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Abstract. Let F (s) be a function of degree 2 from the extended Selberg class. Assuming certain
bounds for the shifted convolution sums associated with F (s), we prove that the Rankin–Selberg
convolution F⊗F (s) has holomorphic continuation to the half-plane σ > θ apart from a simple
pole at s = 1, where 1/2 < θ < 1 depends on the above mentioned bounds.

1. Introduction. It is well known that given two normalized Hecke eigenforms f, g of
weight k and level 1, with Fourier coefficients a(n) and b(n), respectively, the associated
Rankin–Selberg convolution

L(s, f ⊗ g) =
∞∑
n=1

a(n)b(n)
ns

has meromorphic continuation to the whole complex plane. Moreover, L(s, f ⊗ g) has a
simple pole at s = 1 if and only if f = g; see Chapter 13 of Iwaniec [2]. It is also well
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known that the Rankin–Selberg convolution has been generalized and extended in several
important directions.

Given a function F (s) from the extended Selberg class S] with Dirichlet coefficients
a(n), see below for definitions, its Rankin–Selberg convolution is defined as

F⊗F (s) =
∞∑
n=1

|a(n)|2

ns
.

Very little is known about F⊗F (s) in the general framework of S]. Actually, as far as we
know, the only result of general nature on F⊗F (s) appears in Lemma C of [6], where we
proved that if F (s) has degree 1 < dF < 2, then F⊗F (s) is holomorphic for σ > 1 − δ
apart from a simple pole at s = 1, where δ is a certain positive constant. However, we have
later shown in [8] that there exist no functions in S] with 1 < dF < 2, and apparently
the techniques that we used in Lemma C are not applicable for similar investigations
of functions with degree dF ≥ 2 without injecting new ideas. Hence the problem of the
behavior of F⊗F (s) for general functions F (s) of degree dF ≥ 2 is widely open, although
we may ask if any result can be obtained in the case dF = 2, which is on the border of
the range we treated previously, by elaborating on the techniques in [6].

In this paper we prove a conditional result about the meromorphic continuation of
F⊗F (s) for all functions of degree 2 in S]. Our assumption concerns suitable bounds for
the shifted convolution sums

Sk(x) =
∑
n≤x

a(n)a(n+ k)

with integers k ≥ 1. These sums are classical objects, and non-trivial information about
their behavior as x→∞ is known in several concrete cases. We shall assume bounds of
type

Sk(x)� xθ,

see (1.3) below, while the Cauchy–Schwarz inequality immediately shows that, uniformly
in x and k,

Sk(x)� x(σa(F⊗F )+ε)/2(x+ k)(σa(F⊗F )+ε)/2, (1.1)

where σa(F⊗F ) is the abscissa of absolute convergence of F⊗F (s) and ε > 0 is arbitrarily
small. Actually, in general this bound is essentially optimal, since for example in the case
of the divisor function d(n) we have, for fixed k and x→∞,∑

n≤x

d(n)d(n+ k) ∼ xPk(log x)

with certain polynomials Pk(X), and σa(F⊗F ) = 1 in this case. However, in several con-
crete examples of degree 2 L-functions, Sk(x) has no main term and non-trivial bounds
are known with θ < 1; see e.g. Corollary in Jutila [3]. Therefore, some links exist be-
tween the Sk(x)’s and F⊗F (s), but obtaining information on the analytic continuation
of F⊗F (s) to the left of σa(F⊗F ) from suitable bounds for Sk(x), k ≥ 1, is a non-trivial
problem. Here we propose an approach to this question.
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The extended Selberg class S] consists of the Dirichlet series F (s) absolutely conver-
gent for σ > 1 and such that (s−1)mF (s) extends to an entire function of finite order for
some integer m, satisfying the functional equation Φ(s) = ωΦ(1− s) with |ω| = 1 and

Φ(s) = Qs
r∏
j=1

Γ(λjs+ µj)F (s),

where Q,λj > 0 and <µj ≥ 0. Degree, conductor and ξ-invariant of F ∈ S] are respec-
tively defined as

dF = 2
r∑
j=1

λj , qF = (2π)dFQ2
r∏
j=1

λ
2λj

j , ξF = 2
r∑
j=1

(µj − 1/2) = ηF + idF θF ,

say; here we deal only with functions of degree dF = 2, and for simplicity we denote
the conductor simply by q. We refer to our surveys [4], [5], [11], [12], [13] and [14] for
definitions and the basic theory of the Selberg class. For F ∈ S] and an integer k ≥ 0 we
define

Fk(s) = F⊗kF (s) =
∞∑
n=1

a(n)a(n+ k)
ns

; (1.2)

clearly F⊗F (s) = F0(s), and from the Cauchy–Schwarz inequality we see that Fk(s) is
absolutely convergent for σ > σa(F⊗F ).

As outlined before, we assume that as x→∞

Sk(x)�ε,θ x
θ uniformly for 1 ≤ k ≤ xε, (1.3)

where θ ∈ R and ε > 0 is arbitrarily small.

Theorem. Let F ∈ S] with degree 2 satisfy (1.3) with some 1/2 < θ < σa(F⊗F ). Then
σa(F⊗F ) = 1, and F⊗F (s) has holomorphic continuation to σ > θ apart from a simple
pole at s = 1.

Recalling that the Ramanujan condition states that a(n) � nε for every ε > 0, we
have the following corollary.

Corollary. Under the same hypotheses, there exists a constant c0 > 0 such that∑
n≤x

|a(n)|2 ∼ c0x. (1.4)

Moreover, if F (s) satisfies the Ramanujan condition, then σa(F ) = 1.

Remarks.

1. It is interesting to note that the upper bound assumed in (1.3) implies the asymptotic
formula (1.4).

2. We may assume a version of (1.3) with a main term of type xPd(log x, k), where
Pd(X, k) is a polynomial of degree d, and get analogous consequences for F⊗F (s).

3. In general, σa(F⊗F ) = 1 does not imply that σa(F ) = 1. Choose indeed a(n) = n1/4

if n is a square and a(n) = 0 otherwise; in this case it is easily seen that σa(F⊗F ) = 1
but σa(F ) = 5/8; such coefficients do not satisfy the Ramanujan condition.
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4. It is well known that the function L(s, f ⊗ f) introduced above may have, in addition
to the pole at s = 1, also poles on the line σ = 1/4; see again Chapter 13 of [2].
Therefore we cannot expect (s − 1)F⊗F (s) to have a holomorphic continuation to
a much wider right half-plane than σ > θ.

5. A final remark on the above corollary, namely it is not true that σa(F ) = 1 for every
F ∈ S]. Indeed, it follows from Theorem 1 of [7] that for every F ∈ S] we have
σa(F ) ≥ (dF + 1)/2dF , and in [10] (see p. 1347) we have shown that there exist
F ∈ S] with σa(F ) arbitrarily close to 1/2; our examples in [10] do not satisfy the
Ramanujan condition.

Acknowledgments. This research was partially supported by PRIN-2015 Number The-
ory and Arithmetic Geometry and by the Polish National Science Centre grant number
2017/25/B/ST1/00208. A.P. is a member of GNAMPA.

2. Proofs

2.1. Lemmas. We first obtain a suitable version of the basic transformation formula
for the linear twists F (s, α) of functions F ∈ S] of degree 2, defined for α > 0 and σ > 1
by

F (s, α) =
∞∑
n=1

a(n)e(−nα)
ns

,

obtained in Theorem 1.2 of [9]. We recall that θF is the internal shift defined in Section 1.

Lemma 1. Let F ∈ S] with degree 2 and conductor q, and let α > 0. Then there exists
a polynomial Q(s) such that

F (s, α) = Q(s)
α

F (s+ 1, α) + (1 + qα)2s−1+2iθF

×
{
F

(
s,

α

1 + qα

)
− qα+ 1

α
Q(s)F

(
s+ 1, α

1 + qα

)}
+H(s, α),

(2.1)

where H(s, α) is holomorphic for σ > 0 and differentiable with continuous derivative for
α > 0.

Proof. We start with the transformation formula in Theorem 1.2 of [9] with the choice
K = 1, which we rewrite as

F (s, α) = c1q
sα2s−1+2iθF

{
F

(
s+ 2iθF ,−

1
qα

)
+ c2αQ1(s)F

(
s+ 1 + 2iθF ,−

1
qα

)}
+H1(s, α). (2.2)

Here Q1(s) is a certain polynomial, cj 6= 0, j = 1, 2, are constants depending on F (s),
and H1(s, α) is holomorphic for σ > 0 and continuously differentiable for α > 0. The
fact that H1(s, α) is continuously differentiable for α > 0, which will be important later
on in the paper, follows easily from the proof of the above mentioned Theorem 1.2,
since ∂

∂αH1(s, α) can be expressed, for σ > 0 and α > 0, in terms of absolutely and
uniformly convergent series of continuous functions in α. Note that formally Theorem 1.2
in [9] asserts that H1(s, α) is holomorphic in a smaller region, but actually the condition
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on the region is needed only for the bound on H1(s, α) stated immediately after. Since
F (s, α) is 1-periodic in α, (2.2) yields

α2s−1+2iθF

{
F

(
s+ 2iθF ,−

1
qα

)
+ c2αQ1(s)F

(
s+ 1 + 2iθF ,−

1
qα

)}
= (α+ 1)2s−1+2iθF

×
{
F

(
s+ 2iθF ,−

1
q(α+ 1)

)
+ c2(α+ 1)Q1(s)F

(
s+ 1 + 2iθF ,−

1
q(α+ 1)

)}
+H2(s, α),

where H2(s, α) has the same properties as H1(s, α). Lemma 1 follows now changing first
s+ 2iθF 7→ s, then taking conjugates on both sides and finally changing α 7→ 1/(qα) and
s 7→ s.

For later reference, we note that changing s 7→ s and taking conjugates in (2.1) we
obtain also

F (s,−α) = Q(s)
α

F (s+ 1,−α) + (1 + qα)2s−1−2iθF

×
{
F

(
s,− α

1 + qα

)
− qα+ 1

α
Q(s)F

(
s+ 1,− α

1 + qα

)}
+H(s, α),

(2.3)

where H(s, α) has the same properties of H(s, α) and Q(s) is a polynomial.
Given a test function φ ∈ C∞0 ((0,∞)) and F ∈ S] we define

hφ(s) =
∫ ∞

0
φ(α)

(
1− (1 + qα)2(s−1)) dα, (2.4)

where q > 0 is the conductor of F (s). Clearly, hφ(s) is an entire function. The link
between the shifted convolutions and the Rankin–Selberg convolution is provided by the
following basic lemma.

Lemma 2. Let F ∈ S] with d = 2, Fk(s) be as in (1.2) and σ > σa(F⊗F ). Then for any
test function φ ∈ C∞0 ((0,∞)) we have

hφ(s)F⊗F (s) =
∞∑
k=1

Ak(s)Fk(s) +
∞∑
k=1

Bk(s)F k(s) +H(s), (2.5)

where H(s) is holomorphic for σ > max(1/2, σa(F⊗F )− 1) and Ak(s), Bk(s) are entire
and bounded by OC(k−C) for every C > 0, uniformly for s in any compact subset of C.

Proof. For σ > 1 we consider the integral

I(s) =
∫ ∞

0
φ(α)F (s, α)F (s,−α) dα, (2.6)
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and we compute I(s) in two different ways. First, a term-by-term integration shows that

I(s) =
∞∑
n=1

∞∑
m=1

a(n)a(m)
nsms

∫ ∞
0

φ(α)e(−(n−m)α) dα =
∞∑
n=1

∞∑
m=1

a(n)a(m)
nsms

φ̂(n−m)

= φ̂(0)F⊗F (2s) +
∞∑
k=1

∞∑
n=1

a(n)a(n+ k)
ns(n+ k)s φ̂(−k) +

∞∑
k=1

∞∑
n=1

a(n)a(n+ k)
ns(n+ k)s φ̂(k)

= φ̂(0)F⊗F (2s) + Σ(s) + Σ(s), (2.7)

say. Moreover, since φ(α) is a smooth test function, for k ∈ Z, k 6= 0, and any C > 0 we
have

φ̂(k)�C |k|−C . (2.8)

Thanks to the sharp decay of φ̂(k) in (2.8), for any ε, C > 0 we have

Σ(s) =
∞∑
n=1

a(n)
ns

∑
1≤k≤nε

φ̂(−k)a(n+ k)
(n+ k)s +O

( ∞∑
n=1

|a(n)|
nσ

∑
k>nε

|a(n+ k)|
|n+ k|σkC/ε

)

=
∞∑
n=1

a(n)
n2s

∑
1≤k≤nε

φ̂(−k)a(n+ k)

+
∞∑
n=1

a(n)
ns

∑
1≤k≤nε

φ̂(−k)a(n+ k)
(

1
(n+ k)s −

1
ns

)
+ f1(s),

(2.9)

say, where f1(s) is an entire function. We denote by f2(s) the second term in the last
equation in (2.9); again thanks to (2.8), and to Cauchy–Schwarz inequality, we have

f2(s)� |s|
∞∑
n=1

|a(n)|
nσ

∑
1≤k≤nε

k|φ̂(−k)| |a(n+ k)|
nσ+1

� |s|
∞∑
k=1

k|φ̂(−k)|
∑

n≥k1/ε

|a(n)a(n+ k)|
n2σ+1 � |s|

∞∑
n=1

|a(n)|2

n2σ+1 ,

hence f2(s) is holomorphic for 2σ > σa(F⊗F )− 1. The first term in the last equation in
(2.9) equals

∞∑
k=1

φ̂(−k)
∑

n≥k1/ε

a(n)a(n+ k)
n2s =

∞∑
k=1

φ̂(−k)Fk(2s)

+O

( ∞∑
k=1
|φ̂(−k)|

∑
n<k1/ε

|a(n)a(n+ k)|
n2σ

)

=
∞∑
k=1

φ̂(−k)Fk(2s) +O
( ∞∑
k=1
|φ̂(−k)|kc

)
=
∞∑
k=1

φ̂(−k)Fk(2s) + f3(s),

say, where c = c(σ, ε) is a certain constant. Hence, once more thanks to (2.8), f3(s) is an
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entire function. Therefore, collecting the above results we have

Σ(s) =
∞∑
k=1

φ̂(−k)Fk(2s) + f4(s), (2.10)

where f4(s) is holomorphic for 2σ > σa(F⊗F ) − 1. In a completely analogous way we
also obtain

Σ(s) =
∞∑
k=1

φ̂(k)F k(2s) + f5(s), (2.11)

again f5(s) being holomorphic for 2σ > σa(F⊗F ) − 1. From (2.7), (2.10) and (2.11) we
finally obtain

I(s) = φ̂(0)F⊗F (2s) +
∞∑
k=1

φ̂(−k)Fk(2s) +
∞∑
k=1

φ̂(k)F k(2s) + f(s), (2.12)

where f(s) is holomorphic for 2σ > σa(F⊗F )− 1.
Next we compute the integral in (2.6) using the transformation formulae (2.1)

and (2.3). With obvious notation, for σ > 1 we rewrite (2.1) and (2.3) as

F (s, α) =
4∑
j=1

Gj(s, α) and F (s,−α) =
4∑
`=1

K`(s, α), (2.13)

hence plugging (2.13) into (2.6) we obtain

I(s) =
4∑
j=1

4∑
`=1

∫ ∞
0

φ(α)Gj(s, α)K`(s, α) dα =
4∑
j=1

4∑
`=1

Ij,`(s), (2.14)

say. Clearly,

Ij,`(s) is holomorphic for σ > 0 for every j, ` ∈ {1, 3, 4}. (2.15)

Switching summation and integration we have

I1,2(s) = Q(s)
∞∑
n=1

∞∑
m=1

a(n)a(m)
ns+1ms

∫ ∞
0

φ(α)
α

(1 + qα)2s−1−2iθF e

(
−nα+m

α

1 + qα

)
dα,

and, writing α−1(1 + qα)2s−1−2iθF = ρ1(α, s) + iρ2(α, s) with real functions ρj(α, s),
j = 1, 2, we express the above integral as I1(s, n,m) + iI2(s, n,m) with∫ ∞

0
φ(α)ρj(α, s)e

(
−nα+m

α

1 + qα

)
dα. (2.16)

Since ρj(α, s) is clearly continuously differentiable in α, the total variation Vj(s) of
φ(α)ρj(α, s) for α ∈ (0,∞) is uniformly bounded for s in any compact subset of C.
Let

fn,m(α) = −nα+m
α

1 + qα
and V (s) = max(V1(s), V2(s)).

It is easily seen, by checking its second derivative, that fn,m(α) has a monotonic first
derivative for α > 0 for every n,m ≥ 1. Therefore, for n,m ≥ 1 we may apply the
first and second derivative tests to the integrals Ij(s, n,m) in (2.16), see Lemmas 5.1.2
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and 5.1.3 of Huxley [1]. Since

f ′n,m(α) = −n+ m

(1 + qα)2 and f ′′n,m(α) = − 2mq
(1 + qα)3 ,

for j = 1, 2 we obtain for suitable constants 0 < a < b:

Ij(s, n,m)�


V (s)/n if 1 ≤ m ≤ an
V (s)/

√
m if an < m < bn

V (s)/m if m ≥ bn,

where a, b and the implied constant in the �-symbol may depend on φ(α) and F (s). As
a consequence, for j = 1, 2 we have
∞∑
n=1

∞∑
m=1

∣∣∣∣a(n)a(m)
ns+1ms

Ij(s, n,m)
∣∣∣∣

�
∞∑
n=1

|a(n)|
nσ+2

∑
m≤an

|a(m)|
mσ

+
∞∑
n=1

|a(n)|
nσ+1

∑
an<m<bn

|a(m)|
mσ+1/2 +

∞∑
n=1

|a(n)|
nσ+1

∑
m≥bn

|a(m)|
mσ+1

�
∞∑
n=1

|a(n)|
n2σ+1−ε +

∞∑
n=1

|a(n)|
n2σ+1/2−ε +

∞∑
n=1

∞∑
m=1

|a(n)a(m)|
nσ+1mσ+1 ,

and all the sums in the last row are uniformly convergent in any compact subset of the
half-plane 2σ > 1/2. Hence

I1,2(s) is holomorphic for 2σ > 1/2, (2.17)

and similar arguments show that

I2,1(s), I2,3(s) and I3,2(s) are holomorphic for 2σ > 1/2. (2.18)

The integral I2,4(s) can be treated using only the first derivative test. Switching summa-
tion and integration we have

I2,4(s) =
∞∑
n=1

a(n)
ns

∫ ∞
0

φ(α)(1 + qα)2s−1+2iθFH(s, α)e
(
−n α

1 + qα

)
dα

and, again splitting (1 + qα)2s−1+2iθFH(s, α) into real and imaginary parts, we rewrite
the above integral as I1(s, n) + iI2(s, n) with

Ij(s, n) =
∫ ∞

0
φ(α)ρj(α, s)e

(
−n α

1 + qα

)
dα

and certain real functions ρj(α, s). Here the ρj(α, s)’s have the same properties as in
(2.16), thanks to the corresponding properties of H(s, α) in (2.3). Moreover, by the first
derivative test we have

Ij(s, n)� V (s)
n

,

where V (s) is the maximum of the total variations of φ(α)ρj(α, s), j = 1, 2, for α ∈ (0,∞).
As a consequence we have

I2,4(s)�
∞∑
n=1

|a(n)|
nσ+1 .
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Since a completely similar argument can be applied to I4,2(s), we deduce that

I2,4(s) and I4,2(s) are holomorphic for σ > 0. (2.19)

Finally we deal with I2,2(s). Here we have

I2,2(s) =
∞∑
n=1

∞∑
m=1

a(n)a(m)
nsms

∫ ∞
0

φ(α)(1 + qα)2(2s−1)e

(
−(n−m) α

1 + qα

)
dα

= F⊗F (2s)
∫ ∞

0
φ(α)(1 + qα)2(2s−1) dα+ J2,2(s) + J2,2(s),

(2.20)

where

J2,2(s) =
∞∑
k=1

∞∑
n=1

a(n)
ns

a(n+ k)
(n+ k)s

∫ ∞
0

φ(α)(1 + qα)2(2s−1)e

(
k

α

1 + qα

)
dα (2.21)

and J2,2(s) = J2,2(s). After the substitution α
1+qα 7→ α the integral in (2.21) becomes

the Fourier transform at −k of a certain smooth function with compact support in (0,∞)
which we denote by φ(α, s). By the same argument leading to (2.10) and (2.11) we
therefore obtain

J2,2(s) =
∞∑
k=1

φ̂(−k, s)Fk(2s)+g1(s) and J2,2(s) =
∞∑
k=1

φ̂(k, s)F k(2s)+g2(s), (2.22)

where φ̂(k, s) is entire and bounded by OC(k−C) for every C > 0, uniformly for s in any
compact subset of C, and g1(s), g2(s) are holomorphic for 2σ > σa(F⊗F ) − 1. Hence
(2.20) and (2.22) show that

I2,2(s) = F⊗F (2s)
∫ ∞

0
φ(α)(1 + qα)2(2s−1) dα

+
∞∑
k=1

φ̂1(−k, s)Fk(2s) +
∞∑
k=1

φ̂1(k, s)F k(2s) + g3(s)
(2.23)

with g3(s) holomorphic for 2σ > σa(F⊗F )− 1.
From (2.14), (2.15), (2.17), (2.18), (2.19) and (2.23) we finally get

I(s) = F⊗F (2s)
∫ ∞

0
φ(α)(1 + qα)2(2s−1) dα

+
∞∑
k=1

φ̂1(−k, s)Fk(2s) +
∞∑
k=1

φ̂1(k, s)F k(2s) + g(s),
(2.24)

where g(s) is holomorphic for 2σ > max(1/2, σa(F⊗F )− 1). In view of (2.8) and of the
properties of φ̂(k, s) reported after (2.22), Lemma 2 now follows by comparing (2.12) with
(2.24) and changing 2s 7→ s.

The next lemma contains the properties of the function hφ(s), defined in (2.4), re-
quired in the proof of our theorem. Note that such properties do not depend on the value
of the conductor q.

Lemma 3. Let φ ∈ C∞0 ((0,∞)), φ(x) ≥ 0 but not identically vanishing. Then the entire
function hφ(s) has a simple zero at s = 1 and hφ(s) 6= 0 for s ∈ R \ {1}.
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Proof. Clearly we have hφ(1) = 0 and

−h′φ(1) = 2
∫ ∞

0
φ(α) log(1 + qα) dα > 0,

hence hφ(s) has a simple zero at s = 1. Moreover, it is clear from (2.4) that hφ(s) > 0
for s < 1, and hφ(s) < 0 for s > 1.

2.2. Proof of the theorem and its corollary. Let ε > 0 be as in (1.3). Since clearly
σa(F⊗F ) ≤ 2, by partial summation, (1.1) and (1.3) we have
∞∑
n=1

a(n)a(n+ k)
ns

= s

∫ ∞
1

Sk(x)x−s−1 dx

� |s|
∫ k1/ε

1
x1+ε(x+ k)1+εx−σ−1 dx+ |s|

∫ ∞
k1/ε

xθ−σ−1 dx� |s|k2/ε

provided σ ≥ θ + δ, for any δ > 0. Hence Fk(s) is holomorphic for σ > θ and satisfies
Fk(s) � k2/ε uniformly for s in any compact subset of the half-plane σ > θ; the same
holds for F k(s). Applying Lemma 2 with C = 2/ε + 2 and recalling that θ > 1/2, we
deduce that the right hand side of (2.5) is holomorphic for σ > max(θ, σa(F⊗F ) − 1).
Hence from Lemma 3 we see that F⊗F (s) is meromorphic in the same half-plane, and
its only real singularity in such half-plane is at most a simple pole at s = 1. Since by the
hypothesis of the theorem we infer that max(θ, σa(F⊗F )−1) < σa(F⊗F ), from Landau’s
theorem on Dirichlet series with non-negative coefficients we deduce that F⊗F (s) has a
simple pole at s = 1 and σa(F⊗F ) = 1; the theorem is therefore proved.

Moving on to the corollary, the asymptotic formula (1.4) follows from the theorem
by a standard Tauberian theorem, since the coefficients of F⊗F (s) are non-negative.
Moreover, under the Ramanujan condition, by the Cauchy–Schwarz inequality and (1.4)
we have ∑

n≤x

|a(n)| � x and x�
∑
n≤x

|a(n)|2 � xε
∑
n≤x

|a(n)|

for every ε > 0, hence σa(F ) = 1.
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