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Abstract. We describe singularities of the convex hull of a generic compact smooth hyper-
surface in four-dimensional affine space up to diffeomorphism. It turns out that the boundary
of the convex hull is the front of a Legendre variety. Its singularities are classified up to contact
diffeomorphism.

1. Introduction. The convex hull of a compact subset of an affine space is the inter-

section of all closed half-spaces which contain the subset. The boundary of the convex hull

of a compact smooth hypersurface can have singularities. For example, the singularities

of the boundary of the convex hull of a generic closed plane curve are discontinuities of

the second derivative (Fig. 1).

Figure 1. Singularities of the convex hull of a generic plane curve

In the present paper we describe, up to diffeomorphism, singularities of the convex

hulls of generic compact C∞-smooth hypersurfaces without boundary embedded into

four-dimensional affine space. A singularity of a convex hull is its germ at a singular point

of the boundary. As usual, generic hypersurfaces are embeddings which form an open

everywhere dense set in the C∞-space of all embeddings considered. In other words, we
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are interested only in singularities which are not removed by any C∞-small perturbation

of the original hypersurface.

It turns out there are only two new singularities (in comparison with dimension three)

which appear at isolated points of the boundary of the convex hull and are not removed

by small perturbation of the original hypersurface. The first singularity does not contain

functional moduli, but has at least nine numerical ones. A normal form which does not

contain moduli at all is found for the second singularity.

Moreover, we show that the boundary of the convex hull is the front of a Legendre

variety and we find normal forms of its germs with respect to contact diffeomorphisms.

All singularities of the Legendre variety prove to be stable and simple in contrast to the

singularities of the convex hull itself.

A tangent hyperplane is called a support hyperplane if the hypersurface lies entirely

in one of the two closed half-spaces defined by the hyperplane. A support hyperplane

is called non-singular if it has only one common point with the hypersurface and this

point is a point of non-degenerate tangency. All the remaining support planes are called

singular . For example, the singular support hyperplanes to a generic plane curve are

straight lines of double non-degenerate tangency. Singularities of the convex hull of a

compact hypersurface can appear only in its singular support hyperplanes.

1.1. Three-dimensional space. The convex hull of a generic compact surface in three-

dimensional space can have only two kinds of singularities which we call simplest and

angle singularities. The normal form of the angle singularity contains a numerical modu-

lus (continuous invariant) with respect to diffeomorphisms. These singularities shown in

Fig. 2 are found in [7]. The results of this paper are the following.

Figure 2. Singularities of the convex hull of a generic surface

A typical singular support hyperplane to a generic surface in three-dimensional space

has two (and only two) points of non-degenerate tangency with the surface (2A1-plane).

Isolated singular support hyperplanes can have either three points of non-degenerate

tangency with the surface which form a triangle or one point of degenerate tangency A3.

Such hyperplanes are called 3A1- and A3-planes respectively.

The segment between the points of tangency of a surface and its support 2A1-plane

is called a support segment . It lies entirely in the boundary of the convex hull of the
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original surface. The boundary is smooth at the interior points of the support segment.

In neighborhoods of the endpoints of the support segment the boundary is diffeomorphic

to the product of a line and a curve with the singularity shown in Fig. 1. Such singularities

of a convex hull are called simplest and denoted by R1.

The triangle with vertices at the points of tangency of a surface and its support

3A1-plane is called a support triangle. In its neighborhood the boundary of the convex

hull of the surface consists of the support triangle itself, three smooth surfaces webbed

from support segments and adjoining the sides of the support triangle, and three parts

of the original surface adjoining the vertices of the support triangle. The convex hull has

the simplest singularities at the interior points of the sides of the support triangle. To

describe singularities at its vertices let us define the under-graph as the set of points lying

under the graph of a given function. It turns out that in a neighborhood of each vertex of

the support triangle the convex hull is diffeomorphic to the under-graph of the square of

the distance to an angle of a value β where 0 < β < π is a unique modulus in the normal

form. Such singularities of a convex hull are called angle singularities. Let us note that

we can consider the epigraph of the square of the distance instead of its under-graph —

they become diffeomorphic after the substitution β 7→ π − β.

Finally, the convex hull of a generic surface has the simplest singularity at any sup-

port A3-point that is a point of tangency of the surface and its support A3-plane. In a

neighborhood of such a point the boundary of the convex hull consists of a part of the

original surface and a surface webbed from support segments which degenerate into the

support A3-point.

1.2. Four-dimensional space. Some singularities of the convex hull of a generic hy-

persurface in four-dimensional space are investigated in [5] and [6]. In [5] normal forms

of singularities of convex hulls are found in the case when the support hyperplane is tan-

gent to the original hypersurface in one of the ways described above for three-dimensional

space. Thus the simplest and angle singularities appear in four-dimensional space as well.

The boundary of the convex hull is smooth at the interior points of the support

segments of the 2A1-planes and has the simplest singularities at their endpoints. The

support segments themselves lie entirely in the boundary of the convex hull of the original

hypersurface.

At the interior points of the support triangles of the 3A1-planes the boundary of

the convex hull is smooth and has the simplest singularities at the interior points of

their sides. The support triangles themselves lie entirely in the boundary of the convex

hull of the original hypersurface. In a neighborhood of each of their vertices the convex

hull is diffeomorphic to the curvilinear cylinder over the above angle singularity with

β(z) = β0 + z, β(z) = β0 + z2, or β(z) = β0 − z2 where 0 < β0 < π is a unique modulus

in each of the three normal forms and z is a coordinate along the element of the cylinder.

Such singularities of a convex hull are called angle singularities and denoted by R0
2, R

+

2 ,

and R−
2 respectively.

Finally, the convex hull of a generic hypersurface has the simplest singularity at any

support A3-point again.

However, among the support hyperplanes of a three-dimensional hypersurface there
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can be new 4A1- and A1A3-planes which are not removed by any small perturbation of

the hypersurface. Each 4A1-plane has four points of non-degenerate tangency with the

hypersurface which form a tetrahedron. Each A1A3-plane has one point of non-degenerate

tangency and one point of tangency A3.

The tetrahedron with vertices at the points of tangency of a hypersurface and its

support 4A1-plane is called a support tetrahedron. In its neighborhood the boundary of

the convex hull of the hypersurface consists of the support tetrahedron itself, four smooth

strata webbed from support triangles and adjoining the faces of the support tetrahedron,

six smooth strata webbed from support segments and adjoining the edges of the support

tetrahedron, and four parts of the original hypersurface adjoining the vertices of the

support tetrahedron. Thus in this case the singular points of the boundary divide it into

15 (1 + 4 + 6 + 4) strata as shown in Fig. 3, left.

To imagine a convex hull in four-dimensional space it is convenient to project it

affinely into the support hyperplane to the original hypersurface. Then the boundary of

the convex hull is locally the graph of a continuously differentiable function (see, e.g., [7])

whose typical singularities are discontinuities of the second derivative. In a neighborhood

of a support tetrahedron of a generic three-dimensional hypersurface the points of such

discontinuities form 28 smooth strata which are shown in Fig. 3, left.

Figure 3. Singularities of the convex hull of a generic three-dimensional hypersurface in
a neighborhood of a support tetrahedron and in a neighborhood of a support

A1A3-segment

According to [5], the convex hull of a generic three-dimensional hypersurface has the

simplest singularities at the interior points of the faces of a support tetrahedron and the

angle singularities at the interior points of its edges. In the present paper it is proved that

the germ of our convex hull at no vertex of a support tetrahedron contains functional



SINGULARITIES OF CONVEX HULLS 65

moduli with respect to diffeomorphisms. This singularity is denoted by R3. Its normal

form is not found nor the precise number of numerical moduli. It is only proved certainly

not to be less than nine but apparently is much more.

Moreover, we investigate singularities in the only remaining case when a generic hyper-

surface has a support A1A3-plane. The segment between their tangency points is called

the support A1A3-segment . It lies entirely in the boundary of the convex hull of the origi-

nal hypersurface. According to our results, the convex hull of a generic three-dimensional

hypersurface has the simplest singularities at the interior points of its support A1A3-

segment and the angle singularity R0
2 at the endpoint A3. At the endpoint A1 of the

support A1A3-segment there appears one more singularity of the convex hull. This sin-

gularity is denoted by V3, does not contain functional moduli, and is diffeomorphic to its

normal form. This normal form is the under-graph of the square of the distance to that

component of the complement to the swallowtail which consists of polynomials without

real roots.

In a neighborhood of a support A1A3-segment the boundary of the convex hull of a

generic hypersurface is divided by the singular points into five strata four of which are

smooth and the fifth one is non-smooth — this phenomenon has not occurred before. The

projection of the singular points of the boundary of the convex hull into the support A1A3-

plane is shown in Fig. 3, right. It consists of three smooth surfaces, the cut swallowtail, and

half of the Whitney umbrella. The support A1A3-segment lies in the Whitney umbrella, its

endpoint A3 is the starting point of a smooth curve which consists of support A3-points

and is shown by dots in Fig. 3. It should be noted that in general the normalizing

diffeomorphisms preserve neither the support A1A3-segment, nor the curve of support

A3-points.

Inside the cut swallowtail the boundary of the convex hull is the original hypersur-

face. A smooth stratum webbed from support triangles which degenerate into the sup-

port A1A3-segment is inside the Whitney umbrella. The stratum between these two is

non-smooth and webbed from support segments. One more part of the original hypersur-

face bounded by two smooth surfaces adjoins the non-singular stratum. The remaining

smooth stratum is bounded by two surfaces too and is webbed from support segments

degenerating into support A3-points.

The union of the cut swallowtail and the half Whitney umbrella whose intersection

lines coincide and whose tangent cones are transversal is called a sail-boat in [6]. There

it is proved that the projection of the singular points of the boundary of the convex hull

into a support A1A3-plane to a generic hypersurface is a sail-boat in a neighborhood of

the point of tangency A1 and all sail-boats are diffeomorphic to each other. According to

our results, in this case the convex hull itself is reduced to the above local normal form

which does not contain moduli as well.

The following conjecture is formulated in [4]: the singularities of the convex hull of a

generic compact hypersurface in four-dimensional affine space do not contain functional

moduli. Thus this conjecture is proved in the present paper.

So in a neighborhood of a typical point of the boundary the convex hull of a generic

compact three-dimensional hypersurface is diffeomorphic to the closed half-space. The
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points of the boundary where the convex hull has the simplest singularities R1 form a

smooth two-dimensional surface. Finally, the angle singularities R0
2 appear along smooth

curves, the singularities R+
2 , R−

2 , R3, and V3 appear at isolated points of the boundary

of the convex hull.

The singularities R1, R0
2, R

±
2 , and V3 allow the following uniform representations: the

simplest singularity R1 is diffeomorphic to the under-graph of the square of the distance

to a three-dimensional half-space, the angle singularity R0
2 or R±

2 is diffeomorphic to the

under-graph of the square of the distance to a dihedral angle of variable value β(z) where

β(z) = β0+z or β(z) = β0±z2 respectively, and the singularity V3 is diffeomorphic to the

under-graph of the square of the distance to one of the components of the complement to

the swallowtail. For the singularity R3 there is apparently no analogous representation.

1.3. Singularities of Legendre varieties. It turns out that the boundary of the convex

hull of a generic compact three-dimensional hypersurface is the front of a Legendre vari-

ety which can have only the following standard singularities: R̃1, R̃2, R̃3, and Ṽ3. These

singularities do not have moduli with respect to contact diffeomorphisms. The singulari-

ties R̃1 form smooth two-dimensional surfaces, the singularities R̃2 appear along smooth

curves, and the singularities R̃3 and Ṽ3 appear at isolated points of the Legendre variety.

The singularities R̃1 are projected to the simplest singularities of the convex hull, the

singularities R̃2 are projected to the angle ones, the singularities R̃3 are projected to the

singularities R3, and the singularities Ṽ3 are projected to the singularities V3.

The singularities R̃l consist of 2l smooth strata. The singularity Ṽ3 consists of one

non-smooth and two smooth strata. If l = 3, the family

Φl(τ, λ) =
1

2
(τ l+1 + λ1τ

l−1 + . . . + λl−1τ + λl)
2

generates one of the smooth strata of the singularity Ṽ3 and the non-smooth one. Ac-

cording to Theorem 8 from [8], all families Φl generate Legendre (Lagrangian) varieties

Φ̃l whose generic Legendre (Lagrangian) projections are stable in the sense of 3.3 in [2].

Open Whitney umbrellas and open swallowtails possess the same property as well, but

our varieties Φ̃l are new if l ≥ 3 (Φ̃1 is an intersection of curves and Φ̃2 is the open

Whitney umbrella).

1.4. Higher dimensions. According to [3], in dimension five or more the convex hull

can have functional moduli which are not removed by small perturbation of the original

hypersurface. For example, they appear as relations between several numerical moduli

(which are already in four-dimensional space) along the lines formed by the vertices of

the support tetrahedrons.

1.5. Terminology. The term “smooth” always means “infinitely smooth”. The term

“generic” is used for smooth mappings and means that the given proposition is only true

for some open everywhere dense set in the C∞-space of all mappings considered. The

term “typical” is used for points of varieties and means that the given proposition is only

true for some open everywhere dense set of points.
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1.6. Organization of the paper. In Section 2 we give the necessary definitions and

rigorously formulate the results (Theorems 1 and 2) outlined in Introduction. In Section 3

the proof of these results is divided into two steps which are Theorems 3 and 4 proved

in [1].

Theorem 3 from Section 3 states that the boundary of the convex hull of a generic

compact three-dimensional hypersurface is the front of a Legendre variety which can have

only the standard singularities: R̃1, R̃2, R̃3, and Ṽ3. Their normal forms with respect to

contact diffeomorphisms are described in Section 3.

Theorem 4 from Section 3 contains the classification of germs of a generic Legendre

bundle at points of the Legendre variety up to contact diffeomorphisms preserving its

local normal forms R̃1, R̃2, R̃3, and Ṽ3 already found. However, we consider only bundles

with the following property: the front of the Legendre variety must be a continuously

differentiable manifold. (The boundary of the convex hull of any compact hypersurface

is continuously differentiable.)

Acknowledgments. The author is grateful to V. D. Sedykh for statement of the

problem and interest in the paper, and to V. V. Goryunov and Yu. G. Prokhorov for

numerous useful discussions.

2. Classification of singularities of convex hulls

Definition 1. The convex hull of a compact subset of an affine space is the inter-

section of all closed half-spaces which contain the subset.

Definition 2. A hyperplane is called a support hyperplane to a subset of an affine

space if the subset lies entirely in one of the two half-spaces defined by the hyperplane

and has at least one common point with the hyperplane.

If the subset is a manifold then so-called Al1 . . . Alm -planes are distinguished among

its support hyperplanes.

Definition 3. A support hyperplane to a manifold is called an Al1 . . . Alm-plane

(l1, . . . , lm are positive odd numbers) if:

1) it has m points of tangency Al1 , . . . , Alm with the manifold;

2) these points of tangency are the vertices of an (m− 1)-dimensional simplex which

is called a support simplex of the Al1 . . . Alm-plane or a support Al1 . . . Alm -simplex .

A support A1-plane is called non-singular . The remaining support hyperplanes are

called singular .

R e ma r k 1. If l1 = . . . = lm = 1 then we write mA1 instead of A1 . . . A1.

R e ma r k 2. A k-dimensional manifold has a point of tangency Al (l is a positive

integer) with a hypersurface if the restriction of some local equation of the hypersurface

has the form ±ξl+1

1 ± ξ2
2 ± . . .± ξ2

k in suitable local coordinates on the manifold.
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According to [7], if k = 1 or n ≤ 7 then the boundary of the convex hull of a

generic compact k-dimensional manifold in n-dimensional affine space consists of sup-

port Al1 . . . Alm-simplexes where l1 + . . . + lm ≤ n. In particular, in the case n = 4

it consists of support A1-points, support 2A1-segments, support 3A1-triangles, support

4A1-tetrahedrons, support A3-points, and support A1A3-segments.

2.1. Simplest singularity R1. A germ of a convex hull in four-dimensional space has

the singularity R1 if it is diffeomorphic to the germ (at the origin) of the set

R1 =
{
(x, y, z, t) ∈ R

3 × R : min
p≥0

(p2

2
+ px + t

)
≤ 0

}
.

R e ma r k 3. The set R1 is the under-graph of the function of x, y, and z which is

equal to half the square of the standard distance on the real line from the point x to the

ray x ≥ 0.

2.2. Angle singularities R0
2 and R±

2 . A germ of a convex hull in four-dimensional

space has the singularity R0
2, R

+

2 , or R−
2 if it is diffeomorphic to the germ (at the origin)

of the set R2(α) where α(z) = a+z, α(z) = a+z2, or α(z) = a−z2 respectively, |a| < 1,

and

R2(α) =
{
(x, y, z, t) ∈ R

3 × R : min
p,q≥0

(p2 + q2

2
+ α(z)pq + px + qy + t

)
≤ 0

}
.

R e ma r k 4. The set R2(α) is the under-graph of the function of x, y, and z which

is equal to half the square of the distance from the point (x, y) to the coordinate angle

{x ≥ 0, y ≥ 0} in the plane with the Euclidean metric

ds2 =
dx2 − 2α(z)dxdy + dy2

1− α2(z)
.

The value of the angle is β(z) = π − arccosα(z).

2.3. Singularity R3. A germ of a convex hull in four-dimensional space has the sin-

gularity R3 if it is diffeomorphic to the germ (at the origin) of the set

R3(F ) =
{
(x, y, z, t) ∈ R

3 × R : min
p,q,r≥0

F (p, q, r; x, y, z, t) ≤ 0
}

where F is a polynomial whose quasihomogeneous expansion has the form F = F2 +

F3 + . . . if deg p = deg q = deg r = 1, deg x = deg y = deg z = 1, and deg t = 2,

F2(p, q, r; x, y, z, t) =
p2 + q2 + r2

2
+ apq + bpr + cqr + px + qy + rz + t,

and the quadratic form (p2 + q2 + r2)/2 + apq + bpr + cqr is positive definite.

For example, the set R3(F2) is the under-graph of half the square of the distance

from the point (x, y, z) to the coordinate angle {x ≥ 0, y ≥ 0, z ≥ 0} in space with the

Euclidean metric defined by the matrix
∥∥∥∥∥∥

1 a b

a 1 c

b c 1

∥∥∥∥∥∥

−1

.
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R e ma r k 5. The numbers a, b, and c are moduli of the singularity R3 with respect

to diffeomorphisms. These moduli are described in [4]. Moreover, Theorem 4 implies that

six moduli are among the coefficients of the quasihomogeneous component F3 of the

polynomial F .

2.4. Singularity V3. A germ of a convex hull in four-dimensional space has the sin-

gularity V3 if it is diffeomorphic to the germ (at the origin) of the under-graph V3 of half

the square of the standard distance from the point (x, y, z) to the body

V3 =
{
(x, y, z) ∈ R

3 : ∀τ ∈ R τ4 + xτ2 + yτ + z ≥ 0
}

which is bounded by the cut swallowtail and consists of the non-negative polynomials of

degree four.

2.5. Adjacencies of singularities. The singularities of convex hulls adjoin each other

in the following way:

R±
2

↓
R0 ← R1 ← R0

2 ← R3

↑
V3

where R0 denotes the germ of a closed half-space at a point of its boundary.

2.6. The following theorem is proved in [5].

Theorem 1. The convex hull of a generic compact hypersurface lying in four-dimen-

sional affine space has the following singularities:

R0 at the support A1-points and at the interior points of the support simplexes of the

2A1-, 3A1-, and 4A1-planes ;

R1 at the endpoints of the support 2A1-segments , at the interior points of the sides

of the support 3A1-triangles , and at the interior points of the faces of the support 4A1-

tetrahedrons ;

R0
2 at typical vertices of the support 3A1-triangles and at typical interior points of the

edges of the support 4A1-tetrahedrons ;

R±
2 at the remaining finite number of vertices of the support 3A1-triangles and at the

remaining finite number of interior points of the edges of the support 4A1-tetrahedrons.

2.7. Main Theorem 2 of the present paper completes this classification.

Theorem 2. The convex hull of a generic compact hypersurface lying in four-dimen-

sional affine space has the following singularities:

R3 at the vertices of the support 4A1-tetrahedrons ;

R1 at the interior points of the support A1A3-segments ;

R0
2 at the points of tangency A3 of the support A1A3-planes ;

V3 at the points of tangency A1 of the support A1A3-planes ;

and the quasidegree of the polynomial F from the definition of the singularity R3 is

bounded by a number d ≥ 3 which does not depend on the original hypersurface.

Theorems 1, 2 follow from Theorems 3, 4 formulated in Section 3 and proved in [1].
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3. Reducing to normal forms

3.1. Normal forms of Legendre varieties. Let B be a manifold and ξ ∈ B be any of its

points. A cooriented contact element to B is any closed linear half-space in the tangent

space TξB. The point ξ is called the point of applying of the contact element.

It is well known that in the space ST ∗B of all cooriented contact elements to B there is

a natural contact structure (hyperplane distribution satisfying the condition of maximal

non-integrability): a contact element is allowed to move so that its boundary contains

the velocity of its point of applying. Varieties which are tangent to the distribution and

whose dimension is at most (dim B − 1) are called Legendre.

The hyperplanes of the contact structure in the space ST ∗B are naturally cooriented

outward: a contact element move in positive direction if it does not contain the velocity

of the point of applying.

Later on we realize n-dimensional affine space as an open half-sphere in (n + 1)-

dimensional Euclidean space and work with the whole sphere which has a natural projec-

tive structure: subspaces passing through the center cut out planes of various dimensions

in the sphere. Each hyperplane divides the sphere into two half-spheres, and the above

definitions of a convex hull and a support hyperplane are suitable for their subsets.

A cooriented contact element to affine space or sphere is naturally identified with

the pair consisting of the closed half-space and the point of applying which lies in the

boundary of the half-space. Two cooriented contact elements are called complementary

to each other if they consist of different closed half-spaces having common boundary and

the same point of applying.

Definition 4. A cooriented contact element is called a support element to a subset

C of an affine space or sphere if it consists of a closed half-space containing C and a point

from C. (The point lies on the boundary of the half-space.) A cooriented contact element

which is complementary to a support element is called an antisupport element . All support

elements to C form a subset C⊥, all antisupport elements to C form a subset C⊤.

Definition 5. A cooriented contact element is called an infinitesimal support ele-

ment to a subset C of a manifold if it is applied at a point ξ ∈ C and contains the cone

which is tangent to C at the point ξ. A cooriented contact element which is complemen-

tary to an infinitesimal support element is called an infinitesimal antisupport element .

All infinitesimal antisupport elements to C form a subset C̃.

R e ma r k 6. The sets of all infinitesimal support and antisupport elements (to a

subset of a manifold) are functorial with respect to diffeomorphisms of the manifold. In

general, this is not true for the sets of support and antisupport elements.

R e ma r k 7. Let ξ ∈ C ⊂ B be a point of a subset C of a manifold B. Let us consider

any Riemannian metric on B and some curve beginning at the point ξ and possessing

the following property: the distance from a point of the curve to the subset C is an

infinitesimal whose degree is more than one if the point approaches ξ. The cone lying in

the tangent space TξB and consisting of the rays which are tangent to all such curves is

called tangent to the subset C at the point ξ.
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Let R0 denote the hyperplane s = 0 in the affine space R
3 × R with coordinates

(u, v, w, s). Let us consider the following subsets of R0:

1) the hyperplane R0 itself;

2) the half-space R1 = {(u, v, w) ∈ R0 : u ≥ 0};

3) the dihedral angle R2 = {(u, v, w) ∈ R0 : u ≥ 0, v ≥ 0};

4) the octant R3 = {(u, v, w) ∈ R0 : u ≥ 0, v ≥ 0, w ≥ 0};

5) the body V3 = {(u, v, w) ∈ R0 : ∀τ ∈ R τ4 + uτ2 + vτ + w ≥ 0} bounded by the

cut swallowtail and consisting of the non-negative polynomials of degree four.

Let (p, q, r; u, v, w, s) be local coordinates on ST ∗(R3 × R) such that a cooriented

contact element applied at the point (u, v, w, s) ∈ R
3 × R has the form pdu + qdv +

rdw + ds ≤ 0, and let E0 ⊂ ST ∗(R3 × R) denote the space of all such elements. Let R̃0,

R̃1, R̃2, R̃3, and Ṽ3 ⊂ E0 be the Legendre varieties consisting of the cooriented contact

elements which are infinitesimal antisupport elements to the subsets R0, R1, R2, R3, and

V3 ⊂ R
3 × R respectively. The variety R̃0 is smooth, the varieties R̃1, R̃2, R̃3, and Ṽ3

have singularities, for example, at the origin.

In the coordinates (p, q, r; u, v, w, s):

R̃0 = {p = q = r = s = 0},

R̃1 = {pu = q = r = s = 0, p ≥ 0, u ≥ 0},

R̃2 = {pu = qv = r = s = 0, p ≥ 0, u ≥ 0, q ≥ 0, v ≥ 0},

R̃3 = {pu = qv = rw = s = 0, p ≥ 0, u ≥ 0, q ≥ 0, v ≥ 0, r ≥ 0, w ≥ 0}.

The Legendre variety Ṽ3 consists of the following three strata (τ is a real parameter):

{p = q = r = 0, u ≥ −2τ2, v = −4τ3 − 2uτ, w ≥ 3τ4 + uτ2, s = 0},

{p = rτ2, q = rτ, r ≥ 0, u ≥ −2τ2, v = −4τ3 − 2uτ, w = 3τ4 + uτ2, s = 0},

{p = rτ2, |q| ≤ r|τ |, r ≥ 0, u = −2τ2, v = 0, w = τ4, s = 0}.

Therefore, the Legendre varieties R̃l consist of 2l strata. They can be extended to

manifolds as well as the first and third strata of Ṽ3. The second stratum of the Legendre

variety Ṽ3 can be extended to an irreducible algebraic variety. The union of the first and

second strata of Ṽ3 is contact diffeomorphic to the Legendre variety

Φ̃3 = {σ = Φ3(τ, λ), Φ3,τ (τ, λ) = 0, κ = −Φ3,λ(τ, λ)} (κdλ + dσ = 0)

generated by the family

Φ3(τ, λ) =
1

2
(τ4 + λ1τ

2 + λ2τ + λ3)
2.

The reducing contact diffeomorphism is given by the formula (κ, λ, σ) = (p, q, r; u, v,

w − r, s + r2/2).

Definition 6. We say that a three-dimensional Legendre variety has the singularity

R̃1, R̃2, R̃3, or Ṽ3 at some point if its germ at this point is (up to a local diffeomorphism

respecting the contact structures and their coorientations) respectively the germ of the

Legendre variety R̃1, R̃2, R̃3, or Ṽ3 ⊂ E0 at the origin.
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These singularities of Legendre varieties adjoin each other in the following way:

R̃0 ← R̃1 ← R̃2 ← R̃3

↑

Ṽ3

where the indices are equal to the codimensions of the strata of a Legendre variety which

consist of the corresponding singular points.

Theorem 3. Let M ⊂ S4 be a compact smooth hypersurface, [M ] ⊂ S4 be its convex

hull , [M ]⊥ ⊂ ST ∗S4 be the set of all cooriented contact support elements to [M ], and

π : ST ∗S4 → S4 be the natural projection.

Then [M ]⊥ is a Legendre variety which is uniquely projected onto its front π([M ]⊥)

which is the boundary of the convex hull of the original hypersurface M . If the hypersurface

M is generic, the Legendre variety [M ]⊥ can have only the above singularities R̃1, R̃2,

R̃3, and Ṽ3. Moreover :

1) the Legendre variety [M ]⊥ is smooth above the support A1-points and above the

interior points of the support simplexes of the 2A1-, 3A1-, and 4A1-planes of the hyper-

surface M ;

2) the singularities R̃1 appear above the endpoints of the support 2A1-segments , above

the interior points of the sides of the support 3A1-triangles , above the interior points of

the faces of the support 4A1-tetrahedrons , and above the interior points of the support

A1A3-segments of the hypersurface M ;

3) the singularities R̃2 appear above the vertices of the support 3A1-triangles , above

the interior points of the edges of the support 4A1-tetrahedrons , and above the points of

tangency A3 of the support A1A3-planes of the hypersurface M ;

4) the singularities R̃3 appear above the vertices of the support 4A1-tetrahedrons of

the hypersurface M ;

5) the singularities Ṽ3 appear above the points of tangency A1 of the support A1A3-

planes of the hypersurface M .

3.2. Normal forms of Legendre bundles. A Legendre mapping is a diagram

Ln−1 →֒ E2n−1 → Bn

consisting of an embedding of a Legendre variety Ln−1 into the space E2n−1 with a coori-

ented contact structure and a Legendre bundle E2n−1 → Bn. (A smooth bundle whose

fibers are Legendre manifolds is called Legendre.) Equivalence of Legendre mappings is a

commutative diagram

L →֒ E → B

l l l
L′ →֒ E′ → B′

where the middle vertical arrow is a diffeomorphism sending the cooriented contact struc-

tures to each other.

Legendre bundles are locally given with the help of the generating families defined

below.
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Let us consider again the space E0 of cooriented contact elements κdλ + ds ≤ 0

applied at the points (λ, s) ∈ R
3 × R where κ = (p, q, r), λ = (u, v, w). The cooriented

contact structure on E0 is given by the zero subspaces of the form κdλ + ds.

Let F : (R3 × R
3 × R, 0) → (R, 0) be a germ of a family of smooth functions of κ

which depend smoothly on the parameters µ = (x, y, z) ∈ R
3 and t ∈ R. Let Fκ(0) = 0

and let F satisfy the condition of non-degeneracy at the origin:

det

∥∥∥∥
Fκµ Fκt

Fµ Ft

∥∥∥∥ 6= 0.

Then F is called the generating family of the germ

π : (E0, 0)→ (R3 × R, 0), π(κ, λ, s) = (µ, t)

of the Legendre bundle whose fibers are given by the formula

π−1(µ, t) = {(κ, λ, s) ∈ E0 : λ = Fκ(κ, µ, t), s = F (κ, µ, t)− κλ}.

This bundle is correctly defined in a neighborhood of the origin in view of the non-

degeneracy of F .

Thus κ are local coordinates on the fibers of the germ π, (µ, t) are local coordinates on

its base, and the cooriented contact structure on E0 is defined by the form Fµdµ + Ftdt.

For example, the natural Legendre bundle (κ, λ, s) 7→ (λ, s) is given by the generating

family κµ + t = px + qy + rz + t.

Theorem 4. Let L ⊂ ST ∗S4 be a Legendre variety with the singularities R̃1, R̃2,

R̃3, or Ṽ3 and π : ST ∗S4 → S4 be a generic Legendre bundle. If π(L) is a continuously

differentiable manifold then the germ of the Legendre mapping L →֒ ST ∗S4 π
−→ S4

1) at each smooth point of the variety L is equivalent to the germ (R̃0, 0) →֒ (E0, 0)→
(R3 × R, 0) of a Legendre mapping such that its second arrow is given by the generating

family

px + qy + rz + t;

2) at each singular point R̃1 of the variety L is equivalent to the germ (R̃1, 0) →֒
(E0, 0) → (R3 × R, 0) of a Legendre mapping such that its second arrow is given by the

generating family

p2

2
+ px + qy + rz + t;

3) at each singular point R̃2 of the variety L is equivalent to the germ (R̃2, 0) →֒
(E0, 0) → (R3 × R, 0) of a Legendre mapping such that its second arrow is given by one

of the generating families having the form

p2 + q2

2
+ α(z)pq + px + qy + rz + t

where α(z) = a + z for a typical singular point R̃2, α(z) = a± z2 for the remaining finite

number of singular points R̃2, and |a| < 1 is a continuous invariant ;

4) at each singular point R̃3 of the variety L is equivalent to the germ (R̃3, 0) →֒
(E0, 0) → (R3 × R, 0) of a Legendre mapping such that its second arrow is given by a

polynomial generating family F (p, q, r; x, y, z, t) whose quasihomogeneous expansion has
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the form F = F2 + . . . + Fd if deg p = deg q = deg r = 1, deg x = deg y = deg z = 1, and

deg t = 2, where

F2 =
p2 + q2 + r2

2
+ apq + bpr + cqr + px + qy + rz + t,

a, b, and c are continuous invariants , the quadratic form (p2 +q2+r2)/2+apq+bpr+cqr

is positive definite, among the coefficients of F3 there are six continuous invariants , and

the number d ≥ 3 depends on neither L nor π;

5) at each singular point Ṽ3 of the variety L is equivalent to the germ (Ṽ3, 0) →֒
(E0, 0) → (R3 × R, 0) of a Legendre mapping such that its second arrow is given by the

generating family

p2 + q2 + r2

2
+ px + qy + rz + t.

R e ma r k 8. In the case 5) the generating family can be reduced to the simpler form

q2 + r2

2
+ px + qy + rz + t.
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