NUMBER THEORY WEEK 2017
BANACH CENTER PUBLICATIONS, VOLUME 118
INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
WARSZAWA 2019

ON THE RANKIN-SELBERG CONVOLUTION
OF DEGREE 2 FUNCTIONS
FROM THE EXTENDED SELBERG CLASS

JERZY KACZOROWSKI

Faculty of Mathematics and Computer Science, Adam Mickiewicz University
Umultowska 87, 61-614 Poznan, Poland;

Institute of Mathematics of the Polish Academy of Sciences
Sniadeckich 8, 00-656 Warsaw, Poland
E-mail: kjerzy@amu. edu.pl

ALBERTO PERELLI

Dipartimento di Matematica, Universita di Genova
via Dodecaneso 35, 16146 Genova, Italy
E-mail: perelli@dima.unige.it

Abstract. Let F(s) be a function of degree 2 from the extended Selberg class. Assuming certain
bounds for the shifted convolution sums associated with F(s), we prove that the Rankin—Selberg
convolution F®F(s) has holomorphic continuation to the half-plane ¢ > @ apart from a simple
pole at s = 1, where 1/2 < # < 1 depends on the above mentioned bounds.

1. Introduction. It is well known that given two normalized Hecke eigenforms f, g of
weight k and level 1, with Fourier coefficients a(n) and b(n), respectively, the associated
Rankin—Selberg convolution

Lo o) = 55 20D

has meromorphic continuation to the whole complex plane. Moreover, L(s, f ® §) has a
simple pole at s = 1 if and only if f = g; see Chapter 13 of Iwaniec [2]. It is also well
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known that the Rankin—Selberg convolution has been generalized and extended in several
important directions.

Given a function F(s) from the extended Selberg class S* with Dirichlet coefficients
a(n), see below for definitions, its Rankin—Selberg convolution is defined as

a(m)?

n

FRF(s) = i

Very little is known about F®F(s) in the general framework of S*. Actually, as far as we
know, the only result of general nature on F®F(s) appears in Lemma C of [6], where we
proved that if F(s) has degree 1 < dr < 2, then F®F(s) is holomorphic for ¢ > 1 —§
apart from a simple pole at s = 1, where ¢ is a certain positive constant. However, we have
later shown in [8] that there exist no functions in S* with 1 < dr < 2, and apparently
the techniques that we used in Lemma C are not applicable for similar investigations
of functions with degree dp > 2 without injecting new ideas. Hence the problem of the
behavior of F®F(s) for general functions F(s) of degree dp > 2 is widely open, although
we may ask if any result can be obtained in the case dp = 2, which is on the border of
the range we treated previously, by elaborating on the techniques in [6].

In this paper we prove a conditional result about the meromorphic continuation of
F®F(s) for all functions of degree 2 in S¥. Our assumption concerns suitable bounds for
the shifted convolution sums

Se(x) =Y a(n)a(n + k)
n<x
with integers k > 1. These sums are classical objects, and non-trivial information about
their behavior as £ — oo is known in several concrete cases. We shall assume bounds of
type
Sk(x) < 2,

see (|1.3) below, while the Cauchy—Schwarz inequality immediately shows that, uniformly
in x and k,

Si(@) < 2(@FEFI+)/2(4 | py(@a(FEF)+e)/2 (1.1)

where 0, (F®F) is the abscissa of absolute convergence of F®F(s) and ¢ > 0 is arbitrarily
small. Actually, in general this bound is essentially optimal, since for example in the case
of the divisor function d(n) we have, for fixed k and x — oo,

Z d(n)d(n + k) ~ zPy(log x)

n<z

with certain polynomials Py (X), and o,(F®F) = 1 in this case. However, in several con-
crete examples of degree 2 L-functions, Sy (z) has no main term and non-trivial bounds
are known with 6 < 1; see e.g. Corollary in Jutila [3]. Therefore, some links exist be-
tween the Si(z)’s and F®F(s), but obtaining information on the analytic continuation
of FRF(s) to the left of o,( F®F) from suitable bounds for Sy (x), k > 1, is a non-trivial
problem. Here we propose an approach to this question.



ON THE RANKIN-SELBERG CONVOLUTION OF DEGREE 2 FUNCTIONS 27

The extended Selberg class S* consists of the Dirichlet series F(s) absolutely conver-
gent for o > 1 and such that (s—1)"F(s) extends to an entire function of finite order for
some integer m, satisfying the functional equation ®(s) = w®(1 —3) with |w| =1 and

=Q [T (\js + 1) F(s),

j=1
where @, A; > 0 and Rp; > 0. Degree, conductor and {-invariant of F' € S* are respec-
tively defined as

dr=2%"%, qr=00"Q[[ Y, = 22 ~1/2) = np + idpOr,
j=1 j=1

say; here we deal only with functions of degree dp = 2, and for simplicity we denote
the conductor simply by g. We refer to our surveys [4], [5], [I1], [I2], [13] and [14] for
definitions and the basic theory of the Selberg class. For F € S and an integer k > 0 we
define

Fi(s) = F&yF(s i slnjatn + k), (1.2)

clearly F®F(s) = Fy(s), and from the Cauchy-Schwarz inequality we see that FJ(s) is
absolutely convergent for o > 0, (F®F).
As outlined before, we assume that as  — oo

Si(r) <e o i uniformly for 1 < k < 27, (1.3)
where § € R and € > 0 is arbitrarily small.
THEOREM. Let F € S* with degree 2 satisfy (1.3) with some 1/2 < 0 < 0,(FQF). Then

0. (F®F) =1, and F®F(s) has holomorphic continuation to o > 6 apart from a simple
pole at s = 1.

Recalling that the Ramanujan condition states that a(n) < n® for every € > 0, we
have the following corollary.

COROLLARY. Under the same hypotheses, there exists a constant ¢y > 0 such that
> lam)? ~ co. (1.4)
n<z

Moreover, if F(s) satisfies the Ramanujan condition, then o,(F) = 1.
REMARKS.

1. It is interesting to note that the upper bound assumed in implies the asymptotic
formula .

2. We may assume a version of with a main term of type xzP;(logx, k), where
Py(X, k) is a polynomial of degree d, and get analogous consequences for FQF(s).

3. In general, 0,(F®F) = 1 does not imply that o,(F) = 1. Choose indeed a(n) = n'/*
if n is a square and a(n) = 0 otherwise; in this case it is easily seen that oo (F®F) = 1
but o,(F) = 5/8; such coefficients do not satisfy the Ramanujan condition.



28 J. KACZOROWSKI AND A. PERELLI

4. Tt is well known that the function L(s, f ® f) introduced above may have, in addition
to the pole at s = 1, also poles on the line ¢ = 1/4; see again Chapter 13 of [2].
Therefore we cannot expect (s — 1)F®F(s) to have a holomorphic continuation to
a much wider right half-plane than o > 6.

5. A final remark on the above corollary, namely it is not true that o,(F) = 1 for every
F ¢ S*. Indeed, it follows from Theorem 1 of [7] that for every F' € S* we have
0a(F) > (dp + 1)/2dp, and in [I0] (see p. 1347) we have shown that there exist
F € S* with o,(F) arbitrarily close to 1/2; our examples in [I0] do not satisfy the
Ramanujan condition.

Acknowledgments. This research was partially supported by PRIN-2015 Number The-
ory and Arithmetic Geometry and by the Polish National Science Centre grant number
2017/25/B/ST1/00208. A.P. is a member of GNAMPA.

2. Proofs

2.1. Lemmas. We first obtain a suitable version of the basic transformation formula
for the linear twists F(s, ) of functions ' € S* of degree 2, defined for a > 0 and o > 1
by

F(s,a) =Y W 7
n=1

obtained in Theorem 1.2 of [9]. We recall that 65 is the internal shift defined in Section 1.

LEMMA 1. Let F € 8% with degree 2 and conductor q, and let o > 0. Then there exists
a polynomial Q(s) such that

Qs)

F(S,Oé) = F(s +1, a) +(1+ qa>2s—1+2i9p

X {F(s, 1fqa> _ CIOé(;i-l Q(S)F<S+ 1, lfQ(X)} + H(s, ),

where H (s, a) is holomorphic for o > 0 and differentiable with continuous derivative for
a>0.

(2.1)

Proof. We start with the transformation formula in Theorem 1.2 of [9] with the choice
K =1, which we rewrite as

) 1 — 1
F(S7 a) = Clqsa2s_1+2wF {F(S + 2i0p, —> + CQOZQl(S)F<S + 1+ 2i0p, —) }
qe qe

+ Hi(s,a). (2.2)

Here Q1(s) is a certain polynomial, ¢; # 0, j = 1,2, are constants depending on F'(s),
and Hj(s,a) is holomorphic for ¢ > 0 and continuously differentiable for o« > 0. The
fact that Hy(s,«) is continuously differentiable for o > 0, which will be important later
on in the paper, follows easily from the proof of the above mentioned Theorem 1.2,
since %Hl(s,a) can be expressed, for ¢ > 0 and « > 0, in terms of absolutely and
uniformly convergent series of continuous functions in a. Note that formally Theorem 1.2
in [9] asserts that H; (s, «) is holomorphic in a smaller region, but actually the condition
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on the region is needed only for the bound on Hj(s,a) stated immediately after. Since
F(s,a) is 1-periodic in «, (2.2)) yields

szt {F(s + 2i0p, ql> + c20Q1(s)F <s + 1+ 2i0p, ;}) }
— (a+ 1)25—1+2i9p
= . 1 1
+H2(S,Oé),

where Hs(s, «) has the same properties as Hi (s, «). Lemma (1| follows now changing first
s+ 2i0F — s, then taking conjugates on both sides and finally changing o — 1/(qo) and
S35 . m

For later reference, we note that changing s — 3 and taking conjugates in (2.1]) we
obtain also

(3_|_1 _a) (1+qa)237172il9p
@ (2.3)

_ 11— — __
X {F(s,—lfqa) _ qa(:— Q(S)F(s—i-l,—lfqa)} + H(s,a),

where H (s, a) has the same properties of H(s,a) and Q(s) is a polynomial.
Given a test function ¢ € C§°((0,00)) and F € S* we define

— [ #@ (1~ (1400 ) da, (2.9

0
where ¢ > 0 is the conductor of F(s). Clearly, hy(s) is an entire function. The link
between the shifted convolutions and the Rankin-Selberg convolution is provided by the

following basic lemma.

LEMMA 2. Let F € 8% with d = 2, Fy(s) be as in (1.2) and 0 > o,(FQF). Then for any
test function ¢ € C5°((0,00)) we have

he(s)FRF (s ZAk YFy(s +ZBk VFi(s) + H(s), (2.5)

where H(s) is holomorphic for o > max(1/2,0,(F®F) — 1) and Ay(s), Br(s) are entire
and bounded by Oc (k=) for every C > 0, uniformly for s in any compact subset of C.

Proof. For o > 1 we consider the integral

s) = /o #(a)F(s,a)F(s, —a)da, (2.6)
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and we compute [ (s) in two different ways. First, a term-by-term integration shows that

Z Z mat / b(a mayda =30 30 L 5
~ n+k;) 2 = a(n)a(n + k) ~
= ¢(0)FRF(2s) + (;5(—14;) + ———————= (k)
ZZ ot A0S
= 3(0)FRF (25) + X(s) + X(s), (2.7)

say. Moreover, since ¢(«) is a smooth test function, for k € Z,k # 0, and any C > 0 we
have

$(k) <c |k|7C. (2.8)
Thanks to the sharp decay of ¢(k) in ([2-8), for any €,C > 0 we have

= a(n ~ (n k a(n+ k)|
2=y W 5 g k>( + +0(Z' Iy )

n=1 1<k<n® k>ns
-3 ‘;(js) 3 d(-k)an+ B (2.9)
n= 1<k<ne
> a(n) ~ - 1 1
+ S Seniaa B (g )+ A
7;1 n o LT (n+k) n 1

say, where f1(s) is an entire function. We denote by f2(s) the second term in the last
equation in (2.9)); again thanks to (2.8)), and to Cauchy—Schwarz inequality, we have

5) < Is |Z|a Z k’“ﬁ |a(n—|—k;)|

1<k<n®

~ a (n+k)| a(n
<<|8|Zk|¢(*k)l > ik )20+1 <|s |Z| 20+1 ,
k=1

nzkl/s

hence f3(s) is holomorphic for 20 > o, (F®F) — 1. The first term in the last equation in
E9) cquals

9/5(*14) Z a( n+k Z k)Fr(2s)

-1 n>kL/e k=1
+O<Z|$(_k) Z W)
k=1 n<kl/e
_ (g( k) Fy(25) +0(Z| |kC)
k=1

¢A5( k) Er(25) + f3(s),

TTMNM@

say, where ¢ = ¢(o, ¢) is a certain constant. Hence, once more thanks to (2.8]), f3(s) is an
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entire function. Therefore, collecting the above results we have

oo

2(s) =Y (k) Fi(25) + fa(s), (2.10)
k=1
where f4(s) is holomorphic for 20 > ¢,(F®F) — 1. In a completely analogous way we
also obtain

M8

k)Fi(2s) + f5(s), (2.11)
k:l

again f5(s) being holomorphic for 20 > 0,(F®F) — 1. From (2.7)), (2.10) and (2.11)) we
finally obtain

oo

I(s) = $(0)FRF(2s) Z k)F(2s) i k)Fr(2s) + f(s), (2.12)

k=1

where f(s) is holomorphic for 20 > aa(F®F) —1.
Next we compute the integral in using the transformation formulae (2.1])
and . With obvious notation, for o > 1 we rewrite ) and . as

a) = ZGj(s,a) and F(s,—a) ZKZ (s,) (2.13)
j=1
hence plugging into we obtain
4 e 4 4
I(s) = ZZ/ P(@)Gj(s,0)Ke(s,a)da =Y "> T, (s), (2.14)
0

j=1r¢=1 Jj=14=1
say. Clearly,
I; ¢(s) is holomorphic for o > 0 for every j,¢ € {1,3,4}. (2.15)
Switching summation and integration we have

(b 25s—1—2i0
o) = Q) 32 3 W) [T gtz (Yo

n=1m=1

and, writing a~1(1 + qa)?5717297 = pi(a, s) + ipa(a,s) with real functions p;(a, s),
j =1,2, we express the above integral as I (s,n,m) 4+ iI3(s, n, m) with

/000 d()p;(a, s)e(—na +my fqa) da. (2.16)

Since p;(a,s) is clearly continuously differentiable in «, the total variation V;(s) of
d(a)pj(a, s) for o € (0,00) is uniformly bounded for s in any compact subset of C.
Let

fam(a@) =—na+m

@
and V(s) = max(Vi(s), Va(s)).

T (s) x(Vi(s), Va(s))

It is easily seen, by checking its second derivative, that f, ., («) has a monotonic first

derivative for a > 0 for every m,m > 1. Therefore, for n,,m > 1 we may apply the

first and second derivative tests to the integrals I;(s,n,m) in -, see Lemmas 5.1.2
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and 5.1.3 of Huxley [I]. Since

frm(e) ==n+ s and - f(e) = -

for j = 1,2 we obtain for suitable constants 0 < a < b:

2mgq
(1+qa)?’

V(s)/n ifl1<m<an
Ii(s,n,m) < S V(s)/y/m ifan <m <bn
Vi(s)/m if m > bn,

where a,b and the implied constant in the <-symbol may depend on ¢(a) and F(s). As
a consequence, for 7 = 1,2 we have

Z Z ns+1ms J S n m)

n=1m=1 ‘

o0 o0
SO DIEELES WL DS el s
na+2 o’+1 ma+1/2 n0+1 mo+1
n=1 m<an n=1 an<m<bn m>bn
o0 oo
<<z*'“< ey sy
20+1—¢ 2¢7+1/2 € n0+1mo+1’
n=1 n=1 n=1m=1

and all the sums in the last row are uniformly convergent in any compact subset of the
half-plane 20 > 1/2. Hence

I 5(s) is holomorphic for 20 > 1/2, (2.17)
and similar arguments show that
I51(s), I2,3(s) and I3 o(s) are holomorphic for 20 > 1/2. (2.18)

The integral I 4(s) can be treated using only the first derivative test. Switching summa-
tion and integration we have

I 4(s) = Z % /0°° () (1 + Q()g)2sl+2i9FH(s,a)e<_n

n=1

)da
1+ qa

and, again splitting (1 + ga)?*~ 11297 [ (s, o) into real and imaginary parts, we rewrite
the above integral as I (s,n) + ila(s,n) with

(s,m) /gb p]as( 1+qa>

and certain real functions p;(a,s). Here the p;(c,s)’s have the same properties as in
- thanks to the corresponding properties of H (s «) in . Moreover, by the first
derivative test we have

V(s)

Ii(s,n) < -

where V() is the maximum of the total variations of ¢(a)p; (e, s), j = 1,2, for a € (0, 00).

As a consequence we have
o la(n)|
S) < Z not+l °
n=1
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Since a completely similar argument can be applied to Iy 2(s), we deduce that
I5,4(s) and Iy 2(s) are holomorphic for o > 0. (2.19)

Finally we deal with I 2(5). Here we have

. a
Iy o(s gzz nSmS / o(a)(1 + ga)*~ b ( (n_m)lJrqa)da

(2.20)
= FRF(2s) / d(a)(1 + qa)2(23_1) da + Jao(s) + J22(s),
0
where
= a(n) a(n + k) 251
Ja2(s) = an ; B(@)(1 + go)™ )e<k ) da (2.21)
2,2 ; ;::1 ns (n-+ k‘ / 1+g¢

and Jaa(s) = Jo 2( After the substitution ﬁ — « the integral in (2.21) becomes
the Fourier transform at —k of a certain smooth function with compact support in (0, 00)
which we denote by ¢(«,s). By the same argument leading to and ( - we

therefore obtain
o0

Jop(s) =Y O(—k,8)Fe(25)+g1(s) and  Jao(s) = > ok, s)Fr(25)+gals), (2.22)
k=1 k=1

where ¢7(kz, 5) is entire and bounded by O¢ (k%) for every C > 0, uniformly for s in any
compact subset of C, and gi(s), g2(s) are holomorphic for 20 > o,(F®F) — 1. Hence

(2.20) and (2.22)) show that

12,2(3) = F®F(25) /O‘oo ¢(a)(1 X qa)2(25—1) da

- - (2.23)
+ ) b1k, s)Fu(2s) + > di(k,s)Fr(2s) + ga(s)
k=1 k=1
with g3(s) holomorphic for 20 > ¢,(F®F) — 1.
From (2.14), (2.15), (2.17), (2.18)), (2.19) and (2.23) we finally get
I(s) = F®F(2s) / P(a)(1 + qo)** VD da
’ (2.24)

+ Y 01(—h 8)Fi(2s) + Y 61(k, ) Frl(2s) + g(s),
k=1 k=1
where g(s) is holomorphic for 20 > max(1/2 0o (F®F) —1). In view of and of the
propertles of ¢(k s) reported after (2.22] Lemmanow follows by comparmg with
and changing 2s — s. m

The next lemma contains the properties of the function he(s), defined in ([2.4)), re-
quired in the proof of our theorem. Note that such properties do not depend on the value
of the conductor q.

LEMMA 3. Let ¢ € C§°((0,00)), ¢(x) > 0 but not identically vanishing. Then the entire
function hy(s) has a simple zero at s =1 and hy(s) #0 for s € R\ {1}.
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Proof. Clearly we have hg(1) =0 and

—hy(1) = 2/000 ¢(a)log(l + qo) da > 0,

hence hy(s) has a simple zero at s = 1. Moreover, it is clear from (2.4) that hy(s) > 0
for s <1, and hy(s) <Ofors>1. m

2.2. Proof of the theorem and its corollary Let € > 0 be as in ([1.3). Since clearly
0,(F®F) < 2, by partial summation, and ( we have

ia() a(n+k) / Se(x)r1 dz

n=1
kl/e oo
< |S| 1+5 :E+k)1+€ —o— 1dl’+| | xafafl dr < |S|k2/€
kl/e

provided o > 6 + ¢, for any § > 0. Hence Fj(s) is holomorphic for ¢ > 6 and satisfies
Fi(s) < k?/¢ uniformly for s in any compact subset of the half-plane o > 6; the same
holds for Fj(s). Applying Lemma [2| with C' = 2/¢ + 2 and recalling that § > 1/2, we
deduce that the right hand side of is holomorphic for o > max(0,0,(F®F) — 1).
Hence from Lemma |3| we see that F®F(s) is meromorphic in the same half-plane, and
its only real singularity in such half-plane is at most a simple pole at s = 1. Since by the
hypothesis of the theorem we infer that max (6, o, (F®F)—1) < 0,(F®F), from Landau’s
theorem on Dirichlet series with non-negative coefficients we deduce that FQF(s) has a
simple pole at s = 1 and o, (F®F) = 1; the theorem is therefore proved. =

Moving on to the corollary, the asymptotic formula (1.4) follows from the theorem
by a standard Tauberian theorem, since the coefficients of F®F(s) are non-negative.
Moreover, under the Ramanujan condition, by the Cauchy—Schwarz inequality and (|1.4)

we have
Z|a )<z  and 33<<Z|a )|? < af Z|a

n<x n<x n<x

for every € > 0, hence 0, (F) =1. =
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