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Abstract. The aim of this paper is two-fold. First, a survey of the theory of Kronecker webs and
their relations with bihamiltonian structures and PDEs is presented. Second, a partial solution
to the problem of bisymplectic realization of a bihamiltonian structure is given. Both the goals
are achieved by means of the notion of a partial Nijenhuis operator, which is studied in detail.
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Introduction. A seminal paper of F. Magri [17] gave rise to a notion of a bihamiltonian
structure, i.e. a pair of compatible Poisson structures η1, η2 (here compatibility means that
ηλ = η1 +λη2 is a Poisson structure for any λ), which proved to be a very effective tool in
the study of integrable systems and has been developed by many authors. F. J. Turiel [25]
and I. M. Gelfand and I. Zakharevich [7], [9] initiated the investigation of the local
structure of pairs of compatible Poisson brackets. It turns out that there are two classes
of bihamiltonian structures of principally different nature (on the level of local geometry
as well as in applications to integrable systems). The bihamiltonian structures of first
class called Jordan (cf. Section 2) or bisymplectic consist of pairs η1, η2 such that in
the pencil {ηλ} almost all members are nondegenerate Poisson structures, i.e. inverse to
symplectic forms. On the contrary, in the pencils corresponding to the second class of
Kronecker bihamiltonian structures all the members are degenerate of the same rank.

It is worth mentioning that for both Jordan and Kronecker cases the classical Darboux
theorem fails: in general there is no local coordinate system in which η1, η2 simultaneously
have constant coefficients. In order to understand local behaviour of Kronecker bihamil-
tonian structures Gelfand and Zakharevich [8] proposed a procedure which reduces the
geometry of pairs of compatible Poisson brackets to the geometry of webs. Recall that a
classical web is a finite number of foliations in general position on a smooth manifold and
that the main question in the theory of webs is to describe obstructions to simultaneous
local straightening of these foliations, i.e. transforming them by a local diffeomorphism
to foliations of parallel plains. The reduction mentioned consists in a passage to a lo-
cal base B of the lagrangian foliation L =

⋂
λ Sλ, where Sλ is the symplectic foliation

of ηλ (the Kroneckerity of the pair η1, η2 guarantees that indeed the distribution
⋂
λ TSλ

has constant rank and, moreover, the leaves of L are lagrangian in Sλ). The induced
by {Sλ} one-parameter family of foliations {S ′λ} on B is called a Kronecker web. This
notion naturally generalizes the notion of a classical web and the problem of existing
of the “Darboux coordinates” for η1, η2 can be treated in spirit of the web theory as
the problem of simultaneous straightening of the foliations S ′λ. Moreover, Gelfand and
Zakharevich conjectured that the Kronecker web is a complete local invariant of a Kro-
necker bihamiltonian structure, that is, one can reconstruct η1, η2 from {S ′λ} up to a local
diffeomorphism. This conjecture was proved by Turiel [28], [30].

Later another side of Kronecker webs appeared in the literature: their relation with
nonlinear PDEs. First discovery was made by Zakharevich [35] who found a relation of
Veronese webs in 3 dimensions (special class of Kronecker webs) with a nonlinear second
order PDE called the dispersionless Hirota equation (originally called by Zakharevich
a nonlinear wave equation). The last was studied in [35] from the point of view of twistor
theory. Then M. Dunajski and W. Kryński [5] found relations of the Hirota equation with
the so-called hyper-CR Einstein–Weyl structures previously described by the hyper-CR
nonlinear PDE. Finally, B. Kruglikov and A. Panasyuk [12] built several series of contactly
nonequivalent PDEs whose solutions are in a 1–1-correspondence with Veronese webs and
which include the Hirota equation as a particular case.

This paper is intended as a survey of the above mentioned and related results. How-
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ever, there are two aspects which hopefully allow treating it partially as an independent
research article. First, we introduce in full generality the notion of a partial Nijenhuis
operator, which was outlined in [12] (similar notions appeared in the literature earlier,
see Remark 5.2), and use it as a convenient tool for defining and working with Kro-
necker webs, in particular in their relations with bihamiltonian structures and nonlinear
PDEs. Second, we apply the machinery of partial Nijenhuis operators to the problem
of local bisymplectic realizations of Kronecker bihamiltonian structures (see Section 9),
generalizing results of F. Petalidou [24].

Let us briefly discuss the notion of a partial Nijenhuis operator (PNO for short) and
the problem of local bisymplectic realizations. Recall that a Nijenhuis (1, 1)-tensor on
a smooth manifold M is a morphism of bundles N : TM → TM with the vanishing
(2, 1)-tensor TN , the so-called Nijenhuis torsion of N :

TN (x, y) := [Nx,Ny]−N([Nx, y] + [x,Ny]−N [x, y]) ≡ 0, x, y ∈ Γ(TM).

A PNO is a generalization of the above notion to the situation of a morphism of bundles
N : TF → TM , where F is a smooth foliation on M : the vector fields x, y in the formula
above are required to belong to TF (i.e. to be tangent to F) as well as the term in the
parentheses in the above formula, see Section 5.

The origins of the notion of a PNO lie in the theory of bihamiltonian structures.
Recall that given a pair of nondegenerate Poisson structures η1, η2 : T ∗M → TM , the
morphism η1 ◦ η−1

2 : TM → TM is a Nijenhuis (1, 1)-tensor if and only if the structures
are compatible. This fact shows that Nijenhuis (1, 1)-tensors are intimately related to
the theory of Jordan bihamiltonian structures. Moreover, roughly speaking, the local
classification of these last can be obtained from that of Nijenhuis tensors (see Remark 7.5).
An attempt to generalize these relations to the case of Kronecker bihamiltonian structures
naturally leads to PNOs. Note that many features of PNOs already manifest on the
algebraic level, i.e. when one considers instead of the Lie algebra of vector fields Γ(TM)
and its subalgebra Γ(TF) an abstract Lie algebra g and its subalgebra h. In this context
the notion of a PNO first appeared in [22].

Since the notion of a PNO is useful in study of the local structure of bihamiltonian
structures, it expectedly has also applications to the problem of local bisymplectic re-
alizations of a Kronecker bihamiltonian structure. More precisely this problem can be
formulated as follows. Let η1,2 be a Kronecker bihamiltonian structure on a small open
set U ⊂ Rn. Does there exist a manifold M with a Jordan bihamiltonian structure η̄1,2
and a surjective submersion p : M → U such that p∗η̄1,2 = η1,2? If such bisymplec-
tic realizations exist, how many nonequivalent ones are there? In this paper we give an
(affirmative) answer to the first question and a partial answer to the second one.

Let us overview the content of the paper. In Section 1 we discuss relations between
vanishing of the Nijenhuis torsion of linear operators and compatibility of Lie brackets.
We present some examples that motivate Definition 1.5 of a partial Nijenhuis operator
N : h→ g, where g is a Lie algebra and h ⊂ g is a Lie subalgebra.

Section 2 is devoted to the so-called Jordan–Kronecker decomposition theorem, a clas-
sical purely linear algebraic result on the normal form of a pair of linear operators. This
result is a base of the classification of bihamiltonian structures (cf. Jordan and Kronecker



180 A. PANASYUK

cases discussed above) and is also permanently used in the context of the pair of operators
N, I : h→ g, where I : h→ g is the canonical inclusion.

In Section 3 we study algebraic PNOs: we observe some important consequences
of the definition (Lemma 3.2), in particular, we prove that a PNO N induces a Lie
algebra structure [, ]N on h compatible with the initial one and that (N + λI)(h) is a
Lie subalgebra for any λ. We also formulate some sufficient or necessary and sufficient
conditions on a partial operator to be a PNO (Lemmas 3.3, 3.8, Remark 3.7), discuss
some sufficient conditions on the restriction of a Nijenhuis operator to a subalgebra to
be a PNO (Lemma 3.9). All these results are of independent interest, however their main
aim are geometric applications in further sections.

In Section 4 we recall the notions of a Lie algebroid and the related notion of linear
Poisson structure. This framework is very convenient for defining the geometric version
of PNOs and the construction of the canonical bihamiltonian structure related to a Kro-
necker web (cf. Section 7). We also discuss compatibility of Lie algebroid structures and
the corresponding linear Poisson structures.

The central notion of this article, a geometric PNO, appears in Section 5. We further
generalize some results of Section 3 to the geometric context. A new aspect with respect
to the purely algebraic situation is that a PNO N together with the induced Lie algebra
structure [, ]N on Γ(TF) form a Lie algebroid structure on TF , which, moreover, is
compatible with the canonical one (see Lemma 5.3 (4),(5)). The fact that the image of
N + λI is a subalgebra, i.e. is the tangent bundle to some foliation Fλ, indicates that
geometric PNOs are related to one-parameter families of foliations such as Veronese and
Kronecker webs.

These last are the main objects of Section 6. We first recall the definition of a Veronese
web which is a collection {Fλ}λ∈RP1 of foliations of corank 1 on a manifold M such that
the annihilating one-form (TxFλ)⊥ sweeps a Veronese curve in PT ∗xM for any x ∈ M .
We than show that there is a 1–1-correspondence between Veronese webs and PNOs
N : TF → TM of generic type with F∞ = F and TF0 = N TF (Theorem 6.2). Here the
genericity of type means that there is a sole Kronecker block in the Jordan–Kronecker
decomposition of the pair of operators Nx, Ix : TxF → TxM for any x ∈ M . Next we
naturally generalize this result to Kronecker webs and Kronecker PNOs, the last one
admitting more than one Kronecker block in the decomposition. In Remark 6.7 we touch
the problem of “integrability of Veronese curves of distributions” and its generalizations.
Example 6.8 presents an instance of a PNO such that the corresponding one-parameter
family {Fλ} of foliations is a Veronese web on an open dense set and has singularities
on the complement to it (the foliations become tangent to each other for any λ). The
corresponding pair of operators N, I has Kronecker or Jordan blocks depending on the
point. This example shows that a PNO is an appropriate notion generalizing Kronecker
webs in the context of study of their singularities.

In Section 7 we use the relations between Lie algebroids and linear Poisson structures
established in Section 4 to construct, given a PNO N : TF → TM , the canonical bi-
hamiltonian structure on T ∗F . We then specify this construction to two particular cases:
a Kronecker PNO and a Jordan PNO (i.e. a PNO with TF = TM , a Nijenhuis operator).
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In Section 8 we discuss in full generality relations {Kronecker webs} $$ee {Kronecker
bihamiltonian structures}, in particular the compositions of the passages $$ and
ee in different order. This includes the procedure ee of passing to the local

base of a bilagrangian foliation and reconstruction '' •ff of a bihamiltonian structure
from its Kronecker web up to a local diffeomorphism.

Section 9 is devoted to the above mentioned problem of the local bisymplectic real-
izations of Kronecker bihamiltonian structures. We show that this problem is reduced
to the following problem of “realization of a Kronecker PNO”: (1) given a Kronecker
PNO N : TF → TM does there exist a Nijenhuis operator N : TM → TM such that
N |TF = N? (2) how many locally nonequivalent ones are there? The answer to question
(1) is affirmative by a result of Turiel. This enables to give the positive answer to the
problem of existence of a bisymplectic realization for Kronecker bihamiltonian structure
(Theorem 9.1). The answer to question (2) is rather impossible in full generality in view
of great range of different nonequivalent Kronecker PNOs and Nijenhuis operators. How-
ever, in the next section we give an answer to this question in the particular case of
Kronecker PNOs of generic type in three dimensions thus solving the problem of local
bisymplectic realizations of 5-dimensional generic bihamiltonian structures.

More precisely, in Section 10 we prove that, given a Kronecker PNO N : TF → TM

of generic type (Veronese web) on a 3-dimensional manifold, in a neighbourhood of every
point p ∈M there exists an extension ofN to any of normal forms of a Nijenhuis operator,
necessarily cyclic. Such normal forms were obtained by Turiel and Grifone–Mehdi; they
are listed in Appendix. We conjecture that the same is true in any dimension: a Kronecker
PNO N : TF → TM of generic type can be extended to any normal form of a cyclic
Nijenhuis operator.

In Section 11 we apply a sufficient condition for the restriction N |TF of a Nijenhuis
operator N : TM → TM to be a PNO (Lemma 5.5) to the case M = R3, the foliation F
of rank 2 and N being the simplest Nijenhuis operator with constant distinct eigenvalues.
As a result we get a nonlinear second order PDE on the function f defining the foliation
F . This is the above mentioned dispersionless Hirota equation. We further prove that
any Veronese web in R3 defines a solution of this equation and, vice versa, any solution
defines a Veronese web. This provides a 1–1-correspondence between Veronese webs and
classes of solutions with respect to a natural equivalence relation.

Section 12 is devoted to generalizing these results to other types of Nijenhuis operators
in R3. More precisely, we get a series of pairwise contactly nonequivalent nonlinear second
order PDEs on a function f of three variables. For each of these equations we establish
a 1–1-correspondence between classes of their solutions and Veronese webs. A crucial
ingredient in this correspondence is the solution for the realization problem of a Veronese
web obtained in Section 10.

In Section 13 we discuss generalizations of the results of the two preceding sections
to higher dimensions. In particular, we establish a 1–1-correspondence between (classes
of) solutions of a certain system of nonlinear second order PDEs and certain Kronecker
webs in 4-dimensional case.

Finally, in Section 14 we make a short overview of related bibliography.
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Summarizing this introduction, for reader’s convenience we indicate the main new
results and approaches of the paper. Lemmas 3.3, 3.8, and 3.9, which study algebraic
PNOs are new, as well as Lemma 5.4, the geometric analogue of Lemma 3.8. Lemma
5.3, the geometric analogue of Lemma 3.3, is an amplification of [12, Lemma 2.4]. It
seems that a novelty is the use of the language of Lie algebroids and the corresponding
linear Poisson structures for constructing the canonical bihamiltonian structures related
to Kronecker webs, treated as specific PNOs, as well as the use of a PNO for describing
a Veronese web with singularities in Example 6.8. Theorem 9.1 about the existence of a
local bisymplectic realization of a Kronecker bihamiltonian structure and Corollary 10.4
defining all nonequivalent realizations of a generic Kronecker bihamiltonian structure in
5-D also are new. Finally, Theorem 13.1 describing a correspondence between Kronecker
webs in 4-D and classes of solutions of a certain system of PDEs is new.

Acknowledgements. The notion of partial Nijenhuis operator as well as the majority
of related results of this paper are based on [23] and are products of discussions with
Ilya Zakharevich, to whom the author would like to express his deep gratitude. The
problem of bisymplectic realization of a bihamiltonian structure was posed to the author
by Stanisław Zakrzewski shortly before this prominent mathematical physicist had passed
away. This paper is dedicated to his memory.

1. Nijenhuis operators and compatible Lie brackets
Definition 1.1. Let (g, [, ]) be a Lie algebra, N : g → g a linear operator. A bilinear
map TN : g× g→ g given by

TN (x, y) := [Nx,Ny]−N [x, y]N , x, y ∈ g,

where
[x, y]N := [Nx, y] + [x,Ny]−N [x, y],

is called the Nijenhuis torsion of the operator N . One calls N (algebraic) Nijenhuis if
TN ≡ 0.

This notion has its origin in the well known in differential geometry notion of the
Nijenhuis torsion of a (1, 1)-tensor Ñ : TM → TM on a smooth manifold M : if g is the
Lie algebra Γ(TM) of the vector fields on the manifold M with the usual commutator
bracket and N : g→ g is generated by the endomorphism Ñ of the tangent bundle TM ,
the definition above in fact defines a (2, 1)-tensor which coincides with the Nijenhuis
torsion tensor.
Lemma 1.2 ([11]). Let N : g→ g be a linear operator acting on a Lie algebra (g, [, ]).
(1) The bracket [, ]N is a Lie algebra bracket if and only if dTN = 0 (here we regard TN

as a 2-cochain on the Lie algebra (g, [, ]) with the coefficients in the adjoint module
and d stands for the corresponding coboundary operator).

(2) Assume dTN = 0. Then the Lie bracket [, ]N is automatically compatible with [, ],
i.e., λ1[, ] + λ2[, ]N is a Lie bracket for any λ1, λ2 ∈ K, here K is the ground field.
Pairs ([, ]1, [, ]2) of compatible (as in the lemma) Lie brackets on a vector space will be

called bi-Lie structures. The families of Lie brackets {[, ]λ}λ∈K2 , [, ]λ := λ1[, ]1+λ2[, ]2, λ :=



KRONECKER WEBS, NIJENHUIS OPERATORS, AND NONLINEAR PDES 183

(λ1, λ2), generated by bi-Lie structures ([, ]1, [, ]2) are called Lie pencils [1]. In particular,
any algebraic Nijenhuis operator on (g, [, ]) generates a bi-Lie structure on g, hence also
a bihamiltonian structure on g∗ (consisting of the corresponding Lie–Poisson structures).

The following two examples are essential in our further considerations.

Example 1.3. Let g = gl(n), A ∈ g be a fixed matrix, N := LA be the operator of left
multiplication by A. Then N is algebraic Nijenhuis, [x, y]N = xAy − yAx =: [x,A y] is a
Lie bracket, brackets [, ], [, ]N are compatible.

Example 1.4. Let h = so(n), A be a fixed symmetric matrix. Then [,A ] is a Lie bracket
on h compatible with [, ].

In the second example we constructed the bracket [,A ] “by analogy” with the first
example. It is natural to ask whether one can include this bracket into a framework similar
to that of Nijenhuis operators, i.e. whether [,A ] = [, ]N for some N . Note that for general
symmetric A and N = LA : gl(n)→ gl(n), we have Nso(n) 6⊂ so(n). However we observe
that [x, y]N = [x,A y] for any x, y ∈ so(n). In order to understand what happens, assume
for a moment that A is nondegenerate, i.e., N is invertible. Although Nso(n) 6⊂ so(n) the
subspace Nso(n) is a Lie subalgebra in gl(n). From this we conclude that N−1[Nx,Ny] ∈
so(n) for any x, y ∈ so(n), i.e. N−1[N ·, N ·] is a new Lie algebra bracket on so(n). On the
other hand, the fact that TN ≡ 0 on gl(n) implies that N−1[Nx,Ny] = [x, y]N = [x,A y],
x, y ∈ so(n), in particular, this new bracket is compatible with the standard one.

Let us codify these considerations in a way which allows N to be not invertible.

Definition 1.5. Let g be a Lie algebra and h ⊂ g a Lie subalgebra. We say that a pair
(h, N), where N : h→ g is a linear operator, is an (algebraic) partial Nijenhuis operator
on g (PNO for short) if the following two conditions hold:

(i) [x, y]N ∈ h for any x, y ∈ h;
(ii) TN (x, y) = 0 for any x, y ∈ h.

(Here [, ]N and TN are given by the same formulas as above; note that it follows from
condition (i) that the term N [x, y]N which appears in the definition of TN is correctly
defined.)

The examples above give the following two instances of PNOs: (1) let g = h = gl(n),
N = LA, then (h, N) is a PNO on g (which in fact is a Nijenhuis operator since h = g);
(2) let h = so(n), g = gl(n), N = LA|h, where A is a symmetric matrix. Then (h, N) is a
PNO on g.

In these examples, given a PNO (h, N) on a Lie algebra g, we obtained a bi-Lie
structure ([, ], [, ]N ) on h. It turns out that it is also true in general (see Lemma 3.2).
Vice versa, given a bi-Lie structure ([, ], [, ]1) on a vector space h such that (h, [, ]) is a
semisimple Lie algebra, one can identify h with h̃ = ad(h) ⊂ End(h) and define N : h̃→
End(h) by N := ad1 ◦ ad−1, where ad, ad1 : h → End(h) are the corresponding adjoint
representations. Then N is a PNO; this fact was helpful in an approach to the problem
of classification of bi-Lie structures ([, ], [, ]1) on semisimple Lie algebras (h, [, ]) [22].

In order to study PNOs and their relations to bihamiltonian structures and Kronecker
webs we recall a classical result on normal forms of a pair of linear operators.
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2. The Jordan–Kronecker decomposition of a pair of linear operators

Theorem 2.1 ([6]). Consider a pair of operators S1, S2 : V → W between finite-dimen-
sional vector spaces over C. Then there are direct decompositions V =

⊕n
m=1 Vm, W =⊕n

m=1Wm, S1 =
⊕n

m=1 S1,m, S2 =
⊕n

m=1 S2,m, where Sj,m : Vm → Wm, j = 1, 2,
m = 1, . . . , n, such that each 4-tuple (S1,m, S2,m, Vm,Wm) is from the following list:

(1) [the Jordan block jλ(jm)]: dimVm = dimWm = jm and in an appropriate bases of
Vm and Wm the matrix of S1,m is equal to Ijm (the unity jm × jm-matrix) and the
matrix of S2,m is equal to Jλjm (the Jordan jm × jm-block with the eigenvalue λ);

(2) [the Jordan block j∞(jm)]: dimVm = dimWm = jm and in an appropriate bases of
Vm and Wm the matrix of S1,m is equal to J0

jm
and the matrix of S2,m is equal to Ijm ;

(3) [the Kronecker block k+(km)]: dimVm = km, dimWm = km+1 and in an appropriate
bases of Vm,Wm the matrices of S1,m, S2,m are equal to

1 0 . . . 0
0 1 . . . 0
0 0 . . . 0

. . .

0 0 . . . 1
0 0 . . . 0


,



0 0 . . . 0
1 0 . . . 0
0 1 . . . 0

. . .

0 0 . . . 0
0 0 . . . 1


,

respectively ((km + 1)× km-matrices);
(4) [the Kronecker block k−(km)]: dimVm = km+1, dimWm = km and in an appropriate

bases of Vm,Wm the matrices of S1,m, S2,m are equal to
1 0 0 . . . 0 0
0 1 0 . . . 0 0

. . .

0 0 0 . . . 1 0

 ,


0 1 0 . . . 0 0
0 0 1 . . . 0 0

. . .

0 0 0 . . . 0 1

 ,

respectively (km × (km + 1)-matrices).

Definition 2.2. The decomposition from the theorem above will be called the Jordan–
Kronecker (J–K for short) decomposition of the pair S1, S2. We will call the Kronecker
blocks k+(km) (k−(km)) increasing (respectively decreasing).

Definition 2.3. Consider the pencil of operators S• = {Sλ}, Sλ := λ1S1 + λ2S2, λ :=
(λ1, λ2), generated by the operators S1, S2 : V →W . The set ES• := {λ ∈ C2 | rankSλ <
maxµ rankSµ} will be called exceptional for S•.

It is clear from the theorem above that the exceptional set ES• is either {0} (Kronecker
case: the Jordan blocks are absent) or a finite union of lines in C2.

3. Partial Nijenhuis operators (algebraic version). In this section we consider
vector spaces defined over a field K equal to R or C. We study elementary properties of
PNOs.
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Definition 3.1. Let W be a vector space, V ⊂W its subspace, and S : V →W a linear
operator. We say that a pair (V, S) is a partial operator on W . The subspace V is called
the domain of S.

Recall that algebraic PNOs were introduced in Definition 1.5.
Lemma 3.2 ([22, Lemma 5.3]). If (h, N) is a PNO on g, then:
(1) Nh is a Lie subalgebra in g;
(2) (h, Nλ), Nλ := λ1I+λ2N , is a partial Nijenhuis operator on g for any λ := (λ1, λ2) ∈

K2, here I : h→ g is the natural embedding;
(3) Nλh is a Lie subalgebra in g for any λ;
(4) [, ]Nλ is a Lie algebra structure on h and Nλ : h → g is a homomorphism between

Lie algebras (h, [, ]Nλ) and (g, [, ]);
(5) the Lie bracket [, ]N is compatible with the Lie bracket [, ] (see Lemma 1.2 for the

definition).
Proof. Indeed, (1) is obvious. Item (2) is due to the equality [, ]λ1I+λ2N = λ1[, ] + λ2[, ]N
and to the equality Tλ1I+λ2N = λ2

2TN . Item (3) follows from (1) and (2).
Now items (4) and (5) follow easily from the equality [x, y]λ1I+λ2N = (λ1I + λ2N)−1

[(λ1I + λ2N)x, (I + λ2N)y], which makes sense for (λ1, λ2) 6∈ ES• (see Definition 2.3),
where S• is the pencil of operators generated by I,N .

In the following lemma we give some sufficient conditions for a partial operator (h, N)
on g to be a PNO.
Lemma 3.3. Let g be a Lie algebra and h ⊂ g be a Lie subalgebra. Let N : h → g be an
operator such that Nh is also a Lie subalgebra. Then, if there exist (ak, bk), k = 1, . . . ,K,
not proportional to (1, 0) and to (0, 1) such that hk := (akI + bkN)h is a Lie subalgebra
and

⋂K
k=1 hk = {0}, the pair (h, N) is a PNO.

Proof. For such (ak, bk), ak 6= 0; put ρk = bk/ak. By the assumption, for any x, y ∈ h

there exists s = s(x, y) ∈ h such that [Nx,Ny] = Ns(x, y). Thus
[x+ ρkNx, y + ρkNy] = [x, y] + ρk([Nx, y] + [x,Ny]) + ρ2

k[Nx,Ny]
= (I + ρkN)[x, y] + ρk[x, y]N + ρ2

kNs(x, y)
= (I + ρkN)([x, y] + ρks(x, y)) + ρk([x, y]N − s(x, y)).

Therefore [x, y]N−s(x, y) ∈ hk for any k (since hk is a subalgebra); hence [x, y]N−s(x, y) ∈⋂K
k=1 hk = {0} and [x, y]N = s(x, y) ∈ h.
Now TN (x, y) of Definition 1.1 is correctly defined and TN (x, y) = [Nx,Ny]−N [x, y]N

= Ns(x, y)−Ns(x, y) = 0.
Remark 3.4. The idea of this lemma and its proof is borrowed from [2, Theorem 4.1].
Remark 3.5. Note that the assumption of existence of (ak, bk), k = 1, . . . ,K, such that
hk are subalgebras and

⋂K
k=1 hk = {0} is a sufficient but not necessary condition for the

Nijenhuis property of N . Say, if N is a “usual” (i.e., h = g) nondiagonalizable1 Nijenhuis
operator, then this condition is not satisfied. Below we study for which cases the condition

1For instance, the operator of left multiplication by a nilpotent matrix on g = gl(n).
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mentioned is also necessary (see Remark 3.7) and give another necessary and sufficient
conditions for the Nijenhuis property of N in terms of the “affinization” g[α] of g.

Lemma-Definition 3.6. Let (V,N) be a partial operator on a finite-dimensional vector
space W over C and let I : V →W be the natural embedding. Consider the pencil {Nλ},
Nλ := λ1I + λ2N , λ := (λ1, λ2), generated by the operators I,N . Then

(1) The subspace VJ :=
⋂
λ∈C2\EN• imNλ lies in V and is invariant with respect to N

(the operator NJ := N |VJ will be called the Jordan part of (V,N)).
(2) the intersection

⋂
λ∈C2\{(0,0)} imNλ ⊂ VJ , is equal to the zero subspace if and only

if the Jordan part NJ is diagonalizable.

Proof. Since I is injective, there are no decreasing Kronecker blocks in the corresponding
J–K decomposition (see Theorem 2.1). The rest of the proof is an easy consequence of
the structure of this decomposition.

Remark 3.7. Now we see that the sufficient condition of “existence of (ak, bk), k =
1, . . . ,K, such that hk are subalgebras and

⋂K
k=1 hk = {0}” from Lemma 3.3 is necessary

for the Nijenhuis property of the partial operator (h, N) on g if and only if the Jordan
part NJ is diagonalizable.

Lemma 3.8. Let g be a Lie algebra and h ⊂ g be a Lie subalgebra. We write g[α] for
the Lie algebra of polynomials with coefficients from g with the natural Lie bracket. Then
a partial operator (h, N) on g is a PNO if and only if the image of the operator N ′ :=
(I + αN)|h+αh : (h + αh)→ g[α] is a Lie subalgebra.

Proof. Indeed, imN ′ is a Lie subalgebra if and only if for any x, y ∈ h there exists
u = u0 + αu1 ∈ h + αh such that [x + αNx, y + αNy] = u + αNu. The left hand side
of this equality is equal to [x, y] + α([Nx, y] + [y,Nx]) + α2[Nx,Ny]. Comparing the
coefficients of different powers of α in the equality above we conclude that imN ′ is a Lie
subalgebra if and only if u0 = [x, y], Nu1 = [Nx,Ny] and u1 +Nu0 = [Nx, y] + [y,Nx].
The last three equalities are equivalent to conditions (i), (ii) of Definition 1.5.

We conclude this section by studying relations between partial Nijenhuis operators
and Nijenhuis operators.

Lemma 3.9. Let g be a Lie algebra, h ⊂ g a Lie subalgebra, and N : g → g a Nijenhuis
operator (see Definition 1.1). Assume that for some λ ∈ K the following two conditions
hold: (1) k := (N + λ Idg)h is a Lie subalgebra; (2) (N + λ Idg)−1(k) = h (for instance,
this condition holds if −λ is not an eigenvalue of N).

Then (h, N |h) is a partial Nijenhuis operator on g.

Proof. Put N ′ := N + λ Idg. Due to the condition TN ′ = TN ≡ 0, for any x, y ∈ h we
have N ′[x, y]N ′ = [N ′x,N ′y], the last expression being an element of k by assumption (1).
Hence, [x, y]N ′ = [x, y]N + λ[x, y] ∈ h by assumption (2) and also [x, y]N ∈ h. On the
other hand, obviously TN ≡ 0 =⇒ TN |h ≡ 0.

A natural question occurs: is it true that any partial Nijenhuis operator (h, N) on g

with h  g can be extended to a Nijenhuis operator on g? We will come back to this
question in Section 5.
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4. Lie algebroids and linear Poisson structures. In this section we recall some
notions related to Lie algebroids and linear Poisson structures, which will be used for
defining the geometric version of PNOs and establishing their connections with bihamil-
tonian structures.

Definition 4.1. A Lie algebroid is a vector bundle E → M endowed with a bundle
morphism (called anchor) ρ : E → TM and a Lie algebra structure [, ]E on the space of
sections Γ(E) satisfying

(i) The induced mapping ρ : Γ(E)→ Γ(TM) is a Lie algebra homomorphism (the space
of vector fields Γ(TM) is endowed with the standard bracket; we use the same letter
for the morphism of bundles and the morphism of spaces of sections).

(ii) [x, fy]E = f [x, y]E + (ρ(x)f)y for any x, y ∈ Γ(E), f ∈ Fun(M) (here Fun(M)
denotes the space of functions on M in the corresponding category).

Example 4.2. If M = {∗}, then ρ is trivial, Fun(M) = K (the corresponding ground
field), Γ(E) = E = g is a Lie algebra.

Example 4.3. Let E = TM , [, ]E be the commutator of vector fields, ρ = Id. We say
that E is the tangent Lie algebroid on M .

Example 4.4. Let F be a foliation on M . Put E = TF (the space of elements of TM
tangent to F), ρ = I : E → TM for the natural inclusion, [, ]E for the commutator of
vector fields tangent to F . We will call this Lie algebroid structure canonical.

Given a Lie algebroid (E, ρ, [, ]E), one can build a Poisson structure on E∗ which
will be linear in fibres, i.e., the Poisson bracket {, } of two sections of E interpreted as
(fibrewise) linear functions on E∗ will be a linear function on E∗ (see [3]). If x1, . . . , xn are
local coordinates on M and e1, . . . , er local basis of sections of E and the corresponding
structure functions are defined by

ρ(ei) = bij
∂

∂xj
, [ek, el]E = cmklem,

then the linear Poisson bracket on E∗ is defined as

{xi, xj} = 0, {ξk, ξl} = cmklξm, {ξi, xj} = −bij . (4.1)

Globally, we have the following properties [18]:

(1) {X,Y } = [X,Y ]E (here X stands for the linear function on E∗ corresponding to
X ∈ Γ(E));

(2) {X, q∗f} = q∗(ρ(X)f) (here q denotes the projection E∗ →M);
(3) {q∗f, q∗g} = 0.

Formulas (4.1) show that these properties completely characterize the Poisson bracket;
in other words, the Poisson bracket is completely characterized by its values on linear
and base functions.

One can show that in fact the notions of a Lie algebroid on E and of a linear Poisson
structure on E∗ are equivalent, i.e. they uniquely determine each other.

In the context of Examples 4.2–4.4 the corresponding linear Poisson structure on E∗
is, respectively:
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(1) the Lie–Poisson structure on g∗;
(2) the canonical nondegenerate Poisson structure ηT∗M on T ∗M ;
(3) the canonical Poisson structure ηT∗F on T ∗F (which is degenerate if dimension of

leaves of F is strictly less than dimension of M); recall that T ∗F is fibred into
symplectic manifolds T ∗L, where L runs over leaves of F .

Remark 4.5. Note that the Poisson structure ηT∗F is completely determined by the
anchor I : TF → TM and the canonical Poisson structure ηT∗M ; more precisely,
ηT∗F = It∗ηT∗M , where It : T ∗M → T ∗F is the transposed map to I understood as
a smooth surjective submersion. Indeed, first notice that for any X ∈ Γ(TF) we have
the following equality of linear functions on T ∗M : IX = (It)∗X, where (It)∗ stands for
the pullback. Denote the Poisson brackets corresponding to ηT∗F and ηT∗M by {, }′ and
{, } correspondingly and write σ : T ∗F → M and π : T ∗M → M for the canonical
projections. Then for any X,Y ∈ Γ(TF) and any functions f, g on M

(It)∗{X,Y }′ = (It)∗[X,Y ] = I[X,Y ] = {IX, IY } = {(It)∗X, (It)∗Y }
(It)∗{X,σ∗f}′ = (It)∗σ∗(IXf) = π∗(IXf) = {IX, π∗f} = {(It)∗X, (It)∗σ∗f}

(It)∗{σ∗f, σ∗g}′ = 0 = {π∗f, π∗g} = {(It)∗σ∗f, (It)∗σ∗g},
which proves the claim (cf. properties (1)–(3) above).

Definition 4.6. Let E → M be a vector bundle with two Lie algebroid structures
([, ]1, ρ1) and ([, ]2, ρ2). They are called compatible if (λ1[, ]1 + λ2[, ]2, λ1ρ1 + λ2ρ2) is a
Lie algebroid structure for any constants λ1, λ2. Given two compatible Lie algebroid
structures ([, ]1, ρ1) and ([, ]2, ρ2) on E, the family {(λ1[, ]1 + λ2[, ]2, λ1ρ1 + λ2ρ2)} is a
pencil of Lie algebroid structures on E.

Lemma 4.7. Let E →M be a vector bundle with two compatible Lie algebroid structures
([, ]1, ρ1) and ([, ]2, ρ2). Then the corresponding linear Poisson structures on the total
space of E∗ are also compatible.

Proof. The proof easily follows from the definition of compatible algebroids and properties
(1)–(3) which completely characterize the linear Poisson structure.

One can also proceed in the other direction:

Example 4.8. Let E = T ∗M . Assume Si : E → TM , i = 1, 2, are two compatible
Poisson structures onM . Put [x, y]i := LSixy−LSiyx+d〈Six, y〉, x, y ∈ Γ(T ∗M), i = 1, 2,
for the corresponding Lie algebra structures on Γ(T ∗M) [11]. Then ([, ]1, S1), ([, ]2, S2) are
compatible Lie algebroid structures on T ∗M .

However, note that these two constructions are not inverse to each other. Starting
with Lie algebroid structures on E, one gets Poisson structures on the total space E
of E∗. The second construction would give Lie algebroid structures on T ∗E .

5. Partial Nijenhuis operators (geometric version)

Definition 5.1. Let E = TF for some foliation F on M . We say that a pair (E,N),
where N : E → TM is a bundle morphism, is a (geometric) partial Nijenhuis operator
(PNO for short) on M if the following two conditions hold:
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(i) [x, y]N := [Nx, y] + [x,Ny]−N [x, y] ∈ Γ(E) for any x, y ∈ Γ(E) (here [, ] stands for
the commutator of vector fields on M);

(ii) TN (x, y) := [Nx,Ny]−N [x, y]N = 0 for any x, y ∈ Γ(E) (it follows from condition (i)
that the second term is correctly defined).

In other words, a bundle morphism N : E → TM is a geometric PNO if it is an
algebraic PNO regarded as a map of Lie algebras Γ(E)→ Γ(TM) (which will be denoted
by the same letter).

Remark 5.2. This notion is very natural and probably existed in the literature earlier
with no special name. A similar notion appeared in [4] under the name “outer Nijenhuis
tensor”.

F. J. Turiel used equivalent notion in [31, 32, 33] in different terms. Namely, he
considered a foliation F on a manifold M and a morphism N : TF → TM such that

(1) N∗α is closed along the leaves of F for any closed one-form α satisfying kerα ⊃ TF .

Then he proved that, given any extension N of N to a morphism from TM to TM , the
restriction of TN to TF does not depend on the extension. So one can require that

(2) TN |TF×TF = 0.

We claim that in fact the two notions are equivalent, i.e. the following equivalences hold:
(i) ⇐⇒ (1), and, under the assumption that (i) or (1) is satisfied, (ii) ⇐⇒ (2). Indeed,
assume that condition (1) is satisfied. If α is a one-form such that dα = 0, α|TF = 0, then
for any vector fields x, y we have α([x, y]) = xα(y)−yα(x) and for X,Y ∈ Γ(TF) we have
(N∗α)([X,Y ]) = X(N∗α)(Y ) − Y (N∗α)(X), i.e. α(N [X,Y ]) = Xα(NY ) − Y α(NX).
Thus for any such one-form we have

α([X,Y ]N ) = α([NX,Y ] + [X,NY ]−N [X,Y ])
= NXα(Y )− Y α(NX) +Xα(NY )−NY α(X)−Xα(NY ) + Y α(NX) = 0.

This implies [X,Y ]N ∈ Γ(TF), hence condition (i). These considerations are reversible
and (i)⇐⇒ (1). Now if one of these equivalent conditions hold, TN (X,Y ) coincides with
the expression TN (X,Y ) from condition (ii), is independent of the prolongation N , and,
obviously, (ii)⇐⇒ (2).

Recall that the bundle E = TF has the canonical Lie algebroid structure with the
canonical inclusion I : E → TM as the anchor and the commutator of vector fields
tangent to F as the Lie bracket on Γ(E).

Lemma 5.3. Let (E,N), N : E → TM , be a PNO on M . Then:

(1) NΓ(E) is a Lie subalgebra in Γ(TM);
(2) Nλ := λ1I + λ2N is partial Nijenhuis for any λ := (λ1, λ2);
(3) NλΓ(E) is a Lie subalgebra in Γ(TM) for any λ; in particular if rank of the distri-

bution NλE is constant, it is tangent to some foliation Fλ;
(4) [, ]N is a Lie algebra structure on Γ(E) which together with the anchor N : E → TM

form a Lie algebroid structure on E;
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(5) this new Lie algebroid structure on E is compatible with the canonical Lie algebroid
structure on E, i.e. the family {([, ]Nλ , Nλ)} is a pencil of Lie algebroid structures
on E (see Definition 4.6).

Proof. Items (1), (2), (3) are proven as in the algebraic case (Lemma 3.2). Let us prove
that (E, [, ]Nλ , Nλ) is a Lie algebroid for any λ. The fact that [, ]Nλ is a Lie algebra and
that Nλ is a homomorphism of Lie algebras is also proven as in algebraic case. It remains
to check the condition of compatibility of the bracket with the anchor; by linearity it is
enough to prove it with N instead of λ1I + λ2N :

[x, fy]N = [Nx, fy] + [x,Nfy]−N [x, fy]
= f [Nx, y] + ((Nx)f)y + [x, fNy]−N(f [x, y] + (xf)y)
= f [Nx, y] + ((Nx)f)y + f [x,Ny] + (xf)Ny −N(f [x, y] + (xf)y)
= f [x, y]N + ((Nx)f)y;

note that we used only the linearity of N .

The proofs of the following two lemmas follow from the corresponding lemmas in the
algebraic case (see Lemmas 3.3 and 3.9).

Lemma 5.4. Let F be a foliation on M . Let N : TF → TM be a vector bundle
morphism such that NTF is the tangent bundle to some foliation. Then, if there ex-
ist (λ(k)

1 , λ
(k)
2 ), k = 1, . . . ,K, linearly independent with (1, 0) and with (0, 1) such that

(λ(k)
1 I + λ

(k)
2 N)TF = TF (k) for some foliation F (k) and

⋂K
k=1 TxF (k) = {0} for any

x ∈M , the pair (TF , N) is a PNO.

Lemma 5.5 ([12, Lemma 2.5]). Let F be a foliation on M . Let N : TM → TM be a
Nijenhuis (1, 1)-tensor such that for some λ ∈ K the following two conditions hold: (1) the
distribution B := (N+λ IdTM )TF is tangent to some foliation; (2) (N+λ IdTM )−1(B) =
TF . Then the pair (TF , N |TF ) is a PNO.

Example 5.6. Let N be a “usual” Nijenhuis operator ((1, 1)-tensor). Then N : E → TM

is a PNO with E = TM .

Now we provide a simplest nontrivial example of a partial Nijenhuis operator.

Example 5.7. Let M be any manifold and let v, w ∈ Γ(TM) be any vector fields. Put
E := 〈v〉, N : E → TM , Nv := w. One checks that [φv, ψv]N = φ(wψ)v−ψ(wφ)v for any
smooth functions φ and ψ, hence condition (i) of Definition 5.1 is satisfied. On the other
hand, by the “tensoriality” of the expression TN , we have TN (φv, ψv) = φψTN (v, v) = 0,
i.e. the operator N is partial Nijenhuis.

Assume that v, w are generic. It is clear that there is no coordinate system in which
N is translation-invariant. For example, if dimM > 2, then E and NE are not simulta-
neously tangent to any two-dimensional foliation.

In case when the vector fields v, w are linearly independent at each point, the one-
parameter family of foliations of rank 1 appearing in this example via Lemma 5.3 is an
example of the so-called Kronecker web. In more details this notion is considered in the
next section.
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6. Veronese and Kronecker webs and PNOs. Recall the definition of a Veronese
web [8].
Definition 6.1. Let {Fs}s∈RP1 be a collection of foliations of rank n on a manifoldMn+1

of dimension n+1 such that in a neighbourhood of any point there exists a local coframe
α0, . . . , αn with TFs = 〈α0 + sα1 + . . .+ snαn〉⊥ (here 〈·〉⊥ stands for the annihilator of
the span 〈·〉) for any s ∈ RP1 = R ∪ {∞} (by definition TF∞ := 〈αn〉⊥). Thus the map
RP1 3 s 7→ 〈(α0 + sα1 + . . . + snαn)|x〉 ∈ PT ∗xM parametrizes a Veronese curve for any
x ∈M . The whole collection {Fs}s∈RP1 is a Veronese web.

It turns outs that there exists a 1–1-correspondence between Veronese webs and special
PNOs. Let us say that a PNO (TF , N) on a manifold Mn+1 is of generic type if the pair
of operators N, I : TF → TM , where I : TF ↪→ TM is the canonical inclusion, has a
unique Kronecker block in the J–K decomposition (see Section 2), i.e. there exist local
frames v1, . . . , vn ∈ Γ(TF), w0, . . . , wn ∈ Γ(TM), in which

I =


1
0 1

. . . . . .
0 1

0

 , N =


0
1 0

. . . . . .
1 0

1

 . (6.1)

Theorem 6.2 ([12, Theorem 2.8]). There exists a 1–1-correspondence between Veronese
webs {Fs} on Mn+1 and PNOs (TF , N) of generic type such that F∞ = F and TF0 =
N TF .
Proof. Let {Fs}s∈RP1 be a Veronese web on Mn+1. It turns out that {Fs} is determined
by the foliation F∞ and an (everywhere defined) Nijenhuis operator which is built as
follows [2, 28, 25]. Fix s0, . . . , sn ∈ R to be pairwise distinct nonzero numbers; for i =
0, . . . , n define a rank-1 foliation Si by TxSi :=

⋂n
j=0,j 6=i TxFtj , x ∈M . Then TxSi+TxSk

is an integrable distribution for any i, k, hence putting N |TxSi := si IdTxSi we will get a
Nijenhuis operator.

It is easy to see that TxFsi = (N − siI)TxF∞, i = 0, . . . , n, where I := IdTM (indeed
ker(N−siI) = TSi is transversal to TF∞ and im(N−siI) =

∑
j 6=i TSj = TFsi). On the

other hand, one can see that the map RP1 3 s 7→ ((N−sI)TxF∞)⊥ ∈ PT ∗xM is a Veronese
curve (a priori different from the initial one). These two curves pass through n+2 distinct
points of PT ∗xM : n+ 1 mentioned above and ∞ (since TxF∞ = lims→∞(N − sI)TxF∞).
We conclude by the uniqueness property of the Veronese curve (Lagrange interpolation
theorem) that they coincide. Hence TxFs = (N − sI)TxF∞ for any s ∈ RP1 and x ∈M .

By Lemma 5.5 (put λ = 0) this gives us a partial Nijenhuis operator N = N |TF∞ :
TF∞ → TM . Alternatively one can use Lemma 5.4 since

⋂n
i=0 TxFsi = {0}.

The constructed PNO (F∞, N) is independent of the choice of the numbers si. Indeed,
let (TFs)⊥ = 〈α0 + sα1 + . . . + snαn〉 =: 〈αs〉 and let X0, . . . , Xn be the frame dual to
the coframe α0, . . . , αn. Then the partial operator N : TF∞ = 〈X0, . . . , Xn−1〉 → TM

satisfying αs((N − sI)TF∞) = 0 for any s (now I : TF∞ ↪→ TM is the canonical
inclusion) is uniquely determined by NXk = Xk+1, 0 ≤ k < n. Note also that the pair
(N, I) has canonical matrix form (6.1) in the frames X0, . . . , Xn−1 and X0, . . . , Xn.
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Vice versa, let (TF , N) be a PNO of generic type on M . Then it is easy to see
that (N − sI)TF = 〈α0 + sα1 + . . . + snαn〉⊥, where α0, . . . , αn is the coframe dual to
w0, . . . , wn ∈ Γ(TM) (see (6.1)). The integrability of the distribution (N−sI)TF follows
from Lemma 5.3(3).
Remark 6.3. The proof above shows that for any PNO of generic type (TF , N) on a
manifold M there exists a Nijenhuis operator N : TM → TM such that N = N |TF . It
turns out that such a Nijenhuis operator is not unique. The related problem of realization
of PNOs of generic type is considered in Section 10 (which in turn is related to the problem
of bisymplectic realizations of bihamiltonian structures, see Section 9).

Veronese webs are particular cases of a more general notion of a Kronecker web [36].
Notice that F. J. Turiel (and initially the author [20]) uses the term Veronese web for
both the notions [30],[31].
Definition 6.4 ([36]). Let {Fs}s∈RP1 be a collection of foliations on a manifold M .
Assume that there is a vector bundle Φ→M and two bundle morphisms φi : T ∗M → Φ,
i = 1, 2, such that for any s1, s2 ∈ R, (s1, s2) 6= 0 we have kerφ(s1,s2) = (TFs1:s2)⊥, here
φ(s1,s2) := s1φ1 + s2φ2. We say that {Fs}s∈RP1 is a Kronecker web if for any (s1, s2) ∈
C2 \ {(0, 0)} the morphism s1φ1 + s2φ2 : (T ∗M) ⊗ C → Φ ⊗ C is fibrewise surjective,
or in other words, dim ker(s1φ1 + s2φ2) does not depend on (s1, s2) ∈ C2 \ {(0, 0)}
for any fixed point of M . Equivalently, the J–K decomposition of the pair of operators
φ1,x, φ2,x : T ∗xM → Φx, x ∈ M , does not contain Jordan blocks (this explains the name
“Kronecker web”).

It turns out that the dualization of this definition gives an example of a PNO. In-
deed, given a Kronecker web {Fs}s∈RP1 , consider the pencil of the transposed morphisms
φt(s1,s2) : Φ∗ → TM (which are fibrewise injective for any s1,2). Note that, imφt(s1,s2) =
(kerφ(s1,s2))⊥ = TFs1:s2 , in particular imφt1 = TF∞. Hence φt1 identifies Φ∗ with TF∞.
Consider the map (φt1)−1 : TF∞ → Φ∗ and the map N := φt2 ◦ (φt1)−1 : TF∞ → TM .

We claim that (TF∞, N) is a PNO. Indeed, (s1I + s2N)TF∞ = imφt(s1,s2) = TFs1:s2

for any s1 : s2 ∈ RP1, where I is the canonical embedding TF∞ ↪→ TM . Moreover, one
can find a finite number (which depends on the structure of Kronecker blocks in the J–K
decomposition) of points in RP1 such that the intersection of the corresponding foliations
is trivial. By Lemma 5.4 we conclude that (TF∞, N) is a PNO.
Remark 6.5. One can immediately see that a Kronecker web is the same as a PNO N

such that the morphism Nλ is injective at any point of the base manifold and for any
λ 6= 0 (provided one can take complex λ). We will call such a PNO Kronecker, since for
such N the pair of morphisms (N, I) contains only (increasing) Kronecker blocks in the
Jordan–Kronecker decomposition at any point. Veronese webs are distinguished by the
case of a sole Kronecker block (PNOs of generic type).
Remark 6.6. The proof of Theorem 6.2 suggests a question: is it true that any Kronecker
PNO is a restriction to the tangent bundle of some foliation of some “usual” Nijenhuis
operator on M as it is for the particular case of Veronese webs (see Remark 6.3)? The
answer to this question is positive [31, Theorem 2.1] (see also Sections 9–10 for the
discussion of the realization problem).
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Remark 6.7. In the context of Veronese webs the following theorem is true [21, 2]. Let
α0, . . . , αn be a local coframe on Rn+1 and let Ds := 〈αs〉⊥, where αs := α0 + sα1 + . . .+
snαn. Assume that the distribution of hyperplanes Ds ⊂ TRn+1 is integrable for n + 3
different values of s ∈ RP1. Then Ds is integrable for any s, i.e., induces a Veronese web.

Note that this statement is surprising starting from n = 3 since the condition of
integrability dαs ∧ αs = 0 is polynomial in s of degree 2n, thus one would expect that a
sufficient condition would be vanishing of the polynomial at 2n+ 1 different points.

In [21, 2] also a generalization of this theorem was proven, considering Kronecker webs
with Kronecker blocks of equal dimension.

The construction of PNO related to Kronecker webs and Lemma 5.4 allows us to
prove an analogue2 of this theorem for the most general Kronecker webs without any
restrictions on the dimensions of the Kronecker blocks (another proof of such a theorem
is obtained by F. J. Turiel [31, Corollary 2.1.2]).

Example 6.8. On M := R2, consider a morphism N : E → TM , E := 〈v〉, which
takes the vector field v := ∂

∂y to the vector field w := −y ∂
∂x + x ∂

∂y . This is a particular
case of a PNO from Example 5.7. Since the vector field (N − sI)v = −y ∂

∂x + (x − s) ∂∂y
annihilates the function (x − s)2 + y2, the foliation Fs tangent to (N − sI)E consists
of concentric circles with the centre at (s, 0). The family {Fs} is a Veronese web on R2

outside the x-axis Ox. On the axis these foliations are not in general position as they all
have common tangent vertical direction. The corresponding PNO is Kronecker on R2\Ox
and is Jordan on Ox (the pair N, I consists of one Jordan block).

This example shows that the notion of a PNO can encounter singularities of Kronecker
webs. We will come back to it in Example 8.2.

7. Canonical bihamiltonian structure related with a PNO. Combining the con-
struction of a linear Poisson structure from a Lie algebroid described in Section 4 with
Lemmas 5.3(4–5) and 4.7 one obtains, given a PNO (TF , N) on a manifold M , a canon-
ically defined pencil of (linear) Poisson structures on the total space of T ∗F . We will say
that this bihamiltonian structure is obtained by means of “up construction” from a PNO
(TF , N).

Let us consider this bihamiltonian structure in detail. One of the linear Poisson struc-
tures from this pencil, ηT∗F , corresponds to the canonical Lie algebroid structure on TF
with the anchor I : TF → TM (the canonical inclusion). We know (see Remark 4.5) that
ηT∗F = (It)∗ηT∗M , where ηT∗M is the canonical Poisson structure on T ∗M . Analogous
statement is true for the second generator of this pencil.

Lemma 7.1. Consider the transposed map N t : T ∗M → T ∗F as a smooth map. Then for
the canonical linear Poisson structure ηN related to the Lie algebroid TF with the Lie
algebra structure [, ]N and the anchor N the following equality holds:

ηN = N t
∗ηT∗M .

2With n + 3 values, where n + 1 is the dimension of the target space of the highest Kronecker
block.
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Proof. To prove this claim we shall proceed as in Remark 4.5. First notice that for any
X ∈ Γ(TF) we have the following equality of linear functions on T ∗M : NX = (N t)∗X,
where (N t)∗ stands for the pullback. Now the following calculations, which use this
equality and the definition of the algebroid (T ∗F , [, ]N , N), prove the claim (in view of
properties (1)–(3) of the linear bracket which determine it, see Section 4):

(N t)∗{X,Y }′ = (N t)∗[X,Y ]N = N [X,Y ]N = [NX,NY ]
= {NX,NY } = {(N t)∗X, (N t)∗Y },

(N t)∗{X,σ∗f}′ = (N t)∗σ∗(NXf) = π∗(NXf) = {NX,π∗f} = {(N t)∗X, (N t)∗σ∗f},
(N t)∗{σ∗f, σ∗g}′ = 0 = {π∗f, π∗g} = {(N t)∗σ∗f, (N t)∗σ∗g};

here {, }′ and {, } are the Poisson brackets corresponding to ηN and ηT∗M correspondingly
and σ : T ∗F →M and π : T ∗M →M are the canonical projections.

Summarizing, the canonical bihamiltonian structure on T ∗F related to (TF , N) is
generated by the linear Poisson structures η1 := (It)∗ηT∗M and η2 := (N t)∗ηT∗M . Note
that the fibres of the canonical projection T ∗F →M are lagrangian submanifolds in any
symplectic leaf of any of these two Poisson structures, i.e. the fibres form a bilagrangian
foliation.

Below we consider two particular cases of the “up construction”.

Example 7.2. Let {Fs}s∈RP1 be a Kronecker web on a manifold M and φi : T ∗M → Φ
be the corresponding bundle morphisms (see Definition 6.4). In the particular case of
the Kronecker PNO (TF∞, N), N = φt2 ◦ (φt1)−1, related to a Kronecker web the “up
construction” gives a bihamiltonian structure η1,2 : T ∗M ′ → TM ′,M ′ := T ∗F∞. We can
say more about this bihamiltonian structure in comparison with the general case.

First of all, since N is fibrewise injective, N t : T ∗M → T ∗F∞ is a smooth surjective
submersion and by Lemma 7.1 we can define η2 = ηN as N t

∗ηT∗M .
Second, let x1, . . . , xn be a local coordinate system on M such that ∂

∂x1
, . . . , ∂

∂xk
are the basic vector fields tangent to F∞ and let ξ1, . . . , ξk be the corresponding lin-
ear functions on T ∗F∞. Then by formulas (4.1) the symplectic foliation Fs of the lin-
ear Poisson structure corresponding to the Lie algebroid (TF∞, N − sI) (here I is the
canonical embedding TF∞ ↪→ TM) is generated by the vector fields ∂

∂ξ1
, . . . , ∂

∂ξk
and

(N − sI) ∂
∂σ∗x1

, . . . , (N − sI) ∂
∂σ∗xk

(here σ : T ∗F∞ → M is the canonical projection,
i.e. σ∗xi is a base function on T ∗F∞). Due to the Kroneckerity of N the rank of the
distribution Ds generated by these vector fields is constant even if we admit s ∈ C, which
means that the corresponding bihamiltonian structure η1,2, is Kronecker itself, i.e. for any
p ∈ M ′ the J–K decomposition of the pair of operators η1,p, η2,p : T ∗pM ′ → TpM

′ does
not contain Jordan blocks. Moreover, we observe the following obvious facts: (1)

⋂
s(Ds)p

coincides with the fibre of σ passing through p ∈ M ′, i.e. the canonical bilagrangian fo-
liation W0 of the Kronecker bihamiltonian structure η1,2 (see Section 8) coincides with
the foliation of fibres of σ; (2) the base of this foliation is correctly defined and coincides
withM ; (3) the projection of the symplectic foliation Fs with respect to σ coincides with
the initial foliation Fs from the web for any s.
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Example 7.3. Let N : E → TM be a PNO with the domain E = TM , i.e., N is a
“usual” Nijenhuis operator. Then the “up construction” gives a bihamiltonian structure
η1 := ηT∗M , η2 = ηN on the manifold M ′ := T ∗M , where ηT∗M is the canonical Poisson
structure on M ′ = T ∗M .

The (1, 1)-tensor N ′ : TM ′ → TM ′ uniquely defined by N ′ = ηN ◦ η−1
T∗M has zero

Nijenhuis torsion due to the compatibility of ηN and ηT∗M . In case, when N is fibrewise
invertible, the Poisson structure ηN is nondegenerate and (N ′)−1 = ηT∗M ◦η−1

N coincides
with the so-called cotangent lift of the operator N defined as ηT∗M ◦ (N t)∗η−1

T∗M (see
[26]); here the transposed operator N t : T ∗M → T ∗M is regarded as a smooth map
of M ′ and η−1

T∗M is the canonical symplectic form. We know from Lemma 7.1 that the
following equality holds ηN := N t

∗ηT∗M , which in the case of fibrewise invertible N can
serve as the definition of the linear Poisson structure ηN .
Definition 7.4. The bihamiltonian structure ηT∗M , ηN on T ∗M from Example 7.3 will
be called the bisymplectic or Jordan bihamiltonian structure of type N .

The last terminology is motivated by the fact that there are only Jordan blocks in
the J–K decomposition of the pair of operators ηT∗M |p, ηN |p : T ∗pM ′ → TpM

′ for any
p ∈M ′.
Remark 7.5. F. J. Turiel [26] proved that under some additional assumption of regu-
larity (which is satisfied for generic cases) any Jordan bihamiltonian structure is locally
equivalent to a bihamiltonian structure of type N . In the next section we shall also see
that any Kronecker bihamiltonian structure is locally equivalent to the one built in Ex-
ample 7.2. Thus the examples above show that the notion of a PNO is a proper geometric
framework for simultaneous treatment of Jordan and Kronecker bihamiltonian structures.
Lemma 7.6. Let (TF , N) be a PNO on a manifold M . Assume there exists a Nijenhuis
operator N : TM → TM such that N = N |TF . Write I : TF → TM for the canonical
inclusion. Let It : T ∗M → T ∗F be the transposed operator regarded as a smooth surjective
submersion. Then It∗ηT∗M = ηT∗F and It∗ηN = ηN .
Proof. The first equality was already discussed (see Remark 4.5). The second equality
follows from the commutativity of the diagram

TF I //

N

""

TM

N
��

TM

(which implies N t = It ◦ N t and in view of Lemma 7.1 ηN = (N t)∗ηT∗M = It∗ ◦
(N t)∗ηT∗M = It∗ηN ).

8. Relations of Kronecker webs with bihamiltonian structures. There are two
constructions relating Kronecker webs with bihamiltonian structures, which are mutually
inverse in the sense that will be explained below (see [8], [20], [30]).

Let η1,2 : T ∗M → TM be a Kronecker bihamiltonian structure, i.e., a bihamiltonian
structure such that for any x ∈ M the J–K decomposition of the pair of operators
η1,x, η2,x : T ∗xM → TxM does not contain Jordan blocks. The rank of the Poisson bivector
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λ1η1+λ2η2 does not depend on x and λ1,2 (when (λ1, λ2) 6= 0); denote by Fλ, λ = λ1 : λ2,
the corresponding symplectic foliation. Then {Fλ}λ∈P1 is a family of foliations of constant
rank; as linear algebra shows, they contain a unique common subfoliation W0 such that
TxW0 =

⋂
λ∈P1 TxFλ for any x ∈M . Such a foliation is lagrangian in any symplectic leaf

of any of two Poisson structures and is called the bilagrangian foliation of the Kronecker
bihamiltonian structure. Reduce attention to a sufficiently small open subset U ⊂M on
which the foliation W0 has a local base B.

Finally, it turns out that B carries a rich geometric structure of a Kronecker web: a
collection of foliations in general position Fλ depending on λ ∈ P1 such that the normal
spaces NmFλ ⊂ T ∗mM depend in a particular way on parameter λ. These foliations are
the “projections” of the foliations Fλ with respect to the reduction of U to B. As we
know from Section 6, such a structure is equivalent to a geometric Kronecker PNO.

Note that the operators η1,x, η2,x being skew symmetric necessarily contain both in-
creasing and decreasing Kronecker blocks (see Definition 2.2) in the J–K decomposition,
which are mutually transposed to each other. Algebraically the construction described,
which will be referred to as “down construction”, consists in cutting off the decreasing
blocks.

Vice versa, let {Fs}s∈RP1 be a Kronecker web on a manifoldM and φi : T ∗M → Φ be
the corresponding bundle morphisms (see Definition 6.4). Then the “up construction”,
which was discussed in Section 7, applied to the Kronecker PNO (TF∞, N), N = φt2 ◦
(φt1)−1, related to the Kronecker web gives a Kronecker bihamiltonian structure η1,2 :
T ∗M ′ → TM ′, M ′ := T ∗F∞.

From Example 7.2 we see that starting from a Kronecker web and applying first “up
construction” and then “down construction” results in the initial Kronecker web.

Applying these constructions other way round is more subtle. Starting from any Kro-
necker bihamiltonian structure η1,2 we can always perform locally “down construction”
and get a Kronecker web {Fs}s∈RP1 . Applying to it the “up construction” results in a
bihamiltonian structure η′1,2 which a priori need not coincide with the initial one. It
was the initial conjecture of Gelfand and Zakharevich (formulated by them in the case
of generic Kronecker bihamiltonian structures [8], i.e. with Kronecker webs which are
Veronese webs) that the bihamiltonian structures η1,2 and η′1,2 are locally equivalent, i.e.
there exists a local diffeomorphism bringing one structure to another.

This conjecture was proved by Turiel in the particular cases listed in the following
theorem (see [31, Theorem 3.2] and references therein).

Theorem 8.1 (Turiel). A Kronecker bihamiltonian structure can be locally reconstructed
from its Kronecker web obtained by means of the “down construction” in the following
cases:

• in complex or real analytic category;
• in C∞ category for generic Kronecker bihamiltonian structures and Kronecker bi-
hamiltonian structures with flat Kronecker webs.

A Kronecker web {Fs}s∈RP1 is called flat if in a vicinity of every point there exists
a local diffeomorphism bringing simultaneously all the foliations Fs to the foliations of
parallel planes on an open set in Rn.
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Example 8.2. Consider the PNO from Example 6.8 and the canonical bihamiltonian
structure on E∗ ∼= R3. It is easy to see that it will be diffeomorphic to the bihamiltonian
structure η1, η2, where η1 := −y ∂

∂x ∧
∂
∂z + x ∂

∂y ∧
∂
∂z is the Lie–Poisson structure of the

Lie algebra of the group of Euclidean motions of the plane and η2 := ∂
∂y ∧

∂
∂z = η1(1, 0, 0)

is the “freezing” of η1 at the point (1, 0, 0). The leaves of the symplectic foliation Fs of
the Poisson structure η1 − sη2 are the cylinders over the circles of the foliation Fs. The
bihamiltonian structure fails to be Kronecker on the coordinate plane Oxz, however the
foliation of lines parallel to the Oz-axis is a bilagrangian foliation, the reduction with
respect to which gives a singular Veronese web {Fs}.

9. Problem of local bisymplectic realization of a Kronecker bihamiltonian
structure. It is well known [34] that, given a Poisson structure η on a manifold M ,
for any point of M there exists an open neighbourhood of this point U and a symplectic
manifold (U, ω) with a surjective submersion p : U → U such that p∗ω−1 = η|U ; here ω−1

is the Poisson structure inverse to the symplectic form ω. In other words, any Poisson
structure has a local symplectic realization. This is a first step to the problem of existence
of global symplectic realization which is very important and led in particular to the theory
of symplectic groupoids.

An analogous problem can be formulated in the bihamiltonian context: given a bi-
hamiltonian structure η1,2 on a manifoldM such that λ1η1 +λ2η2 is degenerate for any λ,
does it have a bisymplectic realization, i.e. does there exist a manifoldM with a bihamil-
tonian structure ω−1

1,2 (such bihamiltonian structures necessarily are Jordan, i.e. for any
x ∈M the pair of operators ω−1

1,x, ω
−1
2,x : T ∗xM → TxM contains only Jordan blocks in the

J–K decomposition) and a surjective submersion p : M → M such that p∗ω−1
1,2 = η1,2?

In this section we consider the problem of local bisymplectic realization for Kronecker
bihamiltonian structures.

Note that there is a crucial difference between the two realization problems above:
in the Poisson case there is only one local model of the symplectic form ω given by the
Darboux theorem while there are many local models of bisymplectic bihamiltonian struc-
tures ω−1

1,2, i.e. Jordan bihamiltonian structures. For instance, the Jordan bihamiltonian
structures of type N (see Definition 7.4), which are completely determined by a Nijenhuis
(1, 1)-tensor N , are locally inequivalent for locally inequivalent N .

A quite natural and desirable feature of the symplectic and bisymplectic realization is
its minimality: once dimension ofM is fixed, try to findM of possibly minimal dimension.
Since for a Kronecker bihamiltonian structure η1,2 both the bivectors have the same rank,
say 2r, and corank, say l, it is easy to see that the minimal possible dimension for M we
can think about is 2r + 2l.

Now we can make our problem more precise.
Problem 1.
(a) Given a Kronecker bihamiltonian structure η1,2, rank η1,2 = 2r, on an open set

U ⊂M , dimM = m, do there exist a Jordan bihamiltonian structure η1,2 on an
open set U ⊂M , dimM = 2m− 2r, and a smooth surjective submersion p : U → U

such that p∗η1,2 = η1,2?
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(b) List all locally inequivalent Jordan bihamiltonian structures η1,2 on U with the prop-
erty p∗η1,2 = η1,2.

Below we set some preliminary steps for solving this problem. In view of Theorem
8.1 we can assume that the bihamiltonian structure η1,2 is equal to the bihamiltonian
structure ηT∗F∞ , ηN on the manifold T ∗F∞, TF∞ ⊂ TB, where B is the local base of the
canonical bilagrangian foliation W0 of η1,2 and N : TF∞ → TB is the Kronecker PNO
corresponding to the Kronecker web obtained on B by means of the “down construction”
(see Example 7.2). Now assume that there exists a Nijenhuis operator N : TB → TB
such that N = N |TF∞ . Then by Lemma 7.6 we have

It∗ηT∗B = ηT∗F∞ , I
t
∗ηN = ηN ,

where I : TF∞ → TB is the canonical inclusion and It : T ∗B→ T ∗F∞ is the correspond-
ing surjective submersion.

We see that Problem 1 is intimately related to the following

Problem 2.

(a) Given a Kronecker PNO (TF , N), rankF = r, on an open set V ⊂ Rm−r, m > 2r,
does there exist a Nijenhuis operator N : TV → TV such that N |TF = N?

(b) List all locally nonequivalent Nijenhuis operators N on V satisfying N |TF = N .

The considerations above show that once Problem 2(a) is solved we obtain also a
solution of Problem 1(a). Recall that by a result of Turiel (see Remark 6.6) Problem
2(a) has a solution for any Kronecker web, hence Problem 1(a) has a solution for any
Kronecker bihamiltonian structure. Thus we have proven the following theorem.

Theorem 9.1. Given a real or complex analytic Kronecker bihamiltonian structure η1,2,
rank η1,2 = 2r, on an open set U ⊂ M , dimM = m, there exist a Jordan bihamiltonian
structure η1,2 on an open set U ⊂ M , dimM = 2m − 2r, and a smooth surjective
submersion p : U → U in the corresponding category such that p∗η1,2 = η1,2. The same is
true also in C∞-category for generic Kronecker bihamiltonian structures (i.e. such that
the corresponding Kronecker web is a Veronese web).

The last statement was obtained earlier by F. Petalidou in dimension 3 [24, Corol-
laire 4.6].

On the other hand, a solution of Problem 2(b), which will be called the “realization
problem for Kronecker webs”, would imply only a particular solution of Problem 1(b),
i.e. a solution in the class of Jordan bihamiltonian structures of type N on U , where
N : TV → TV is a Nijenhuis (1, 1)-tensor and U is an open set in T ∗V (cf. Remark 7.5).
Solutions to the realization problem will be obtained in the next section for particular
Kronecker webs.

10. Realization problem for Veronese webs. The realization problem for Kronecker
webs was formulated in the previous section (Problem 2(b)). Below we discuss this prob-
lem and we start from describing a solution to this problem for three-dimensional Veronese
webs obtained in [12]. We begin with the general situation, and then specify to the three-
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dimensional case. For simplicity consider only complex analytic case (which excludes the
normal form of a real Nijenhuis operator with complex eigenvalues, see [12] for this case).

Recall that one of the local models of the Nijenhuis operators N , namely a semisimple
operator with simple spectrum the elements of which are constant functions, was obtained
in the proof of Theorem 6.2. To get other local models we need to introduce the following
notion.

Definition 10.1. Consider a Veronese web {Fλ}λ∈CP1 on a manifold Mn+1, given by
TFλ = 〈αλ〉⊥, where αλ = α0 + λα1 + . . . + λnαn and α0, α1, . . . , αn is a local coframe
on an open set U ⊂ M . An analytic function φ : U → C is called self-propelled if dφ
is proportional to αφ. If the coefficient of proportionality is nonzero, we denote this by
dφ ∼ αφ. However, the coefficient is allowed to be zero, so a constant function is also
considered self-propelled.

Lemma 10.2. Let {Fλ} be a Veronese web on Mn+1. Then in a vicinity of any point
x ∈M there exist n+1 functionally independent self-propelled functions φ0(x), φ1(x), . . . ,
φn(x). If X0, . . . , Xn is the frame dual to the coframe α0, . . . , αn defining the Veronese
web, the condition on the function φ to be self-propelled is the following system PDEs:

φX0φ = X1φ, . . . , φXn−1φ = Xnφ. (10.1)

Proof. The required relation α0 + . . . + φnαn ∼ (X0φ)α0 + . . . + (Xnφ)αn is equivalent
to vanishing of the determinants∣∣∣∣ 1 φ

X0φ X1φ

∣∣∣∣ , . . . , ∣∣∣∣ φn−1 φn

Xn−1φ Xnφ

∣∣∣∣ ,
which is equivalent to system (10.1). Let F (x, λ) be a λ-parametric first integral of the
foliation Fλ, where x = (x1, . . . , xn). The following formula gives a family of implicit
solutions φ(x) of system (10.1) depending on an arbitrary smooth function of one variable
f = f(λ) that locally satisfies f ′(λ) 6= Fλ:

F (x, φ(x)) = f(φ(x)). (10.2)

Indeed, differentiating this equality along Xk − φ(x)Xk−1 we get

dxF (x, λ)(Xk − λXk−1)|λ=φ(x)

+ (Fλ(x, φ(x))− f ′(φ(x))) · (Xkφ(x)− φ(x)Xk−1φ(x)) = 0. (10.3)

The first term vanishes since Xk − λXk−1 ∈ 〈αλ〉⊥, and the claim follows.
Choosing n solutions φ0, . . . , φn with initial values c0, . . . , cn at x ∈M being pairwise

different and with nonzero ψi := X0φi|x, we compute from (10.1) the Jacobian at x:

Jacx(φ0, φ1, . . . , φn) ∼

∣∣∣∣∣∣∣∣∣
ψ0 c0ψ0 . . . cn0ψ0
ψ1 c1ψ1 . . . cn1ψ1
...

...
. . .

...
ψn cnψn . . . cnnψn

∣∣∣∣∣∣∣∣∣ = ψ0ψ1 · · ·ψn

∣∣∣∣∣∣∣∣∣
1 c0 . . . cn0
1 c1 . . . cn1
...

...
. . .

...
1 cn . . . cnn

∣∣∣∣∣∣∣∣∣ .
Since the Vandermonde determinant with the second column consisting of pairwise dif-
ferent entries is nonzero, we obtain n functionally independent solutions of (10.1).
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Theorem 10.3. Let (TF , N) be a Kronecker PNO of generic type (see Theorem 6.2) on
a three-dimensional manifold M . Then in a neighbourhood U of every point p ∈M there
exists a Nijenhuis operator N : TM → TM of any type A, B or C listed in Appendix
such that N |TF = N .
Proof. Consider (TF , N) locally near p ∈ M . The intersection D1 := TF ∩ NTF is a
one dimensional distribution. Choose arbitrarily a nonvanishing vector field X1 ∈ Γ(D1)
and put X0 := N−1X1, X2 := NX1. Then X0, X1, X2 is a frame such that there exist
functions b0, b1, c1, c2 satisfying the following commutation relations:
(a) [X0, X1] = b0X0 + b1X1 and [X1, X2] = c1X1 + c2X2;
(b) [X0, X2] = c1X0 + (c2 + b0)X1 + b1X2.
Item (a) is due to the integrability of the distributions TF and NTF . To prove (b) let
[X0, X2] = d0X0+d1X1+d2X2 for some functions d0, d1, and d2 and use Definition 5.1: by
condition (i) of that definition we have [X0, X1]N = [NX0, X1]+ [X0, NX1]−N [X0, X1] =
[X1, X1] + [X0, X2] − N [X0, X1] = [X0, X2] − N [X0, X1] = d0X0 + d1X1 + d2X2 −
(b0X1 + b1X2) = d0X0 + (d1 − b0)X1 + (d2 − b1)X2 ∈ TF , which implies d2 = b1;
by condition (ii) of that definition we have c1X1 + c2X2 = [X1, X2] = [NX0, NX1] =
N([X0, X1]N ) = N(d0X0 + (d1 − b0)X1) = d0X1 + (d1 − b0)X2, which implies d0 = c1,
d1 = c2 + b0.

If (X0, X1, X2) is a frame satisfying relations (a–b) for some functions and (α0, α1, α2)
is the dual coframe, it is easy to see that the distribution 〈α0 + λα1 + λ2α2〉⊥ ⊂ TM is
integrable for any λ, i.e. defines a Veronese web {Fλ}. This is of course the Veronese web
corresponding to N by Theorem 6.2 (see its proof).

The matrix of the operator N : TF → TM with respect to the bases (X0, X1) in TF
and (X0, X1, X2) in TM is equal to  0 0

1 0
0 1

 .
Define N by N |TF = N and NX2 = f0X0 + f1X1 + f2X2, where fi are local analytic
functions, i.e. putting the matrix of N in the frame (X0, X1, X2) to be equal to 0 0 f0

1 0 f1
0 1 f2

 .
Direct calculations taking into account relations (a), (b) show that TN (X1, X2) = 0, if
and only if the following system of nonlinear first order equations is satisfied:

X2f0 = f0X1f2, X2f1 = X1f0 + f1X1f2, X2f2 = X1f1 + f2X1f2, (10.4)
and, analogously, the equality TN (X0, X2) = 0 is equivalent to the system

X1f0 = f0X0f2, X1f1 = X0f0 + f1X0f2, X1f2 = X0f1 + f2X0f2. (10.5)
Now let f1 = φ1φ2φ3, f2 = −φ1φ2 − φ1φ3 − φ2φ3, f3 = φ1 + φ2 + φ3 for some local
functions φ1, φ2, φ3. Then it is easy to see that once the functions φi satisfy the system
of equations (10.1), the functions fi satisfy the systems of equations (10.4), (10.5). In
other words, if the functions φ1, φ2, φ3 are self-propelled for the corresponding Veronese
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web, the Nijenhuis torsion TN of the (1, 1)-tensor N given in the frame X0, X1, X2 by
the matrix

F (φ1, φ2, φ3) :=

 0 0 φ1φ2φ3
1 0 −φ1φ2 − φ1φ3 − φ2φ3
0 1 φ1 + φ2 + φ3

 (10.6)

vanishes (recall that TN (X0, X1) = TN (X0, X1) = 0 by the assumptions of the theorem).
Now let ψ1, ψ2, ψ3 be functionally independent self-propelled functions with pairwise

distinct ψ1(p), ψ2(p), ψ3(p) (they exist by Lemma 10.2) and let a1, a2, a3 be pairwise
distinct constants. Put
FA0 := F (ψ1, ψ2, ψ3); FA1 := F (ψ1, ψ2, a3); FA2 := F (ψ1, a2, a3); FA3 := F (a1, a2, a3);
FB0 := F (ψ2, ψ2, ψ3); FB1 := F (ψ2, ψ2, a3); FB2 := F (a2, a2, ψ3); FB3 := F (a2, a2, a3);
FC0 := F (ψ3, ψ3, ψ3); FC1 := F (a3, a3, a3).

We have shown above that all these matrices represent Nijenhuis (1, 1)-tensors. On the
other hand, we recognize in these matrices the Frobenius forms of all the Nijenhuis (1, 1)-
tensors listed in Appendix. Consequently, by [27] for each FX there should exist local
coordinates (x1, x2, x3) such that the matrix of the corresponding Nijenhuis (1, 1)-tensor
N in the basis { ∂

∂xi
} has the form NX from the list of Appendix.

Recalling our discussion in Section 9 we get a partial solution to Problem 1(b).

Corollary 10.4. Given a complex analytic generic Kronecker bihamiltonian structure
η1,2 (i.e. such that the corresponding Kronecker web is a Veronese web, in particular
rank η1,2 = 4), on an open set U ⊂ C5, there exist a complex analytic Jordan bihamilto-
nian structure η1,2 on an open set U ⊂ C6 of type N (see Definition 7.4), where N is a
three-dimensional Nijenhuis (1, 1)-tensor of any type A, B or C listed in Appendix, and
a complex analytic surjective submersion p : U → U such that p∗η1,2 = η1,2.

In fact by [12, Theorem 9.5] this theorem is also true in C∞ and in real analytic
category, and in the last case also a bisymplectic realization of type N is possible, where
N is a Nijenhuis (1, 1)-tensor with complex eigenvalues (type D of [12, Appendix]).

We conclude this section by a conjecture that the realization problem for a Veronese
web can be similarly solved in any dimension (in fact its proof should go in the same way
as above).

Conjecture 10.5. Let (TF , N) be a Kronecker PNO of generic type (see Theorem 6.2)
on an n-dimensional manifold M , n > 3. Then in a neighbourhood U of every point
p ∈ M there exists a cyclic Nijenhuis operator N : TM → TM of any type of [27] such
that N |TF = N .

Note that condition of cyclicity is necessary when we speak about the extensions of
PNOs of generic type.

Remark 10.6. The situation with nongeneric Kronecker PNOs, i.e. having more than one
Kronecker block in the J–K decomposition seems to be much more involved. The extension
here can have more than one cyclic block, however not necessarily. The analogues of
systems of equations (10.1), (10.4), (10.5) would be much more complicated.
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11. The Hirota equation. In this section we assume that dimM = 3. The aim of this
section is to show that there is a 1–1-correspondence between Veronese webs in three
dimensions and solutions of the so-called dispersionless Hirota PDE

a1fx1fx2x3 + a2fx2fx3x1 + a3fx3fx1x2 = 0,
where ai are constants such that a1 + a2 + a3 = 0.

It follows from Theorem 6.2 and its proof that, given a Veronese web, one can construct
a PNO which, at least locally, can be extended to a Nijenhuis operator defined on the
whole tangent bundle TM . In Section 10 we have shown that in fact such an extension
is possible essentially to any of normal forms of Nijenhuis operators in three dimensions.

Conversely, starting from a Nijenhuis (1, 1)-tensor N we can try to construct a Vero-
nese web by means of constructing a PNO (cf. Theorem 6.2) (F , N |TF ) for some folia-
tion F . Assuming that the foliation F is given by f = const for some smooth function f ,
we can use Lemma 5.5 to obtain sufficient conditions for N |TF to be a PNO in terms of
a PDE on f , the form of which essentially depends on the form of the initial Nijenhuis
operator.

Let us illustrate this idea choosing the simplest normal form of a Nijenhuis operator:
the diagonal one with constant pairwise distinct eigenvalues.
Construction 11.1. ConsiderM = R3(x1, x2, x3) and a Nijenhuis operator N : TM →
TM defined by

N∂xi = λi∂xi , (11.1)
where λ1, λ2, λ3 are pairwise distinct nonzero numbers. Let f : R3 → R be a smooth
function such that fxi 6= 0. Define a foliation F∞ by f = const, i.e. by TF∞ := 〈df〉⊥.
Then (N(TF∞))⊥ = 〈ω〉, where

ω = (N t)−1 df = λ−1
1 fx1 dx1 + λ−1

2 fx2 dx2 + λ−1
3 fx3 dx3.

The condition of integrability of the distribution N(TF∞), dω∧ω = 0 (which by Lemma
5.5 implies that N |TF∞ is a PNO), is equivalent to

(λ2 − λ3)fx1fx2x3 + (λ3 − λ1)fx2fx3x1 + (λ1 − λ2)fx3fx1x2 = 0, (11.2)
in which we recognize the Hirota equation.

The following theorem is a variant of [35, Theorem 3.8] (our proof is different).
Theorem 11.2. Let λ1, λ2, λ3 be distinct real numbers.
(1) For any solution f of (11.2) on a domain U ⊂ M with fxi 6= 0, i = 1, 2, 3, the

one-form
αλ = (λ2−λ)(λ3−λ)fx1 dx1+(λ3−λ)(λ1−λ)fx2 dx2+(λ1−λ)(λ2−λ)fx3 dx3 (11.3)
defines a Veronese web Fλ on U by TFλ = 〈αλ〉⊥ such that

Fλi = {xi = const}, F∞ = {f = const}. (11.4)
(2) Conversely, let {Fλ} be a Veronese web on a three-dimensional smooth manifold M .

Then in a neighbourhood of any point on M there exist local coordinates (x1, x2, x3)
such that any smooth first integral f of the foliation F∞ is a solution of equation
(11.2) with fxi 6= 0.



KRONECKER WEBS, NIJENHUIS OPERATORS, AND NONLINEAR PDES 203

Consequently, we obtain a 1–1-correspondence between Veronese webs {Fλ} satisfying
(11.4) and the classes [f ] of solutions f of (11.2) with fxi 6= 0 modulo the following
equivalence relation: f ∼ g if there exist local diffeomorphisms ψ, φ1, φ2, φ3 of R such
that f(x1, x2, x3) = ψ(g(φ1(x1), φ2(x2), φ3(x3)) (obviously, if f ∼ g and f solves (11.2),
then g does the same).
Proof. On a solution f of equation (11.2) we get dω ∧ ω = 0, hence the distribution
N(TF∞) is integrable. Consequently, N |TF∞ is a PNO by Lemma 5.5. The condition
fxi 6= 0 implies that the pair (N |TF∞ , I) has generic type (one Kronecker block in the
J–K decomposition) and thus defines a Veronese web Fλ by Theorem 6.2. The Veronese
curve αλ in T ∗U such that (TFλ)⊥ = 〈αλ〉 annihilates the distribution Nλ(TF∞) = TFλ.
Direct check shows that it is given by formula (11.3), in particular satisfies (11.4).

Conversely, let Fλ be a Veronese web and f a first integral of F∞. The proof of
Theorem 6.2 yields the coordinates (x1, x2, x3) and a Nijenhuis operator by (11.1). The
distribution N(TF∞) = TF0 is integrable, hence dω ∧ ω = 0 and f solves (11.2). The
condition fxi 6= 0 follows from nondegeneracy of the curve αλ.

Finally, the last statement follows from the fact that the first integrals of the three
Veronese foliations corresponding to different λ1, λ2, λ3 determine the first integral of any
other foliation up to postcomposition with a local diffeomorphism.

12. Other PDEs related to Veronese webs in 3D. Repeating Construction 11.1
for other types of Nijenhuis operators listed in Appendix we get another PDEs on the
function f , which are pairwise contactly nonequivalent (see [12, Section 6]). Below we list
these PDEs corresponding to the cases A, B, C of Appendix, and indicate the Veronese
curves αλ (the one-forms ω such that (N(TF∞))⊥ = 〈ω〉 are given by ω = αλ|λ=0).
Case A:
(λ2(x2)− λ3(x3))fx1fx2x3 + (λ3(x3)− λ1(x1))fx2fx3x1 + (λ1(x1)− λ2(x2))fx3fx1x2 = 0

αλ = (λ2(x2)− λ)(λ3(x3)− λ)fx1 dx1 + (λ3(x3)− λ)(λ1(x1)− λ)fx2 dx2

+ (λ1(x1)− λ)(λ2(x2)− λ)fx3 dx3.

Case B:
fx1fx1x3 − fx3fx1x1 + (λ2(x2)− λ3(x3))(fx1fx2x3 − fx2fx1x3) + λ′2(x2)fx1fx3 = 0

αλ = (λ2(x2)− λ)(λ3(x3)− λ)(fx1 dx1 + fx2 dx2) + (λ2(x2)− λ)2fx3 dx3

− (λ3(x3)− λ)fx1 dx2.

Case C:
C0 : (fx1fx2x2 − fx2fx1x2)x2 + fx3fx2x2 − fx2fx2x3 + fx2fx1x1 − fx1fx1x2 + fx1fx2 = 0

αλ = fx1

(
(x3 − λ)2 dx1 − (x3 − λ) dx3

)
+ fx2

(
−(x3 − λ) dx1 + (x3 − λ)2 dx2

+ (x2(x3 − λ) + 1) dx3
)

+ fx3(x3 − λ)2 dx3.

C1 : fx1fx3x1 − fx3fx1x1 + fx2fx1x2 − fx1fx2x2 = 0

αλ = fx1

(
(a3 − λ)2 dx1 − (a3 − λ) dx2 + dx3

)
+ fx2

(
(a3 − λ)2 dx2

−(a3 − λ) dx3
)

+ fx3(a3 − λ)2 dx3.
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Here the following specifications should be made in order to exhaust the corresponding
cases (a1, a2, a3 are arbitrary pairwise different constants):

Case A : A0 : λ1(x1) = x1, λ2(x2) = x2, λ3(x3) = x3;
A1 : λ1(x1) = x1, λ2(x2) = x2, λ3(x3) = a3;
A2 : λ1(x1) = x1, λ2(x2) = a2, λ3(x3) = a3;
A3 : λ1(x1) = a1, λ2(x2) = a2, λ3(x3) = a3.

Case B : B0 : λ2(x2) = x2, λ3(x3) = x3; B1 : λ2(x2) = x2, λ3(x3) = a3;
B2 : λ2(x2) = a2, λ3(x3) = x3; B3 : λ2(x2) = a2, λ3(x3) = a3.

Note that case A3 corresponds to the Hirota equation considered in the previous section.
It turns out that in fact for all these equations there is a 1–1-correspondence between
Veronese webs and classes of “nondegenerate” solutions with respect to the natural equiv-
alence relation, i.e. the analogue of Theorem 11.2 holds; here the solutions are nondegen-
erate in the following sense.

Definition 12.1. A solution f of any of the equations A, B, C on an open set U ⊂M
with coordinates (x1, x2, x3) is called nondegenerate if the corresponding one-form
αλ ∈ T ∗U defines a Veronese curve at any x ∈ U (equivalently: the curve λ 7→ αλ =
α0 + λα1 + λ2α2 does not lie in any plane, i.e., the one-forms α0, α1, α2 are linearly
independent at any point).

Theorem 12.2.

(1) A generic solution f of any of the equations A, B, C is nondegenerate on a small
open set U . If f is such a solution, then the corresponding one-form αλ defines a
Veronese web Fλ on U by TFλ = 〈αλ〉⊥.

(2) Conversely, let Fλ be a Veronese web on a three-dimensional smooth manifold M .
Then for any symbol S = Ai,Bi, Ci in a neighbourhood of any point on M there exist
local coordinates (x1, x2, x3) such that any smooth first integral f of the foliation F∞
is a nondegenerate solution of the equation of type S.

Here by a generic solution we mean a solution with a generic jet in the Cauchy problem
setup. We omit the formulation of the analogue of the last part of Theorem 11.2 as it
follows immediately.

Proof. The proof of the second statement of item (1) is the same as that of Theorem
11.2(1). For the explanation why a generic solution of the equations A–C is nondegenerate
see [12, Theorem 5.2].

The proof of (2) goes essentially as that of Theorem 11.2(2) with the account of
Theorem 10.3.

13. Generalizations to higher dimensions: systems of PDEs. Generalization of
the correspondence between Veronese webs and PDEs to higher dimensions (and the
case of Kronecker webs) is straightforward. Let {Fλ} be a Kronecker web defined on
an open set U ⊂ Rn and let N : TF∞ → TU be the corresponding Kronecker PNO,
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see Remark 6.5. By Remark 6.6 (see also Theorem 10.3) there exists a Nijenhuis oper-
ator N : TU → TU such that N |TF∞ = N . If f1, . . . , fk are functionally independent
first integrals of the foliation F∞, the condition of the integrability of the distribution
N(TF∞), which follows from Lemma 5.3, is equivalent to a system of nonlinear PDEs
on the functions fi (depending on the form of the extension N).

Conversely, given a Nijenhuis (1, 1)-tensor N : TU → TU and a foliation F on U

defined by a system of first integrals f1, . . . , fk, we can try to construct a Kronecker PNO
(TF , N |TF ) (and thus a Kronecker web {Fλ} with F∞ = F) by requiring the integrability
of the distribution N(TF) (cf. Lemma 5.5). The condition of the integrability of N(TF) is
equivalent to a system of nonlinear PDEs on the functions fi. Of course, one should impose
additional algebraic conditions on the pair F , N in order to guarantee the Kroneckerity
of N |TF .

Note that the system of PDEs mentioned is overdetermined unless rank of the folia-
tion F is not equal to two (a reasonable bound is rankF ≥ 2, since the rank one case
gives a trivial differential constraint). Say in the case of Veronese web in 4 dimensions
we get 4 equations on one function (the components of the three-form dω ∧ ω, where ω
is the one-form annihilating N(TF)).

Let us illustrate the simplest higher dimensional case, when the system is determined:
a Kronecker web {Fλ} with foliations Fλ of rank two in M = R4. If N : TF∞ →
TM is the corresponding PNO, the pair (N, I) has two Kronecker blocks in the J–K
decomposition. It is known that such Kronecker webs are related with torsionless three-
webs on M , i.e. triples of foliations of rank two in general position with the torsionless
Chern connection. For any three-web (F1,F2,F3) there exists a unique one-parametric
family of distributions {Dλ}λ∈RP1 of rank two such that D∞ = TF1, D0 = TF2, D1 :=
TF3. The distribution Dλ is integrable for any λ if and only if the torsion of the canonical
Chern connection vanishes [19, Theorem 4.14]. The corresponding family of foliations
{Fλ} form a Kronecker web. We shall say that such Kronecker webs are of three-web type.

Consider M = R4(x1, x2, x3, x4) and a Nijenhuis operator N : TM → TM defined by
N∂xi = λi∂xi ,

where λ1, λ2, λ3, λ4 are pairwise distinct nonzero numbers. Let f1,2 : R4 → R be a
generic pair of smooth functions. Define a foliation F∞ by TF∞ := 〈df1, df2〉⊥. Then
(N(TF∞))⊥ = 〈ω1, ω2〉, where

ωi = (N t)−1df i =
4∑
j=1

λ−1
j f ixj dxj .

The condition of integrability of the distribution N(TF∞),
dω1 ∧ ω1 ∧ ω2 = 0, dω2 ∧ ω1 ∧ ω2 = 0,

is equivalent to the following system of equations
(λ1 − λ2)f ix1x2

(f ix3
f īx4
− f īx3

f ix4
) + (λ3 − λ1)f ix1x3

(f ix2
f īx4
− f īx2

f ix4
)

+ (λ1 − λ4)f ix1x4
(f ix2

f īx3
− f īx2

f ix3
) + (λ2 − λ3)f ix2x3

(f ix1
f īx4
− f īx1

f ix4
) (13.1)

+ (λ4 − λ2)f ix2x4
(f ix1

f īx3
− f īx1

f ix3
) + (λ3 − λ4)f ix3x4

(f ix1
f īx2
− f īx1

f ix2
) = 0,
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where i = 1, 2, 1̄ = 2, and 2̄ = 1. Once this system is satisfied by a pair of functions
f1,2, the distribution Dλ = (N − λ IdTM )(TF∞) is integrable for any λ and generates a
Kronecker web, as it follows from Lemma 5.5. Note that Dλ is annihilated by the pair
of forms ωλ1,2 :=

∑4
j=1(λ − λ1) · · · ̂(λ− λj) · · · (λ − λ4)f1,2

xj dxj for any λ 6= λj , where (̂·)
means that the corresponding term is omitted (for λ = λj the one-forms ωλ1,2 become
linearly dependent).

Another system of equations is obtained if we consider a Nijenhuis operator with two
double eigenvalues. For instance, put λ1 = λ2 and λ3 = λ4 in the example above. Then
system (13.1) becomes

f ix1x3
(f ix2

f īx4
− f īx2

f ix4
)− f ix1x4

(f ix2
f īx3
− f īx2

f ix3
)

− f ix2x3
(f ix1

f īx4
− f īx1

f ix4
) + f ix2x4

(f ix1
f īx3
− f īx1

f ix3
) = 0, i = 1, 2, (13.2)

and the corresponding annihilating one-forms are

ωλ1,2 = (λ− λ1)(f1,2
x1

dx1 + f1,2
x2

dx2) + (λ− λ3)(f1,2
x3

dx3 + f1,2
x4

dx4) (13.3)

(now they span D⊥λ for all λ). We see that Dλi , i = 1, 3, coincide with the corresponding
coordinate planes. We can prove an analogue of Theorem 11.2.

Theorem 13.1. Let λ1, λ3 be distinct real numbers.

(1) For any solution f1,2 of (13.2) on a domain U ⊂M satisfying∣∣∣∣D(f1, f2)
D(x1, x2)

∣∣∣∣ 6= 0,
∣∣∣∣D(f1, f2)
D(x3, x4)

∣∣∣∣ 6= 0 (13.4)

the one-forms (13.3) define a Kronecker web Fλ on U of three-web type by TFλ =
〈ωλ1 , ωλ2 〉⊥ such that

Fλi = {xi = const, xi+1 = const}, F∞ = {f1 = const, f2 = const}. (13.5)

(2) Conversely, let {Fλ} be a Kronecker web of three-web type on a four-dimensional
smooth manifold M . Then in a neighbourhood of any point on M there exist local
coordinates (x1, x2, x3, x4) such that any independent smooth first integrals f1,2 of
the foliation F∞ are solutions of system (13.2) satisfying (13.4).

Consequently, we obtain a 1–1-correspondence between Kronecker webs {Fλ} of three-
web type satisfying (13.5) and the classes [f1,2] of solutions f1,2 of (13.2) satisfying
system (13.4) modulo the following equivalence relation: f1,2 ∼ g1,2 if there exist local
diffeomorphisms ψ = (ψ1, ψ2), φ = (φ1, φ2) and ζ = (ζ1, ζ2) of R2 such that

f1,2(x1, x2, x3, x4) = ψ1,2(g1(φ1(x1, x2), φ2(x1, x2), ζ1(x3, x4), ζ2(x3, x4)),
g2(φ1(x1, x2), φ2(x1, x2), ζ1(x3, x4), ζ2(x3, x4)))

(obviously, if f1,2 ∼ g1,2 and f1,2 solves (13.2), then g1,2 does the same).

Proof. Item (1) is already argued. To prove (2) we let {Fλ} be a Kronecker web of
three-web type. Then TFλ1 ⊕ TFλ3 = TM and we can find coordinates x1, . . . , x4 such
that TFλ1 =

〈
∂
∂x1

, ∂
∂x2

〉
, Fλ3 =

〈
∂
∂x3

, ∂
∂x4

〉
. Define a Nijenhuis operator N by N |TFλi =

λi IdTFλi .
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It turns out that the distributions TFλ and Hλ := (N − λ IdTM )(TF∞) coincide for
any λ. Indeed, both of them are of the form 〈(λ − λ3)X1 + (λ − λ1)X2, (λ − λ3)Y1 +
(λ−λ1)Y2〉, where the vector fields X1,2, Y1,2 are linearly independent everywhere. Since
Hλ and Fλ coincide for λ = λ1,3, we have Hλ =

〈
(λ− λ3)X1 + (λ− λ1)X2, (λ− λ3)Y1 +

(λ−λ1)Y2
〉
and TFλ =

〈
(λ−λ3)(a1

1X1 + b11Y1) + (λ−λ1)(a1
2X2 + b12Y2), (λ−λ3)(a2

1X1 +
b21Y1) + (λ − λ1)(a2

2X2 + b22Y2)
〉
for some vector fields X1,2, Y1,2 and functions aij , bij .

On the other hand, the equality H∞ = F∞, 〈X1 + X2, Y1 + Y2〉 = 〈(a1
1X1 + b11Y1) +

(a1
2X2 + b12Y2), (a2

1X1 + b21Y1) + (a2
2X2 + b22Y2)〉, implies due to the linear independence

of X1,2, Y1,2 that a1
1 = a1

2, a2
1 = a2

2, b11 = b12, b21 = b22 and TFλ =
〈
a1

1[(λ − λ3)X1 +
(λ− λ1)X2] + b11[(λ− λ3)Y1 + (λ− λ1)Y2], a2

1[(λ− λ3)X1 + (λ− λ1)X2] + b21[(λ− λ3)Y1 +
(λ− λ1)Y2]

〉
, which proves the claim.

In particular, H0 = TF0 = N(TF∞) is integrable and considerations above show that
independent first integrals of F∞ should satisfy (13.2) and conditions (13.4).

The last part of the theorem can be argued in the same way as that of Theorem
11.2.

Of course the construction can be repeated for other normal forms of Nijenhuis op-
erators in R4. However a natural question whether each Kronecker web leads to some
solution of the corresponding system is more subtle (cf. Remark 10.6).

14. An overview of related results. Below we list some related results that are
beyond the scope of this paper.

For the general theory of Veronese and Kronecker webs, including their local classi-
fication see [29], [31], [13]. In the last article and in [14] the relations of Kronecker webs
with systems of ODEs are discussed and adapted connections are built, which allow us
to distinguish among flat and nonflat webs (cf. the definition of flatness after Theorem
8.1).

The problem of bisymplectic realizations of generic Kronecker bihamiltonian struc-
tures is studied in [24].

Bäcklund transformations, contact symmetry algebras and some exact solutions of
the equations of types A–C (see Section 12) and also of type D, which corresponds to
the case of a Nijenhuis operator with imaginary eigenvalues and which we omit in this
article, can be found in [12].

As mentioned in Introduction in paper [5] one can find a description of relations
of Veronese webs in 3D with the hyper-CR Einstein–Weyl structures, in particular an
explicit formula of such a structure based on a solution of the Hirota equation. Similar
formulae for other equations of types A–D are discussed in [12]. In the recent paper [16] a
twistor geometric approach is used to treat on the same base equations of types A–D and
mentioned in Introduction hyper-CR equation, which cannot be included in the scheme
of [12]. In the same paper [16] there appears system (13.2) and its twistor geometric
deformations.

Finally, these deformations, their generalizations to higher dimensions, and relations
with the Plebański equation are discussed in [15].
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Appendix: Classification of cyclic Nijenhuis operators in 3D (after F.J. Turiel).
In papers [27, 10] there was obtained a local classification of complex analytic Nijenhuis
(1, 1)-tensors N : TM → TM (in a vicinity of a regular point [27, p. 451]) under addi-
tional assumption of existence of a complete family of the so-called conservation laws.
This assumption is equivalent to vanishing of the invariant PN , which is automatically
trivial in the case of cyclic N [27, p. 450], i.e. when the space TxM is cyclic for Nx,
x ∈M . Here we recall the normal forms obtained in this case for three-dimensional M .

The results of [27] imply that for any cyclic Nijenhuis (1, 1)-tensor in a vicinity of a
regular point x0 there exist a local system of coordinates (x1, x2, x3) and pairwise distinct
constants a1, a2, a3 such that the coordinates (x0

1, x
0
2, x

0
3) of x0 are also pairwise distinct

and the matrix N of the corresponding operator in the basis ∂
∂x1

, ∂
∂x2

, ∂
∂x3

is one from
the following list. Besides the matrices N themselves below we list also their Frobenius
forms F and their Jordan forms J .

A0. NA0 = NA0(x1, x2, x3) :=

 x1 0 0
0 x2 0
0 0 x3

,
FA0 = FA0(x1, x2, x3) :=

 0 0 x1x2x3
1 0 −x1x2 − x1x3 − x2x3
0 1 x1 + x2 + x3

, JA0 = NA0.

A1. NA1 := NA0(x1, x2, a3), FA1 := FA0(x1, x2, a3), JA1 = NA1.

A2. NA2 := NA0(x1, a2, a3), FA2 := FA0(x1, a2, a3), JA2 = NA2.

A3. NA3 := NA0(a1, a2, a3), FA3 := FA0(a1, a2, a3), JA3 = NA3.

B0. NB0 = NB0(x2, x3) :=

 x2 1 0
0 x2 0
0 0 x3

,
FB0 = FB0(x2, x3) :=

 0 0 x2
2x3

1 0 −x2
2 − 2x2x3

0 1 2x2 + x3

, JB0 = NB0.

B1. NB1 := NB0(x2, a3), FB1 := FB0(x2, a3), JB1 := NB1.

B2. NB2 := NB0(a2, x3), FB2 := FB0(a2, x3), JB2 := NB2.

B3. NB3 := NB0(a2, a3), FB3 := FB0(a2, a3), JB3 := NB3.

C0. NC0 = NC0(x2, x3) :=

 x3 0 1
1 x3 −x2
0 0 x3

, FC0 = FC0(x3) :=

 0 0 x3
3

1 0 −3x2
3

0 1 3x3

,
JC0 = JC0(x3) :=

 x3 1 0
0 x3 1
0 0 x3

.
C1. NC1 := JC0(a3), FC1 := FC0(a3), JC1 := NC1.
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