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1. Introduction. The following elementary extremal problem with constraints arises

as a base model for various settings in parametric optimisation theory:

Let g : Nn → Mm be a proper smooth mapping of smooth manifolds Nn and Mm

and let f : Nn → R be a smooth function on Nn.

The function

F (q) = min{f(p) | p ∈ N, g(p) = q}, q ∈ g(N) ⊂M,

defined on the image of g, is called the relative minima function. It provides a solution

of the extremal problem f(·)→ min under the constraint g(·) = q, where q ∈M .

We call g the constraint mapping, M the parameter manifold, f the minimising

function and the mapping (f, g) : N → R×M the pair -mapping.

Only the case n ≥ m, when the relative minima function might be defined on the

subset of full dimension m, will be considered.

Relative minima function is, generally speaking, neither smooth nor continuous. Its

singularities describe those of the boundary of attainability domains (for given time)

of control systems, propagations of wave fronts, singularities of solutions of parameter

depending extremal problems (for example, that of production of optimal mixtures) and

so on.
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Here we continue the study of the generic singularities of relative minima function

started in [5], [6]. We present complete lists of these singularities when the dimension m

of parameter is 3 and 4 up to the following equivalence relation: two germs of relative

minima function are called Γ-equivalent if their graphs might be mapped one to the other

by a germ of smooth diffeomorphisms of the product of the parameter space by a line

which preserves the projection onto the parameter.

The inverse image under the generic pair-mapping of a point P on the graph of

relative minima consists of at most finite number of points X1, . . . , Xk. Near P this

graph coincides with the graph of the minimum of finite number of local relative minima

functions, defined by the germs of pair-mappings at these preimages X1, . . . , Xk. The

singularities of local relative minima function are called point singularities. Thus, lists of

normal form of singularities consist of admissible combinations of point singularities.

We classify also all simple (in the singularity theory sense) stable singularities and

determine the nice dimensions, for which all generic singularities are stable and simple.

The 3-dimensional parameter belongs to this nice dimension region (Theorem 2).

There exist 34 different types of generic singularities when m = 3. But only 24 of them

appear when n > 4, and the list remains the same for all such n due to a certain

stabilisation property of singularities.

The lists of normal forms provide, of course, the diffeomorphic types of singularities of

domain, where relative minima function is defined, as well as the sets of it discontinuity.

The proofs of the classification theorems are based on the study of the diagrams

of mappings. According to the classical result of J. Mather [1] the classification of sta-

ble (with respect to right-left equivalence) mappings reduces to enumeration of versal

deformation of contact singularities. Similarly, the classification of stable diagrams, cor-

responding to relative minima singularities, might be reduced to the study of versal

deformations of the contact of smooth submanifold (the graph of pair-mapping) with the

coordinate flag of two subspaces.

This approach clarifies the close interconnections with the singularities of functions on

the manifold with boundary [2], [9], discriminants of simple projections [8], singularities

of diagrams of mappings and of contact with flags [12].

The constraint mapping being a submersion, the problem becomes that of the singu-

larities of minima of parameter depending functions. The latter was widely studied (see

for example [3], [10]).

Time-optimisation of a system with smooth strictly convex indicatrices give rise to

a special class of relative minima singularities, related to the singularities of families of

wave fronts [2], [11]. They are briefly discussed in the following section.

Note finally that reversing the sign of minimising function one gets the corresponding

results on relative maxima.

2. Definitions and results. A pair from an open and dense subset of the space of

pairs, equipped with Whitney C∞-fine topology, will be called a generic one. A germ

of relative minima functions is called stable, if for any nearby pair a germ of relative

minima function at some nearby point in parameter space is Γ-equivalent to the initial
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one. A germ of relative minima functions is called simple, if for any nearby pair all germs

of relative minima functions at nearby points in parameter space belong to a finite number

of equivalence classes.

Dimensions n and m are called nice if all germs of relative minima function of generic

pair-mappings (f, g) : Nn → R×Mm are simple.

Theorem 1. The dimensions n = m are nice if and only if m < 6. The dimensions

n > m are nice if and only if m < 4.

Theorem 2. Let the dimension of parameter be m = 3. Then a relative minima

function germ of a generic pair at an arbitrary point is stable, simple and is Γ-equivalent

to a germ at zero of one of the following functions from the second column of Table 1,

provided that

— if n ≥ 4, it should be one of the first 24 functions of the table;

— if n = 4, it should be one of the first 27 ones;

— if n = 3, it should be any function of the table, except 24th, 25th, 26th and 27th.

Notes. Third column of the table contains values of codimension in R3 of the stratum

of given relative minima function singularity.

Local coordinates on the parameter space are denoted by x, y, z.

Dimensions n intrinsic for given singularity are shown in fourth column.

Table 1

No Normal form codim dimN

1 0 0 ≥ 3

2 −|x| 1 ≥ 3

3 min{−|x|, y} 2 ≥ 3

4 min{−|x|, y, z} 3 ≥ 3

5 −√x 1 ≥ 3

6 min{−√x, 1} 1 ≥ 3

7 min{−√x,−|y|+ 1} 2 ≥ 3

8 min{−√x, y} 2 ≥ 3

9 min{−√x,−|y|+ z} 3 ≥ 3

10 min{−√x,min{−|y|, z}+ 1} 3 ≥ 3

11 min{−√x,−√y + 1} 2 ≥ 3

12 min{−√x,−√y + 1, 2} 2 ≥ 3

13 min{−√x,−√y + z} 3 ≥ 3

14 min{−√x,−√y + z, 1} 3 ≥ 3

15 min{−√x,−√y + 1,−|z|+ 2} 3 ≥ 3

16 min{−√x,min{−√y, z}+ 1} 3 ≥ 3

17 min{−√x,−√y + 1,−√z + 2} 3 ≥ 3

18 min{−√x,−√y + 1,−√z + 2, 3} 3 ≥ 3

19 min{w | w3 + xw + y = 0} 2 ≥ 3

20 min{min{w | w3 + xw2 + y = 0}, z} 3 ≥ 3

21 min{−√z,min{w | w3 + xw + y = 0}+ 1} 3 ≥ 3
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Table 1 (continued)

No Normal form codim dimN

22 min{w | w4 + xw2 + yw + z = 0} 3 ≥ 3

23 min{min{w | w4 + xw2 + yw + z = 0}, 1} 3 ≥ 3

24 min{w4 + xw2 + yw | w ∈ R} 3 ≥ 4

25 min{u2 + w2 + ux+ wy | u2 − w2 = z} 3 = 4

26 min{uw + ux+ wy | u2 + w2 = z} 3 = 4

27 min{min{uw + ux+ yw | u2 + w2 = z}, 1} 3 = 4

28 min{−|y|√x, z} 3 = 3

29 min{−|y|√x,−√z ± 1} 3 = 3

30 min{−|y|√x,−√z ± 1, 2} 3 = 3

31 −|y|√x 2 = 3

32 min{±w2 | w3 + xw2 + yw + z = 0} 3 = 3

33 min{−|y|√x, 1} 2 = 3

34 min{−|y|√x,−|z|+ 1} 3 = 3

Theorem 3. Let the dimension of parameter be m = 4. Then a point singularity of

relative minima function germ of a generic pair at an arbitrary point is R+-equivalent to

a germ at the origin of one of the following functions (from the second column of Table 2):

— Bk,1 (1 ≤ k ≤ 5), Bk,2 (2 ≤ k ≤ 4), B3,3, X
±

4 , if n = 4;

— Bk,1 (1 ≤ k ≤ 5), A3, A5, C
±

2,2, F5, F
∗
5 , if n = 5;

— Bk,1 (1 ≤ k ≤ 5), A3, A5, F
∗
5 , M±

6 , if n = 6;

— Bk,1 (1 ≤ k ≤ 5), A3, A5, F
∗
5 , if n > 6.

Notes. Local coordinates on the parameter space are denoted by q1, . . . , q4.

Dimensions n intrinsic for given singularity and the codimension of its stratum in

parameter space are given below the normal form.

The functional moduli λ, µ, ν are arbitrary functions in variables q1, q2, q3.

R e ma r k. If m = 4, a relative minima function germ of a generic pair at any point

is Γ-equivalent either to the point singularities listed above or to the minimum of the

collection of those whose total codimension does not exceed n.

Table 2

Notation Normal form

A3 min{x4 + q1x
2 + q2x | x ∈ R}

codim = 2, n > 4

A5 min{x6 + q1x
4 + q2x

3 + q3x
2 + q4x | x ∈ R}

codim = 4, n ≥ 5

Bk,1 min{x | xk + q1x
k−2 + . . .+ qk−2x+ qk−1 = 0}

1 ≤ k ≤ 5 codim = k − 1, n ≥ 4

Bk,2 min{±x2 | xk + q1x
k−1 + . . .+ qk−1x+ qk = 0}

2 ≤ k ≤ 4 codim = k, n = 4
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Table 2 (continued)

Notation Normal form

B3,3 min{x3 + xq4 | x3 + q1x
2 + q2x+ q3 = 0}

codim = 4, n = 4

X±

4 min{x+ 2y | xy + q1 = x2 ± y2 + xq2 + yq3 + q4 = 0}
codim = 4, n = 4

C−

2,2 min{x2 + y2 + q2x+ q3y | xy = q1}
codim = 4, n = 5

C+
2,2 min{xy + q2x+ q3y | x2 + y2 = q1}

codim = 4, n = 5

F5 min{y2 + xq4 | x2 + y3 + q1y
2 + q2y + q3 = 0}

codim = 4, n = 5

F ∗
5 min{x+ y2λ(q) | x2 ± y4 + q1y

3 + q2y
2 + q3y + q4 = 0}

codim = 4, n ≥ 5

Ze
6 min{±x2 + µ(q)y2 + q1x+ q2y + x3z | x2 + y2 + z2 = q4}

µ(0) 6= 0, codim = 4, n = 6

Zh
6 min{x2 + ν(q)y2 + q1x+ q2y + q3z | xy + z2 = q4}

ν(0) 6= 0, codim = 4, n = 6

R e ma r k. Let Wt ⊂ M be a time dependent family of wave fronts. For a point

q ∈ M the minimal of values of time t such that q ∈ Wt is a value of a corresponding

relative minima function. The singularities of these functions are special. Suppose the

big front W̃ = (t,Wt) ⊂ R×M in a space-time is a projection of a smooth Legendrian

submanifold in PT ∗(R×M). Then the corresponding minimising function is regular and

the constraint mapping has corank at most one. In particular, the classes of Theorems

2 and 3 satisfying these conditions form all minimal singularities [11] of envelopes and

caustics of families of wave-fronts in R3 and R4.

3. General constructions. Consider the diagram

N
(f,g)−→ R×M π−→M, x 7→ (f(x), g(x)) 7→ g(x),

associated to a pair-mapping (f, g). Here π is the natural projection.

Sets of three diffeomorphisms (θ1, θ2, θ3), generating a commutative diagram

N
(f1,g1)//

θ0

��

R×M π //

θ1

��

M

θ2

��
N

(f2,g2)// R×M π // M,

whose rows correspond to two pair-mappings, form a group, which we denote by Γ. This

equivalence group Γ acts on the space of pair-mappings (via the associated row-diagrams).

Denote by Γ+ the subgroup of Γ, preserving the orientation of the fibres of the pro-

jection π. Obviously the relative minima functions of two Γ+-equivalent diagrams are

Γ-equivalent.
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Denote by R+ the subgroup of Γ+ equivalences for which the diffeomorphism θ1 is

simply a shift along each fibre of the projection π,

θ1 : (t, q)→ (t+ φ(q), Q(q)), t ∈ R, q ∈Mm.

Classification of Γ+-stable pairs plays an important role in the proofs of Theorems 1–3.

In particular, standard arguments of singularity theory imply the following infinitesimal

criterion for Γ+-stability of the germ (or multigerm) of the pair-mapping (f, g) : Rn →
R×Rm, (f, g) : (0, 0) 7→ (0, 0) at the origin.

Proposition 1. The germ at the origin of the pair (f, g), such that f(0) = 0 and

g(0) = 0, is Γ+-stable, if and only if for any germ of the pair-mapping (φ, ψ) : (N, 0)→
R×Rm there exist a germ at (0, 0) ∈ R×Rm of the mapping θ : R×Rm → R×Rm,

preserving the projection π : R×Rm → Rm, θ : (t, q) 7→ (α(t, q), β(q)), and a germ of a

vector field v on N such that (below ivd denotes the derivative along v):
{
φ = α ◦ (f, g) + ivdf

ψ = β ◦ g + ivdg.

R e ma r k. The corresponding infinitesimal stability criterion for the R+ group re-

quires the additional condition: the function α should be the function only in q variables.

The left-hand side in these formulas contains modules of composed functions β ◦ (f, g)
over the ring of germs of functions on the target space, which are not so easy to operate

with. The well known Mather-Martinet theorem [1] simplifies the analogical difficulty for

the case of right-left stability of smooth mappings. The infinitesimal stability criterion

happens to be equivalent to the contact versality of the extended deformation of the

corresponding graph mapping, which deals only with modules over the ring of functions

on the source space.

Describe now the generalisation of this classical theorem to the case of pair-mappings

(relating them to the singularities of the submanifold contact with non-complete flags

[12]).

To a pair-mapping (f, g) associate also the graph mapping

Gf,g : N → N ×R×Rm, G : x 7→ (x, f(x), g(x)) .

Consider the flag consisting of two subspaces K1 ⊃ K2,

K1 = N ×R × {0}; K2 = N × {0} × {0},
in the target space K0 = N ×R×Rm of the graph mapping. The shift diffeomorphism

S : K0 → K0, S : (x, f, g) 7→ (x, f − f(x0), g − g(x0)) of the pair-mapping graph sends

its distinguished point (x0, f(x0), g(x0)) to a point in K2.

Two pair-mapping germs will be called flag-contact equivalent, if, after corresponding

shifts of the distinguished points, the graph of one of them might be sent to the other by

a diffeomorphism Θ : K0 → K0 which preserve the flag Θ(K1) = K1,Θ(K2) = K2.

Obviously the Γ+-equivalent pair-germs are flag-contact equivalent: Θ = (θ0, θ1).

The classes of flag-contact orbits of the germs of the graphs form a stratification of

the space of germs of pair-mappings. The appearance of a given flag-contact class as the

generic singularity of pair-mapping depends on the codimension of this class in the space



CLASSIFICATION OF MINIMA SINGULARITIES 81

of pair-mapping germs with zero-value at the distinguished point (whether it exceeds n

or not). Just this codimension is considered below.

For a graph-mapping Gf,g define its shift-deformation Gf,g(λ) with m + 1 additive

parameters λ0, λ = (λ1, . . . , λm) as follows:

Gf,g(λ) : (x, λ) 7→ (x, f(x) + λ0, g(x) + λ).

The flag-contact equivalence is J. Damon’s ([4]) geometrical subgroup of A-equiva-

lencies of graph mappings, and the natural notion of flag contact versality of a deforma-

tion is equivalent to the corresponding infinitesimal versality. For shift-deformation this

infinitesimal versality has the following form.

Denote by CN the ring of germs at the origin of the function on N , and by Ig the ideal

in CN , generated by the components of the mapping g. Denote by P the CN -module of

pair-germs at the origin, and by Kf,g submodule of P formed by pair-germs (ϕ̃, ψ̃), whose

ψ̃-components belong to Ig and whose ϕ̃-component belongs to the ideal If,g, generated

by the components of pair-mapping.

Let Wf,g be a submodule of P , formed by the pair-mappings of the form ivd(f, g),

where v is the germ at the origin of a vector field on N . Let, finally, Dg be a submodule

of Kf,g formed by the pair-mapping germs, whose all components belong to Ig.

Proposition 2. The germ of the deformation Gf,g(λ) is flag-contact infinitesimally

versal if and only if for any germ of the pair-mapping

(ϕ, ψ) : (N, 0)→ R×Rm+1, α : x 7→ (α1, a)

there exists a pair-germ (ϕ̃, ψ̃), whose ψ̃-components belong to Ig and whose ϕ̃-component

belongs to the ideal If,g, generated by the components of pair-mapping, there exist a germ

of a vector field v on N and a set of constants a0, a = (a1, . . . , am) such that
{
φ = φ̃+ ivdf + a0

ψ = ψ̃ + ivdg + a.

In other words, the factor module P/{Kf,g + Wf,g} is generated over R by constant

mappings.

The versal shift-deformation will be called strictly versal if the ideal If,g in the previous

proposition might be substituted by the sum of Ig and a R-module generated by certain

finite collection of powers of the function f . This is equivalent to the additional claim

that some power of f belongs to the ideal Ig.

Proposition 3.

(i) If a germ (multigerm) of the pair-mapping is Γ+-stable then its shift-deformation

is versal (with respect to flag-contact equivalences).

(ii) The strict infinitesimal versality of shift-deformation Gf,g(λ) implies Γ+-stability

of the germ (f, g).

P r o o f. The first statement is evident, since the infinitesimal Γ+-stability implies in-

finitesimal shift-versality. To prove the second part, consider the CN -module A = P/Wf,g.

The strict infinitesimal versality of G implies that the factor module A/IgA is generated
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over R by the constants in each row and a finite set of powers of f in the first one. Ac-

cording to the Malgrange preparation theorem module A is a finitely generated module

over the ring CM of germs of composed functions y◦g with the same system of generators.

Thus for every pair (ϕ, ψ) there exists a decomposition
{
ϕ = ϕ0(g) + . . .+ ϕk(g)fk + ivdf

ψ = ψ̃(g) + ivdg,

with certain germs of functions ϕi defined on and a mapping ψ̃ : M, 0 → M, 0. This

decomposition coincides with that of the Γ+-stability criterion.

Let the constraint mapping germ (g, 0) have rank r. By choosing appropriate local

coordinates x, y on N, 0, x ∈ Rn−r, y ∈ Rr and z, u on M, 0, z ∈ Rm−r, u ∈ Rr, the

mapping takes the form g : (x, y) 7→ (z(x, y), u), where u = y and the components zi(x, 0)

belong to the square of the maximal ideal of the ring Cx of germs at the origin of functions

in x.

The mapping germ z : Rn−r → Rm−r, z : x 7→ z(x, 0) is called the genotype of the

mapping germ g. Right-left stable mapping germs are classified by the contact classes of

their genotypes.

The genotype of a pair-mapping germ (f, g) is a pair-mapping germ (w, z) : Rn−r →
R×Rm−r, where z is the genotype of the constraint mapping germ and function w(x) =

f(x, y)|y=0. Define ξi(x) = ∂f
∂yi

|y=0 and χi(y) = ∂g
∂yi

|y=0. The pair-mapping germ (f, g) is

called geno-versal if for any germ of the pair-mapping

(ϕ, ψ) : (Rn−r, 0)→ R×Rm−r

there exist:

— a pair-germ (ϕ̃, ψ̃), whose ψ̃-components belong to Iz, generated by the components

of the genotype of the constraint mapping, and ϕ̃-component belongs to the ideal Iw,z,

generated by the components of the pair-mapping genotype,

— a germ of a vector field v on Rn−r and a set of constants a0, a = (a1, . . . , am), bj ,

j = 1, . . . , r, such that
{
ϕ = ϕ̃+ ivdf + a0 + ξ1b1 + . . .+ ξrbr
ψ = ψ̃ + ivdg + a+ χ1b1 + . . .+ χrbr.

The geno-versal pair-germ will be called strictly geno-versal if certain power of w

belongs to the ideal Iz +Ww.

Malgrange’s preparation theorem and the above infinitesimal stability criteria imply

Proposition 4.

(i) If the germ of pair-mapping is Γ+-stable then it is geno-versal.

(ii) If (f, g) is strictly geno-versal then it is Γ+-stable.

R e ma r k s.

1. The R+-stability is equivalent to Γ+-stability with the additional condition on the

above decomposition: ϕ̃ ∈ Iz .
2. If the pair-germ (f, g) is weighted homogeneous then w ∈ J and geno-versality

implies strict geno-versality and even R+-geno-versality.
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3. A Γ+-stable pair-germ (f, g) with given genotype (w, z) is Γ+-equivalent to a stan-

dard versal unfolding (F,G) of the genotype, which is affine in y-variables and is defined

as follows

F (x, y) = w(x) + ξ1(x)y1 + . . .+ hξr(x)yr,

G(x, y) =

(
z(x) + χ1y1 + . . .+ χryr

y

)

where pair-mappings (ξi, χi), i = 1, . . . , r, pair-mappings of the form (wj , 0), j = 1, 2, . . .

and constant mappings form a system (may be not minimal) of generators of the factor

module Px/(Ww,z +Dz).

4. Flag-contact simple pairs. The stable pair-germ is called simple with respect

to certain equivalence group (for example, Γ+ or flag-contact) if it has a representative,

whose germs at all nearby points belong to a finite number of equivalence classes. Since

Γ+-equivalence of two pair-germs implies flag-contact equivalence of them, a Γ+-simple

germ is flag-contact simple as well. This means that some neighbourhood of its genotype

in the space of germs of pair-mappings (w, z) with zero values contains only finitely many

different flag-contact orbits.

The set of dimensions n,m will be called nice if pair-mappings whose germs at any

point are simple (and hence stable with respect to a distinguished equivalence) form an

open and dense subset in the space of pair-mappings of manifolds of these dimensions.

Again, Γ+-nice dimensions are nice for flag-contact equivalence. The spaces of geno-

types of all possible dimensions r ≤ m split into finite number of flag-contact orbits and a

subset of codimension greater than n in the germ space of pair-mapping with zero values.

In the following two sections we list all flag-contact simple germs. They happen to be

weighted homogeneous. Hence (according to Remark 2 above) they are R+-simple. Thus

the sets of Γ+-, R+- and flag-contact simple germs coincide. The same is true for the

corresponding sets of nice dimensions.

Note that the list of flag-contact simple germs coincides (in complex category) with

the list of Goryunov [8], [2] of simple functions on the complete intersections. Though

the equivalence group are slightly different, this coincidence is also due to weighted ho-

mogeneity of the simple classes.

We are interested in the real classification and describe the list in full details.

Flag-contact equivalent pair-genotypes have contact equivalent genotypes of con-

straint mapping. Thus considering the well known [7] list of simple mapping germs (with

respect to contact equivalence) and classifying for each of them the orbits of flag-contact

equivalences which preserve this constraint germ z and act on the space of germs func-

tions w, one gets all candidates for simple pair-genotypes.

The following evident observations will be useful in the sequel:

1. The summation of w with the function from Iz does not change the flag-contact

orbit of the pair. Really, such transformation corresponds to a shift diffeomorphism of

the graph space K0 which preserves the flag K2 ⊂ K1 ⊂ K0.
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2. The tangent space STz(w) to the orbit in the space of germs of w of the sub-

group SFz of flag-contact equivalences which preserve given germ z is easy to calculate:

STz(w) = Iz + Uz(w), where Uz(w) is a Cx-module of the derivatives of w along vector

fields v such that ivdzj ∈ Iz for all the components zj of z. Denote by SVz the module

of these vector fields.

3. A genotype (w, z) (which is a germ at some point P of a reduced pair-mapping)

will be called minimal if the restriction of the function w to the zero-level set of the

constraint mapping z has minimum at this point P .

Evidently, only collections of minimal genotypes form multigerms corresponding to

singularities of relative minima function.

5. Classification, case n = m

0. If rank of g is m, all pairs (f, g) are obviously equivalent to (0, x), x ∈ Rm.

1. If rank of g is m − 1, the genotype is a pair of germs at the origin of functions

(w(x), z(x)) in one variable. This space splits into the following set of flag-contact orbits

Bk,s : w = ±xs, z = xk, k ≥ 2, k ≥ s.

For odd s or for s = k, classes corresponding to ± are equivalent. The codimension of

the Bk,s orbit equals k+ s− 2 in the space of germs at the origin of two functions in one

variable.

2. If corank of g is two then the genotype of g is a set of two functions g1, g2 in two

variables (denote them x, y) with zero 1-jet.

The contact classification of two-jets of g1, g2 is the following (see also [7]):

4 I2,2,+ : x2, y2 I2,2,− : x2 − y2, xy

5 I2,∗ : x2, xy

OOiiS
S

S

S

S

S

S

S

S

S

S

S

S

S

6 J2,∗,+ : x2 + y2, 0

OO

J2,∗,− : xy, 0

OO

7 J∗,+ : x2, 0

OOiiS
S

S

S

S

S

S

S

S

S

S

S

S

S

10 X : 0, 0

OO

The codimensions of the classes in the space of two-jets with zero values at the origin

compose the left column.

Two-jets I2,2,± are sufficient.
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Proposition 5. All pairs (w, z) with z ∈ I2,2,± are simple. They are equivalent to

pairs with one of the following functions w:

— for z ∈ I2,2,+:

X+
4 : x+ y; X+

5 : x; X+
6 : xy; X+

7 : 0,

X+
4 ←− X+

5 ←− X+
6 ←− X+

7 ,

— for z ∈ I2,2,−:

X−

4 : x; X−

6 : ±(x2 + y2); X−

7 : 0,

X−

4 ←− X−

6 ←− X−

7 .

P r o o f. For z ∈ I2,2,+ consider the factor-module Qz = Cx/Iz = R{1, x, y, xy} and

denote by [w] the class in Qz of w. We have SVz = Cx

{
x ∂

∂x
; y ∂

∂y

}
. If j1[w] = ax+by and

both coefficients a, b are not zero then STz(w) coincides with the whole maximal ideal

in Cx. Remind that (due to the definition of flag-contact group) we consider only orbits

of w germs with w(0) = 0. So, the germs with a 6= 0, b 6= 0 form one orbit X+
4 .

The orbit X+
5 contains all w such that only one of the coefficients a, b vanishes.

If j1[w] = 0 but j2[w] 6= 0 then w ∈ X+
6 . The germs w ∈ Iz form the orbit X+

7 .

The case z ∈ I2,2,− is treated similarly.

Germs with two-jets from class I2,∗ split into a series of (simple) contact orbits I2,k :

x2 ± yk, xy, k ≥ 3. (For odd k signs ± correspond to the same orbit.)

Proposition 6. All pairs (f, g) with g ∈ I2,3 are simple. They are equivalent to pairs

with one of the following functions f :

Y5 : y; Z6 : x; Z7 : y2; Z8 : y3; Z9 : 0,

Y5 ←− Z6 ←− Z7 ←− Z8 ←− Z9.

P r o o f. For z ∈ I2,3 the factor-module Qz = Cx/Iz is generated over R by classes

of 1, y, x, y2, y3. The weights 1
2 and 1

3 of x and y define weighted gradings on Qz and

SVz = Cx

{
x ∂

∂x
+ y ∂

∂y
;−2y2 ∂

∂x
+ 3x ∂

∂y

}
. If the lowest degree of non-zero terms in [w]

is α then the space STz(w) ⊂ Qz contains all germs of degree ≥ α. This proves the

proposition.

Proposition 7. Pairs with z ∈ I2,k for k ≥ 4 are simple if and only if the linear form

of w is non-degenerate (∂w
∂y
6= 0). If so, then the pair is equivalent to the normal form

Y2,k : f = y, g = (x2± yk, xy). If not, then the germ is adjacent to the lowest non-simple

class, which has codimension 7 and consists of pairs w = x+ay2, z = (x2±y4, xy) ∈ I2,4,

a ∈ R.

P r o o f. Weights 1
2 and 1

k
of x and y define a grading on Qz for z ∈ I2,k. The

lowest non-zero term of it is the class of [y]. Since the ∂
∂y

-components of vector fields

from SVz = Cx

{
x ∂

∂x
+ y ∂

∂y
;−2yk−1 ∂

∂x
+ kx ∂

∂y

}
form total space Cx, all w germs with

non-zero y terms are equivalent.

If k = 4 there exists a two-dimensional subspace W 1

2

of Qz of degree 1
2 generated by

x, y2. Consider the germ w with zero coefficient of lower degree term [y]. The intersection
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of STz(w) with W 1

2

is at most one-dimensional, since there is only one (up to the multi-

plication by a constant) vector field of degree 0—the Euler vector field. Thus, W 1

2

splits

into a one-parameter family of orbits, which, therefore, fail to be simple. The genotypes

with z ∈ I2,k, k > 4, ∂w
∂y

= 0 are adjacent to this non-simple class.

Proposition 8. Pairs with two-jet of g from the class J2,k are non-simple. They are

adjacent to non-simple classes with constraint mapping g equivalent to (xy, x3 + y3) or

to (x2 + y2, x3 + y3). The codimension of the latter classes equals 6.

P r o o f. The stationary algebras SVz in these cases contain only one (Eulerian) vec-

tor field of homogeneous degree 0, while the space of 1-jets of classes from QZ is two-

dimensional. Thus, 1-jets of w are not simple.

3. There are no simple genotypes with rank of g less than m− 2. Even there are no

contact simple germs of such mappings g ([7]). Each of them is adjacent to the germ

with genotype whose 2-jet is a collection of three quadratic forms in three variables. The

dimension of this space is 18, the contact equivalences acts on two-jets by the product of

linear groups in the source and the target of the dimensions 9 + 9. Since the stationary

subgroup of every such 2-jet is at least 1-dimensional (it contains products of homoge-

neous scalings by λ and λ−1 in the source and the target), the space of orbits is not

discrete.

R e ma r k s.

1. All simple and also “fencing” non-simple genotypes which we have classified in this

section are minimal. In each case the zero-level set of z consist only of one point—the

origin.

2. The graphs of minima functions for fencing non-simple classes are non-simple. The

values of moduli have simple geometrical meaning.

6. Classification, case n > m

0. If g has full rank (equal to m) then the flag-contact classification of corresponding

pairs transforms into that of contact orbit of genotypes of f , being the functions on n−m
variables. Thus, the list of simple classes is standard A, D, E list. If n−m ≥ 3, the first

non-simple class (corresponding to parabolic singularity P8) has codimension 6. However,

the germs of this class have no minimum at the origin. The lowest codimension of the

non-simple class with non-empty relative minima function germ is 7 and is achieved on

the stratum of the parabolic singularity X9 of functions in two variables. It represents

the lowest codimension of the non-simple class for n −m = 2. If n −m = 1 all (except

the subset of infinite codimension) germs belong to simple classes Ak.

1. If the corank of g is 1, the genotype is a pair of functions (w, z) in s = n−m+ 1

variables.

If s > 2, all such pairs with zero linear part of w are non-simple. Really, they are

adjacent to genotype with s = 3. Consider the 12-dimensional space of two-jets of them.

The flag-contact action on this space coincides with the action of the product of the linear

group of the source space (of dimension 9) and the three-dimensional triangle subgroup
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of the linear group in the target. Since the stationary subgroup for any genotype contains

opposite scalings in source and target, the orbit space is not discrete. The codimension

of this set of non-simple pairs is 6. Its stratum of this codimension is formed by one-

parameter families of orbits Ze
6 : w = ±x2

1 + βx2
2, z = x2

1 + x2
2 + x2

3 and Zh
6 : w = x2

1 + γx2
2,

z = x1x2 + x2
3, β, γ ∈ R. Note that these genotypes are minimal (for all β and γ ≥ 0).

Consider then the case when w has a non-trivial linear part. Reduce w to the form

w = x1 by an appropriate change of the variables in the source space.

Proposition 9. Any simple genotype of this type is flag-contact equivalent to the

genotype (x1, z), where the germ of z is one of the following list (which corresponds to

the list of simple boundary singularities):

Bk : xk
1 ± x2

2± . . .± x2
s; Ck : x1x2 + xk−1

2 ± x2
3± . . .± x2

s; F4 : x2
1 + x3

2± x2
3 ± . . .± x2

s.

The codimension of these classes equals k + s− 2.

R e ma r k. The codimension of the first non-simple class of orbits (corresponding to

boundary singularity F ∗
5 : z = x2

1 ± x4
2) equals 5. For sign + this genotype is minimal.

P r o o f. Having reduced the w-germ to normal form, we normalise now z by the

equivalences which preserve w. The tangent space at z to the orbit of such subgroup is

the set Tz of the functions φz+ivdz with arbitrary φ and with vector field v satisfying the

condition ivdx1 ∈ Cx{z, x1}. Thus the space Th coincides completely with the tangent

space to the orbit of the germ h with respect to the (right) changes of variables x which

preserve the hyperplane x1 = 0, and multiplications of h by arbitrary non-zero function.

Hence, the flag-contact orbits coincide exactly in this case with the contact classes of

boundary singularities [1], [2] and the result follows.

R e ma r k. Only genotypes Bk : xk
1 − x2

2 − . . .− x2
s are minimal. The relative minima

functions of the stable germ with these genotypes do not depend of numbers of variables

of its quadratic part. When s = 1 (that is, n = m), we get the relative minima function

of genotype Bk,1.

This coincidence provides certain stabilisation of Bk singularities in the lists of simple

classes with growing up difference n−m.

In the remaining case, when s = 2 and one-jet of f vanishes, denote by (x, y) the

coordinates in the source space of genotype R2.

Proposition 10. All simple genotypes (w(x, y), z(x, y)) with s = 2 and j1w = 0 are

the following:

C−

k,l : z = xy, w = xk ± yl, k, l ≥ 2;

C+
k,k : z = x2 + y2, w = xk, k ≥ 2;

F2k+1 : z = x2 + y3, w = ±yk, k ≥ 2;

F2k+2 : z = x2 + y3, w = xyk, k ≥ 1.

R e ma r k s.

1. For odd k, l signs ± correspond to equivalent classes. The codimensions of C−

k,l is

k + l, that of C+
k is 2k and the codimension of Fi is i− 1.
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2. Among these genotypes only

C−

2k,2l : z = xy, w = x2k + y2l, k, l ≥ 1;

C+
k,k : z = x2 + y2, w = xk, k ≥ 2;

F4k+3 : z = x2 + y3, w = −y2k+1, k ≥ 1;

F4k+1 : z = x2 + y3, w = y2k, k ≥ 1

are minimal.

P r o o f. The adjacency diagram of contact classes of functions z starts by the sequence

A±

1 ←− A2 ←− A±

3 . . . , where

A−

1 : xy; A+
1 : x2 + y2; A2 : x2 + y3; A±

3 : x2 ± y4; . . . .

The stationary algebra of z ∈ A−

1 is generated over Cx,y by two vector fields: e0 =

x ∂
∂x

+ y ∂
∂y

and e1 = x ∂
∂x
− y ∂

∂y
. Subtraction from function w a germ u ∈ Iz does

not change the flag-contact class of the pair. Thus we may assume z to have the form

z = f1(x) + f2(y) without any term divisible by xy. The lowest degrees k, l of x and y

with non-zero coefficients in Taylor series for these two functions determine the orbit.

Really the tangent space to the Sth-subgroup at f̃ contains ie0
df̃ and ie1

df̃ and therefore

contains monomials xk and yl. This proves the first line of the list.

The remaining cases are studied analogically. The non-simple class of lowest codimen-

sion (= 6) consists of pair-genotypes with z ∈ A3, j
1w = 0 and is adjacent to non-simple

class F ∗
5 .

2. There are no simple genotypes if the corank of g is 2 or more. Really, all such

genotypes (which form a subset of codimension 2(n −m + 2) ≥ 6) are adjacent to the

genotype of corank 2, which consists of a germ of a function f in three variables and of

germs of two components g1, g2 (without linear terms) of the constraint mapping g.

Denote by L the 15-dimensional space of two-jets of g1, g2 and one-jet of f . The

flag-contact equivalences induce the action on this space, which is the product of linear

transformations in the source (which form 9-dimensional group), and the linear trans-

formations in the target, which preserve the projection R3 → R2, (f, g1, g2) 7→ (g1, g2).

Since one-jets of gi vanish, the transformations in the targets acts on L as block-diagonal

matrices, forming the group of dimension 5. Thus the dimension of the group is less than

the dimension of the space and the orbits form continuous families of non-equivalent jets.

R e ma r k. The fencing non-simple minimal classes, enumerated in this section, also

produce non-simple relative minima function germs.

7. Proofs of Theorems 1–3. Theorems 1 and 2 are immediate consequences of the

transversality theorem and the classification of flag-contact minimal simple genotypes. As

it was already mentioned, the fencing non-simple (and minimal) flag-contact equivalence

classes produce non-simple singularities of relative minima function.

To prove Theorem 3, besides the classification of simple minimal orbits, we have

to describe normal forms of some non-simple flag-contact classes. Namely, there is one



CLASSIFICATION OF MINIMA SINGULARITIES 89

stratum (of codimension 5) of unimodal singularities F ∗
5 in the space of pair-mapping

germs (f, g) : R5, 0→ R×R4, 0.

Also there is a stratum Ze,h
6 of codimension 6 in the space of pair-mapping germs

(f, g) : R6, 0→ R×R4, 0.

Note that these singularities F ∗
5 , Ze,h

6 are weighted homogeneous, and therefore flag-

contact orbits coincide with R+- ones.

According to the transversality theorem, the pair-mappings with jet-extensions trans-

versal to these strata (but not to the orbits) are generic.

Consider such a pair-mapping (f, g) and corresponding adapted coordinates x, y on

Rn, 0, x ∈ Rn−r, y ∈ Rr and z, u on R4, 0, z ∈ Rm−r, u ∈ Rr, such that the constraint

mapping g takes the form g̃ : (x, y) 7→ (z(x, y), u) with u = y and the components zi(x, 0)

belong to the square of the maximal ideal of the ring Cx of germs at the origin of functions

in x. Here r is the rank of g.

The genotype (w, z) of the pair-mapping is defined up to the action of flag-contact

group. The jet-extension of pair-mapping in adapted coordinates (f̃ , g̃) rests, of course,

transversal to the stratum, which is one-parameter family of flag-contact orbits of geno-

types.

Associate to such a pair-mapping (f̃ , g̃) : Rn → R × Rm its suspension (f̆ , ğ) :

Rn ×R→ R×Rm ×R,

(f̆ , ğ) : (x, y, λ) 7→
(
f̃(x, y) + λξ(x), g̃(x, y) + χ(x)λ, y, λ

)
,

the jet-extension of which is transversal to flag-contact orbit of the genotype. Thus (f̆ , ğ) is

stable and is equivalent to standard versal deformation of the genotype. The equivalence

diffeomorphism of the target space might be taken in a special form (respecting the

adapted coordinates fibration):

θ2 : (z, u, λ) 7→ (Z(z, u, λ), U(u, λ)) .

Thus the initial pair is equivalent to the restriction of the standard versal deformation

of the genotype to hypersurface λ = 0. The equation of it in variables U might be

written in the form Uµ = ϕ(U1, . . . , Uµ−1), where U1, . . . , Uµ−1 are parameters on the

transversal to the stratum and Uµ is a parameter of versal deformation along the stratum

in transversal direction to the orbit. The function ϕ defines a functional modulus (with

respect to Γ+-equivalence) of the corresponding non-simple and non-stable normal form.
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