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Abstract. In this survey paper, functional relations between some generating functions of
the Riemann zeta function are formulated. These generating functions themselves are zeta-
functions (Bessel type, confluent-hypergeometric type and hypergeometric type), introduced by
M. Katsurada and the author. The explicit formula of the special values of these zeta functions
at non-positive integers are also given.

1. Introduction. In the generalization of Glaisher’s formula [Gl]

γ = 1− 2
{
ζ(3)
3 · 4 + ζ(5)

5 · 6 + ζ(7)
7 · 8 + . . .

}
,

Ramanujan [Ra] employed the binomial type generating function of the Riemann zeta-
function

ζ(s, 1 + x) =
∞∑
m=0

Γ (s+m)
Γ (s)m! ζ(s+m)(−x)m, (1)

for |x| < 1 and s ∈ C \ {1}. Here γ is Euler’s constant, ζ(s) and ζ(s, x) are the Rie-
mann zeta-function and the Hurwitz zeta-function respectively, and Γ (s) is the Gamma
function. A number of studies of the generalizations and applications of Ramanujan’s
identity (1) have been conducted (for details, refer to [SC]).

In recent works [No1, No2] we introduced some new zeta-functions, Bessel zeta-
functions and a confluent hypergeometric zeta-function, where we derived integral rep-
resentations, transformation formulas, power series expansions involving the Riemann
zeta-function, and recurrence formulas. The J-Bessel zeta-function introduced in [No1]
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appears in the Fourier series expansion of the Poincaré series attached to SL(2,Z) by ap-
plying the inverse Mellin transform. This fact strongly suggested that our zeta-functions
should have a kind of functional equations. In this article, we re-describe transformation
formulas (functional equations) of the J-Bessel zeta-function and the confluent hyper-
geometric zeta-function in terms of zeta functions introduced by M. Katsurada. In [Kt],
Katsurada initially defined Gauss’ hypergeometric type and Kummer’s confluent hyper-
geometric type generating functions of ζ(s), and obtained Mellin–Barnes type integral
representations. We give explicit formulas of the special values of our zeta functions at
non-positive integers.

More general zeta functions twisted by hypergeometric or Bessel functions are treated
by Kaczorowski and Perelli [KP3, KP4]. They derived meromorphic continuations of these
zeta-functions via the properties of the nonlinear twists obtained in [KP1, KP2].

Throughout this paper, s is a complex variable, Jν(z) the Bessel function of the
first kind (cf. [Er2, 7.2.1. (2)]), 2F1( α, βγ ; z) and F (α; γ; z) denote Gauss’ hypergeometric
function and Kummer’s confluent hypergeometric function of the first kind respectively
(cf. [Er1, 2.1.3. (10), 6.5. (1)]). Let

∫ (0+)
−∞ denote integration over a Hankel contour,

starting at negative infinity on the real axis, encircling the origin with a small radius in
the positive direction, and returning to the starting point. We also use the Pochhammer
symbol (s)m = Γ (s+m)/Γ (s).

2. First main theorems

Definition 2.1 ([No1]). Let θ > 0, ν ∈ C. The J-Bessel zeta-function of order ν − 1 is
defined by

ζJ-B(s; ν − 1; θ) :=
∞∑
n=1

Jν−1(2
√
θn)

ns+(ν−1)/2 . (2)

This quantity is equal to Jν−1(s − 1; θ) in [No1, (1.1)]. By the estimates of the
J-Bessel function, the Dirichlet series (2) converges absolutely in the region Re(s) > 1
when Re(ν) > 1/2, and converges absolutely in the region Re(s) > b3/2 − Re(ν)c/2
when Re(ν) ≤ 1/2. In the specific case when ν is an integer, ζJ-B(s; ν − 1; θ) converges
absolutely in the region Re(s) > 1 + (1− ν)/2 (cf. [No1, Proposition 3.1]).

Definition 2.2 ([No2]). Let (α, γ) ∈ C×(C\{0,−1,−2, . . .}), and assume −2π < θ < 0.
The confluent hypergeometric zeta-function of the first kind is defined by

ζ conf. I(s;α, γ; θ) :=
∞∑
n=1

F (α; γ; θn)
ns

. (3)

These zeta-functions have integral representations, and are previously unknown gen-
erating functions of the Riemann zeta-function.

Theorem 2.3 (Integral representation, power series expansion [No1, Theorem 1.1]). The
J-Bessel zeta-function has an integral representation

ζJ-B(s; ν − 1; θ) = θs+(ν−1)/2Γ (1− s)
2πiΓ (ν)

∫ (0+)

−∞

us−1eθu

1− eθu F (1− s; ν;−u−1) du, (4)
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which provides a meromorphic continuation to the whole s-plane. Further, the power
series expansion

ζJ-B(s; ν − 1; θ) =
∞∑
m=0

θ(ν−1)/2

Γ (ν +m)m! ζ(s−m)(−θ)m, (5)

holds for s ∈ C \ {1, 2, . . . }.
Theorem 2.4 (Integral representation, power series expansion [No2, Theorem 1.1]). The
Dirichlet series (3) converges absolutely for Re(α+ s) > 1, and has an integral represen-
tation

ζ conf. I(s;α, γ; θ) = Γ (1− s)
2πi

∫ (0+)

−∞

us−1eu

1− eu 2F1

(
α, 1− s

γ
; θ
u

)
du, (6)

which provides an analytic continuation to the whole s-plane. Here we choose the radius
r in the Hankel contour above so as |θ| < r < 2π. Further, the power series expansion

ζ conf. I(s;α, γ; θ) =
∞∑
m=0

(α)m
(γ)mm! ζ(s−m) θm (7)

holds for s ∈ C \ {1, 2, . . . }.
Proof of Theorems 2.3 and 2.4. Key lemmas in the proofs of (4) and (6) are Fourier–
Mellin integrals of the confluent hypergeometric function and Gauss’ hypergeometric
function, which are respectively equivalent to the inverse integral transform of Weber’s
first exponential integral (cf. [Wa, 13.3]) and the inverse Laplace transform of confluent
hypergeometric function (cf. [Er1, 6.10. (5)]). For details, see [No1, Lemma 2.2] and [No2,
Proposition 2.2]. The power series expansions (5) and (7) follow from Kummer’s series
(cf. [Er1, 6.1. (1)]) and the hypergeometric series (cf. [Er1, 2.1.1.]).

3. Functional relations. In [Kt], Katsurada introduced the following two generating
functions of ζ(s), and derived some integral representations.
Definition 3.1 ([Kt]). Let ν ∈ C with ν 6∈ {1, 0,−1,−2, . . . }. Define

Fν(α, β; γ; z) :=
∞∑
m=0

(α)m(β)m
(γ)mm! ζ(ν +m)zm (|z| < 1),

Fν(α; γ; z) :=
∞∑
m=0

(α)m
(γ)mm! ζ(ν +m)zm (|z| < +∞)

for (α, β) ∈ C2 and γ ∈ C \ {0,−1,−2, . . . }.
Substituting ζ(ν +m) =

∑∞
n=1 n

−ν−m for Re(ν) > 1 and m ≥ 0, we see immediately
Theorem 3.2 ([Kt, Theorem 5.1.]). The Dirichlet series expressions

Fν(α, β; γ; z) =
∞∑
n=1

2F1

(
α, β

γ
; z
n

)
n−ν , Fν(α; γ; z) =

∞∑
n=1

F

(
α, γ; z

n

)
n−ν (8)

hold for Re(ν) > 1.
Now we describe functional relations (functional equations) of ζJ-B(s; ν − 1; θ) and

ζ conf. I(s;α, γ; θ) in terms of Katsurada’s generating functions.
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Main Theorem 3.3 (Functional relations). For s ∈ C \ {0, 1, 2, . . . }, we have

ζJ-B(s; ν − 1; θ)

= θ(ν−1)/2Γ (1− s)
(2πi)1−sΓ (ν)

{
F1−s

(
1− s; ν; −θ2πi

)
+ (−1)s−1F1−s

(
1− s; ν; θ

2πi

)}
, (9)

and

ζ conf. I(s;α, γ; θ)

= Γ (1− s)
(2πi)1−s

{
F1−s

(
α, 1− s; γ; θ

2πi

)
+ (−1)s−1F1−s

(
α, 1− s; γ; −θ2πi

)}
. (10)

Proof. By shifting the paths of integrals (4) and (6), we have transformation formulas

ζJ-B(s; ν − 1; θ) = θ(ν−1)/2Γ (1− s)
Γ (ν)

∞∑
n=−∞, n 6=0

(2πin)s−1F

(
1− s; ν; −θ2πin

)
, (11)

ζ conf. I(s;α, γ; θ) = Γ (1− s)
∞∑

n=−∞, n 6=0
(2πin)s−1

2F1

(
α, 1− s

γ
; θ

2πin

)
(12)

for Re(s) < 0 (see [No1, Theorem 1.1 (1.4)] and [No2, Theorem 1.1 (1.4)]). Substitut-
ing (8) into (11) and (12), we obtain the functional relations (9) and (10), which are
analytically continued to the whole s-plane by Definition 3.1.

Corollary 3.4 (Special values at non-positive integers). Let k = 0, 1, 2, . . . and let Bm
denote the m-th Bernoulli number. Then

ζJ-B(−k; ν − 1; θ) =
∞∑
m=0

(−1)−kθ(ν−1)/2+m

(1 + k +m)Γ (ν +m)m! B1+k+m,

ζ conf. I(−k;α, γ; θ) =
∞∑
m=0

(−1)−k−mθm(α)m
(1 + k +m)m!(γ)m

B1+k+m.

Proof. Using ζ(−k) = (−1)kB1+k/(1 + k) for k = 0, 1, 2, . . . (cf. [Ti, (2.4.3)]) in (5)
and (7) we obtain the assertions of Corollary 3.4.

Corollary 3.4 can also be proved via (9) and (10) when k = 1, 2, . . . . In the following,
we show some examples of the special value of ζJ-B(s; ν − 1; θ) at non-positive integers.

Example 3.5.

(i) For s = 0, ν = 1, θ = 1, we have ζJ-B(0; 0; 1) =
∞∑
m=0

Bm+1

(m+ 1)(m!)2 ,

(ii) For s = −1, ν = 1, θ = 1, we have ζJ-B(−1; 0; 1) =
∞∑
m=0

−Bm+2

(m+ 2)(m!)2 ,

(iii) For s = 0, ν = 3
2 , θ = 4, we have ζJ-B

(
0; 1

2 ; 4
)

= 1√
2π

∞∑
m=0

Bm+1

(m+ 1)(2m+ 1)! .
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