theorem 3.2 is then proved. For the second part of Chow’s theorem
we only have to take H = G and H = G.

Conversely, if two points g and h are joined by a horizontal path γ then L−1
g (γ) is a

horizontal path joining e to h′ = L−1
g (h).

Let Γ be the characteristic subgroup of γ (see next section). We then have L−1
g (γ) ⊂

Γ ⊂ H and therefore γ = LgL
−1
g (γ) is contained in Lg(H).

4. Localization of abnormal curves

4.1. Introduction. Consider a distribution F on a Hilbert manifold M and denote
by I the interval [0, 1]. Then all horizontal curves in M can be parametrized on I. Let
Ωx0(I,F) be the space of horizontal curves (i.e. tangent to F and of class H1) with fixed
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origin x0. In general, without more hypotheses we cannot define a Hilbert structure on
Ωx0(I,F) if we associate to each horizontal curve its control as in finite dimension. So
if we denote by End : Ωx0(I,F) → G the map which associates to each curve γ its end
point γ(1), we cannot define the abnormal curves as “the singular points” of the map
End as we can do in finite dimension. However we can still define an abnormal curve as a
curve γ which can lift to a non-trivial curve Γ in the annulator F⊥ and which is tangent
to the kernel of the 2-closed form induced on the manifold F⊥ in T ∗M by the canonical
symplectic form of T ∗M . Each horizontal curve which is not abnormal is called normal .

Consider a left-invariant distribution F on a 2-step nilpotent Hilbert Lie group G.
Then we can show that a curve γ is abnormal if and only if there exists a lift Γ in F⊥
which is constant almost everywhere and moreover (as in finite dimension) we also have

Theorem 4.1 (cf. [Be]). Let G be a 2-step nilpotent Hilbert-Schmidt Lie group and
F the left-invariant distribution generated by F . The space of horizontal curves Ωx0(I,F)
of class H1 is diffeomorphic to L2(I, F ). Every horizontal curve γ is abnormal if and only
if γ is a singular point of the map End.

The purpose of this section is to give, in the context of 2-step nilpotent Hilbert Lie
groups, some “localization” of abnormal curves in terms of existence of submanifolds in
which such a curve is normal for the induced distribution.

4.2. Characteristic manifolds. Let G be a 2-step nilpotent Hilbert Lie group which
is connected and simply connected. Denote by G = F ⊕ Z its Lie algebra and by F the
left-invariant distribution defined by F on G. Let R : G → G∗ be the Riesz representation.
Given any horizontal curve γ, the abnormality set of γ in G, denoted by Aγ , is the set
of λ ∈ G∗ such that λ(u) = 0 for all u ∈ F and λ([dL−1

γ(t)γ̇(t), v]) = 0 for all v ∈ G. In
fact, for a non-zero λ ∈ Aγ , the curve t 7→ Γ(t) =

(
(dL−1

γ(t))
∗λ, γ(t)

)
is a lift of γ in the

annulator F⊥ of the left-invariant distribution on G defined by F and it is tangent to
the kernel of the closed 2-form induced on the manifold F⊥ by the canonical symplectic
form of the cotangent bundle of G (see [Be]). So, a curve is abnormal if and only if Aγ is
non-zero.

Definition 4.1 (cf. [Mo]). A connected submanifold S of G is called a characteristic
manifold for an abnormal curve γ : [0, 1]→ G iff:

i) TS ∩ F have a constant dimension,
ii) γ is tangent almost everywhere to TS ∩ F ,
iii) γ is normal in S (relatively to TS ∩ F).

Let γ : [0, 1] → G be an abnormal curve and g = γ(0). Then γ̃ = L−1
g (γ) is an

abnormal curve defined on I and such that γ̃(0) = e. A manifold S is a characteristic
manifold for γ if and only if S̃ = L−1

g (S) is a characteristic manifold for γ̃. So it is sufficient
to study the existence of characteristic manifolds for abnormal curves γ : [0, 1]→ G such
that γ(0) = e.

Let γ : [0, 1] → G be an abnormal curve such that γ(0) = e. We denote by P the
set of closed subspaces K of F such that γ is tangent to the left-invariant distribution
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generated by K. It is easy to see that if K belongs to P then the set {dL−1
γ(t)γ̇(t)} is

included in K. On the other hand P is an inductive set and from Zorn’s lemma, it has a
minimal element H. Denote by H the Lie subalgebra generated by H, that is

H = H ⊕ [H,H].

Let GH be the connected and simply connected Lie subgroup of G whose Lie algebra
is H. Then we have the following theorem.

Theorem 4.2.
1) P has a (unique) smallest element H which is the closure of the vector space

generated by {dL−1
γ(t)γ̇(t)}.

2) GH is a characteristic manifold for γ.
3) If G′ is another connected and simply connected Lie group which is also a charac-

teristic manifold for γ then G′ = GH .

P r o o f.
1) Let H be the closed vector space of G generated by {dL−1

γ(t)γ̇(t)} andH = H⊕[H,H]
the Lie algebra generated by H. By the definition of H, γ is tangent to the left-invariant
distribution generated by H, so H ∈ P. Moreover if L ∈ P then L contains H, so H is
the smallest element of P and it is unique.

2) Suppose that γ is abnormal in GH and denote by Aγ its abnormality set. Consider
the set K of all u ∈ H such that for every λ ∈ Aγ we have λ(u) = 0 and λ([u, v]) = 0
for all v ∈ H. It is easy to see that K is a Lie sub-algebra of H which is strictly included
in H.

If we set
H ′ = K ∩H,

the Lie algebra generated by H ′ is

H ′ ⊕ [H ′, H ′] $ K.

As H ′ ⊂ K, γ is tangent to the left-invariant distribution generated by H ′. On the other
hand, H ′ $ H which implies that H is not minimal and gives rise to a contradiction.

3) Let G′ be a connected and simply connected subgroup of G which is also a char-
acteristic manifold for γ. The subspace TeG′ ∩ F belongs to P, so it contains H. Hence,
the Lie algebra G′ of G′ contains H, so G′ contains GH . Suppose G′ 6= GH as we have
connected sets then G′ ⊃ H and G′ 6= H which implies that there exists a non-zero
λ ∈ H⊥ ⊂ G′∗ and for such a λ we have then λ(u) = 0 for every u of H; in particular

λ(dL−1
γ(t)γ̇(t)) = 0 and λ([dL−1

γ(t)γ̇(t), v]) = 0 for all v of H,

so λ belongs to the abnormality set of γ in GH , that is γ is abnormal in GH , and we have
a contradiction.

Corollary 4.1. Let G be a 2-step nilpotent Hilbert Lie group which is connected
and simply connected , G = F ⊕Z its Lie algebra, F the left-invariant distribution defined
by F and γ a horizontal curve with origin e. There exists a unique connected and simply
connected subgroup Gγ in which γ is normal relatively to the left-invariant distribution
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induced by (Gγ ,F ∩TGγ). The Lie algebra of Gγ is generated by {dL−1
γ(t)γ̇(t) : t ∈ [0, 1]}.

In particular , if Im Λ 6= Z then all horizontal curves are abnormal.

4.3. Application. Classical examples of 2-step nilpotent Lie algebras are Heisenberg
algebras which play an important role in mathematical physics. Below we define three
types of Heisenberg algebras.

4.3.1. Classical Heisenberg Lie algebras. Let K be a separable Hilbert space
and K∗ its dual. We define a Lie algebra structure on the space

G = F ⊕ Z

with F = K∗ ⊕K and Z = R as follows:
If {Xα : α ∈ N} is a Hilbert basis of K in F and {X∗β : β ∈ N} is the dual basis, then

we set

[Xα, X
∗
β ] = Cαβδαβ .1

where Cαβ are constants; the other brackets are zero modulo permutations. When∑
α,β

(Cαβ)2 <∞ the Lie algebra is of Hilbert-Schmidt type.

If Cαβ = 1 for every α, β, we get the classical Heisenberg algebra.

4.3.2.Generalized Heisenberg algebras. Let K and H be two separable Hilbert
spaces. It is well known (see for example [Gu]) that if {ki} is a Hilbert basis of K and
{hα} is a Hilbert basis of H then the set of tensor products {hα ⊗ ki} is a Hilbert basis
of LH.S(K;H).

On G = LH.S(K;H)⊕K⊕H we define a generalized Heisenberg Lie algebra structure
on G = F ⊕ Z by setting F = LH.S(K;H) ⊕K and Z = H with Lie brackets defined,
with respect to the basis Yαi = (hα ⊗ ki, 0) and Xi = (0, ki) of F , by

[Yαi, Xi] = Cαizα

where Cαi are constants; the other brackets which are not the opposite are zero.
This Lie algebra is of Hilbert-Schmidt type if

∑
i,α

(Ciα)2 <∞.

If dimH = 1 then we obtain the classical Heisenberg algebras.

4.3.3. Lie algebras of type (HG). Let (F,Z,Λ) be a 2-step nilpotent Hilbert Lie
algebra. Denote by LA.S(F ) the set of linear skew-symmetric continuous endomorphisms
of F . There exists a unique linear map

J : Z → LA.S(F )

such that

〈Jz(u), v〉F = 〈Λ(u, v), z〉Z ∀u, v ∈ F and ∀z ∈ Z.(2)

Following Eberlein and Kaplan’s work on generalized Heisenberg algebras in finite dimen-
sion ([Eb], [Ka1] and [Ka2]) we can define Lie algebras of generalized Heisenberg (HG)
type as follows:
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Definition 4.2. We say that the Lie algebra associated to (F,Z, J) is of type (HG)
iff:

1) I =
⋂
z 6=0

Im Jz 6= {0},

2) ‖Jz(u)‖ = ‖z‖ ‖u‖ ∀z ∈ Z and ∀u ∈ I.
If I = F we say that (F,Z, J) is non-degenerate.

Proposition 4.1. All generalized Heisenberg algebras (see Subsection 4.3.2) are of
type (HG).

P r o o f. By using relation (2) the map J : Z → LA.S(F ) will be defined by

Jzα(Yβi) = Xi iff α 6= β,

Jzα(Yαi) = 0,
Jzα(Xi) = −Yαi.

Let z be any non-zero element of Z such that z =
∑
α

λαzα.

If we set NZ = {α : lα 6= 0} then

Im Jz = Span{Yαi, Xi : α ∈ NZ , i ∈ N},
so

I =
⋂
z 6=0

Im Jz = Span{Xi : i ∈ N} = K.

On the other hand, for every u ∈ K and every z ∈ Z, we can write u =
∑
i

uiXi,

z =
∑
α

λαzα,

Jz(u) =
∑
α∈N

λαJzα(u) =
∑

α∈N,i∈N
λαuiJzα(Xi) = −

∑
α∈N,i∈N

λαuiYαi,

and
‖Jz(u)‖2 =

∑
α∈N,i∈N

|λα|2|ui|2 =
(∑
α∈N
|λα|2

)(∑
i

|ui|2
)

= ‖z‖2‖u‖2.

Such a construction will be given in Subsection 4.3.4.

Theorem 4.3. Let (F,Z, J) be a Lie algebra of type (HG). Let G be a connected and
simply connected group associated to this Lie algebra, every abnormal curve is tangent
to the left-invariant distribution generated by I⊥, the orthogonal complement of I in F .
Moreover , if I = Im Jz for all z 6= 0 in Z, then the converse is true.

In particular if (F,Z, J) is non-degenerate there are no abnormal curves except con-
stant curves.

P r o o f. First if R : G → G∗ is the Riesz representation then

R(Z) = F⊥

and
〈Jz(u), v〉 = 〈R(z), [u, v]〉 ∀u, v ∈ F and ∀z ∈ Z.
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It is easy to see that an element u belongs to Ker Jz if and only if

〈Jz(u), v〉 = 0 ∀v ∈ F,

which is also equivalent to

〈R(z), [u, v]〉 = 0 ∀v ∈ F.
Let G be a connected and simply connected group associated to the Lie algebra G and let
γ : [0, 1] → G be an abnormal curve. An element R(z) of G belongs to the abnormality
set Aγ of γ in G if and only if

R
(
[dL−1

γ(t)γ̇(t), · ]
)

= 0,

which, according to the previous argument, is equivalent to

dL−1
γ(t)γ̇(t) ∈ Ker Jz.

If (F,Z, J) is a Lie algebra of type (HG) then, from property 2) of Definition 4.2,
Jz(u) is non-zero for all u and all z 6= 0.

As I =
⋂
z 6=0

Im Jz and Jz is skew-symmetric, we have

Ker Jz ⊂ I⊥.

So finally, if γ is an abnormal curve then

dL−1
γ(t)γ̇(t) ∈ I⊥

which is equivalent to

γ̇(t) ∈ Ĩ⊥γ(t),

where Ĩ⊥γ(t) is the left-invariant distribution generated by I⊥. In general the converse is
not true.

If I = Im Jz for all non-zero z then it is easy to see that if a curve is tangent almost
everywhere to Ĩ⊥γ(t) this curve must be abnormal.

If (F,Z, J) is non-degenerate, that is if I = F , then I⊥ = {0} and all non-constant
curves are normal.

The following result is a consequence of Theorem 4.3.

Proposition 4.2. For all generalized Heisenberg Lie algebras, the abnormal curves
are tangent to the left-invariant distributions generated by LH.S(K;H).

4.3.4. Construction of Lie algebras of type (HG)

Proposition 4.3. For any Hilbert spaces F and Z such that the dimension of F is
finite and the dimension of Z is finite or infinite, there exists a map J : Z → LA.S(F )
such that the Lie algebra defined by (F,Z, J) is of type (HG).

P r o o f. Let {ei : i ∈ N} be a Hilbert basis of F and {zα : α ∈ N} a Hilbert basis
of Z. Denote by K the Hilbert space generated by

{Xj = e2j+1 : j ∈ N}
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and by NZ the set of indices α of the basis of Z. As NZ ×N is a countable set there exists
a bijection

θ : NZ × N→ N
(α, i) 7→ θ(α, i)

and if Yαi = e2θ(α,i), the Hilbert space generated by Yαi is isometric to the space
LH.S(K;Z).

So we can construct a generalized Heisenberg algebra and from Proposition 4.1 there
exists a map J : Z → LA.S(F ) defined in this case by

Jzα(e2θ(β,i)) = e2i+1 if α 6= β

Jzα(e2θ(α,i)) = 0
Jzα(e2i+1) = −e2θ(α,i)

and such that the Lie algebra associated to (F,Z, J) is of type (HG).

In what follows we will need the next lemma:

Lemma 4.1 (cf. [Ka1]). Let Z be a vector space of finite dimension m and let p be
the smallest integer such that m < 8p+ 2q with 0 ≤ q ≤ 3. Then there exists a map

J : Z → LA.S(RN )

with N = 24p+q which satisfies

‖Jz(u)‖ = ‖u‖ ‖z‖.

Proposition 4.4. Let F be an infinite-dimensional Hilbert space and Z a finite-
dimensional Hilbert space. For any infinite-dimensional subspace I of F there exists a
map J : Z → LA.S(F ) such that (F,Z, J) is of type (HG) with Im Jz = I for all non-zero
z in Z.

P r o o f. Let I be an infinite-dimensional subspace of F , p be the integer defined by the
relation m < 8p+ 2q with 0 ≤ q ≤ 3, where m is the dimension of Z, and set N = 24p+q.
If {ei : i ∈ N} is a Hilbert basis of I, then there exists a bijection

θ : [1, N ]× N→ N
(α, i) 7→ θ(α, i).

Set

Yαj = eθ(α,j)

and

Il = Span{Y1l, . . . , YNl}.
From Lemma 4.1 there exists a map

J l : Z → LA.S(Il) for all l

such that

‖J lz(v)‖ = ‖v‖ ‖z‖ ∀v ∈ Il and ∀z ∈ Z.



58 N. BENSALEM AND F. PELLETIER

Let u ∈ I and ul be the orthogonal projection of u on Il. If we set

Jz(u) =
∑
l∈N

J lz(ul),

the map J is well defined because

‖Jz(u)‖2 = lim
l→∞

l∑
h=0

‖J lz(ul)‖2 = lim
l→∞

l∑
h=0

‖ul‖2‖z‖2

= ‖z‖2 lim
l→∞

l∑
h=0

‖ul‖2 = ‖z‖2‖u‖2

and the end of the proof is then a direct consequence of Lemma 4.1.
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École Norm. Sup. (4) 27 (1994), 611–660.
[Ek] I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324–353.

[GXB] J. P. Gauthier, C. Z. Xu, A. Bounabat, An observer for infinite-dimensional skew-
adjoint bilinear systems, J. Math. Systems Estim. Control 5 (1995), 119–122.

[GXL] J. P. Gauthier, C. Z. Xu, P. Ligar ius, An observer for infinite-dimensional dissipative
bilinear systems, Comput. Math. Appl. 29 no. 7 (1995), 13–21.

[Ge] Z. Ge, Horizontal path spaces and Carnot-Carathéodory metrics, Pacific J. Math. 161
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