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Abstract. In this paper we extend and improve our results on weighted averages for the number
of representations of an integer as a sum of two powers of primes (the paper of the authors
in Forum Math. 27 (2015), see also the paper of A.L., Riv. Mat. Univ. di Parma 7 (2016),
Theorem 2.2). Let 1 ≤ `1 ≤ `2 be two integers, Λ be the von Mangoldt function and r`1,`2 (n) =∑

m
`1
1 +m

`2
2 =n

Λ(m1)Λ(m2) be the weighted counting function for the number of representation
of an integer as a sum of two prime powers. Let N ≥ 2 be an integer. We prove that the Cesàro
average of weight k > 1 of r`1,`2 over the interval [1, N ] has a development as a sum of terms
depending explicitly on the zeros of the Riemann zeta-function.

1. Introduction. We continue our recent work on the number of representations of an
integer as a sum of primes. In [7] we studied the average number of representations of an
integer as a sum of two primes, whereas in [8] we considered individual integers. In [10],
see also Theorem 2.2 of [6], we studied a Cesàro weighted partial explicit formula for
Goldbach numbers. Here we generalise and improve this last result by working on the
Cesàro weighted counting function for the number of representation of an integer as a sum
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of two prime powers. We let 1 ≤ `1 ≤ `2 be two integers and set

r`1,`2(n) =
∑

m
`1
1 +m`2

2 =n

Λ(m1)Λ(m2).

We also use the following convenient abbreviations for the various terms of the develop-
ment:

M1,k,`1,`2(N) = N1/`1+1/`2

Γ(k + 1 + 1/`1 + 1/`2)
Γ(1/`1)Γ(1/`2)

`1`2
,

M2,k(N) = log2(2π)
Γ(k + 1) ,

M3,k,`(N) = − log(2π) N1/`

Γ(k + 1 + 1/`)
Γ(1/`)
`

+ log(2π)
∑
ρ

Γ
(
ρ

`

)
Nρ/`

Γ(k + 1 + ρ/`) , (1)

M4,k,`1,`2(N) = −N1/`2
Γ(1/`2)
`2

∑
ρ

Γ
(
ρ

`1

)
Nρ/`1

Γ(k + 1 + 1/`2 + ρ/`1) , (2)

M5,k,`1,`2(N) =
∑
ρ1

∑
ρ2

Γ(ρ1/`1)Γ(ρ2/`2)
Γ(k + 1 + ρ1/`1 + ρ2/`2) N

ρ1/`1+ρ2/`2 . (3)

Here ρ, with or without subscripts, runs over the non-trivial zeros of the Riemann zeta-
function ζ and Γ is Euler’s function. The main result of the paper is the following theorem.

Theorem 1. Let 1 ≤ `1 ≤ `2 be two integers, and N be a positive integer. For k > 1 we
have∑

n≤N

r`1,`2(n) (1− n/N)k

Γ(k + 1) =M1,k,`1,`2(N) +M2,k(N) +M3,k,`1(N) +M3,k,`2(N)

+M4,k,`1,`2(N) +M4,k,`2,`1(N) +M5,k,`1,`2(N) +Ok,`1,`2(N−1/2+1/`1).

Clearly, depending on the size of `1, `2, some of the previous listed terms should be
included in the error term. We remark that the double series over zeros in (3) converges
absolutely for k > 1/2, and it seems reasonable to believe that the stated equality holds
for the same values of k, possibly with a weaker error term, although the bound k > 1
appears in several places of the proof and it seems to be the limit of the method.

Theorem 1 generalises and improves our Theorem in [10], see also Theorem 2.2 of [6],
which corresponds to the case `1 = `2 = 1. In fact in this case Theorem 1 leads to∑

n≤N

rG(n) (1− n/N)k

Γ(k + 1) = N2

Γ(k + 3) − 2
∑
ρ

Γ(ρ)
Γ(k + 2 + ρ) N

ρ+1

− 2 log(2π) N

Γ(k + 2) + 2 log(2π)
∑
ρ

Γ(ρ)
Γ(k + 1 + ρ) N

ρ

+
∑
ρ1

∑
ρ2

Γ(ρ1)Γ(ρ2)
Γ(k + 1 + ρ1 + ρ2) N

ρ1+ρ2 +Ok(N1/2), (4)

where rG(n) = r1,1(n) =
∑
m1+m2=n Λ(m1)Λ(m2), that is, we are now able to detect the

term M3,k,1. Very recently Brüdern, Kaczorowski and Perelli [2] proved that (4) holds
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for every k > 0. We point out that Theorem 1 covers other interesting and classical cases
like the sum of two prime squares (`1 = `2 = 2) or a prime and a prime square (`1 = 1,
`2 = 2).

We recall that our method is based on a formula due to Laplace [12], namely
1

2πi

∫
(a)
v−sev dv = 1

Γ(s) , (5)

where <(s) > 0 and a > 0, see, e.g., formula 5.4(1) on page 238 of [3]. We will need the
general case of (5), which can be found in de Azevedo Pribitkin [1], formulae (8) and (9):

1
2π

∫
R

eiDu

(a+ iu)s du =


Ds−1e−aD

Γ(s) if D > 0,

0 if D < 0,
(6)

which is valid for σ = <(s) > 0 and a ∈ C with <(a) > 0, and

1
2π

∫
R

1
(a+ iu)s du =

{
0 if <(s) > 1,
1/2 if s = 1,

(7)

for a ∈ C with <(a) > 0. Formulae (6)–(7) enable us to write averages of arithmetical
functions by means of line integrals as we will see in §2 below.

The improvement we get in Theorem 1 follows using Lemma 1 below, which is a gener-
alised and refined version of Lemma 4.1 of [10], see also Lemma 5.1 of [6]. In fact Lemma 1
can be also used to generalise and improve our result in [9] about the Hardy–Littlewood
numbers to the p` +m2, ` ≥ 1, problem; we will discuss this case in [11].

2. Settings. Let ` ≥ 1, 1 ≤ `1 ≤ `2 be integer numbers and

S̃`(z) =
∑
m≥1

Λ(m)e−m
`z, (8)

where z = a + iy with y ∈ R and real a > 0. Moreover let us define the density of the
problem as

λ = 1/`1 + 1/`2. (9)

We recall that the Prime Number Theorem (PNT) is equivalent to the statement

S̃`(a) ∼ Γ(1/`)
`a1/` for a→ 0+. (10)

By (8) we have
S̃`1(z)S̃`2(z) =

∑
n≥1

r`1,`2(n)e−nz.

Hence, for N ∈ N with N > 0 and a > 0 we have
1

2πi

∫
(a)
eNzz−k−1S̃`1(z)S̃`2(z) dz = 1

2πi

∫
(a)
eNzz−k−1

∑
n≥1

r`1,`2(n)e−nz dz. (11)

Since ∑
n≥1
|r`1,`2(n)e−nz| = S̃`1(a)S̃`2(a) �`1,`2 a

−λ



140 A. LANGUASCO AND A. ZACCAGNINI

by (10), where f � g means g � f � g, we can exchange the series and the line integral
in (11) provided that k > 0. In fact, if z = a+ iy, taking into account the estimate

|z|−1 �

{
a−1 if |y| ≤ a,
|y|−1 if |y| ≥ a,

(12)

we have

|eNzz−k−1| � eNa
{
a−k−1 if |y| ≤ a,
|y|−k−1 if |y| ≥ a,

and hence, recalling (10), we obtain∫
(a)
|eNzz−k−1|

∣∣∣∑
n≥1

r`1,`2(n)e−nz
∣∣∣ |dz| � a−λeNa

[∫ a

0
a−k−1 dy +

∫ +∞

a

y−k−1 dy
]
,

which is �k a
−λ−keNa, but the rightmost integral converges only for k > 0. Using (6)

for n 6= N and (7) for n = N , we see that for k > 0 the right-hand side of (11) is

=
∑
n≥1

r`1,`2(n)
(

1
2πi

∫
(a)
e(N−n)zz−k−1 dz

)
=
∑
n≤N

r`1,`2(n) (N − n)k

Γ(k + 1) .

Remark. As in [10] the previous computation reveals that we cannot get rid of the
Cesàro weight in our method since, for k = 0, it is not clear whether the integral on the
right-hand side of (11) converges absolutely or not.

Summing up, for a > 0 and k > 0 we have∑
n≤N

r`1,`2(n) (N − n)k

Γ(k + 1) = 1
2πi

∫
(a)
eNzz−k−1S̃`1(z)S̃`2(z) dz,

where N ∈ N with N > 0. This is the fundamental relation for the method.

3. Inserting zeros. In this section we need k > 1. By Lemma 1 below we have

S̃`(z) = Γ(1/`)
`z1/` −

1
`

∑
ρ

z−ρ/`Γ
(
ρ

`

)
− log(2π) + E(a, y, `) = M(`, z) + E(a, y, `),

say, where E(a, y, `) satisfies (16). Hence

S̃`1(z)S̃`2(z) = M(`1, z)M(`2, z) + E(a, y, `1)E(a, y, `2)
+ E(a, y, `2)M(`1, z) + E(a, y, `1)M(`2, z).

We have |M(`, z)| =
∣∣S̃`(z) − E(a, y, `)

∣∣ ≤ S̃`(a) +
∣∣E(a, y, `)

∣∣ �` a
−1/` +

∣∣E(a, y, `)
∣∣

by (10) again, so that

S̃`1(z)S̃`2(z) = M(`1, z)M(`2, z) +O`1,`2

(∣∣E(a, y, `1)E(a, y, `2)
∣∣)

+O`1,`2

(∣∣E(a, y, `2)
∣∣a−1/`1 +

∣∣E(a, y, `1)
∣∣a−1/`2

)
, (13)
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choosing 0 < a ≤ 1, since 1 ≤ `1 ≤ `2. Recalling (12) and taking into account (16), for
k > 1 we have∫

(a)

∣∣E(a, y, `1)E(a, y, `2)
∣∣ |eNz| |z|−k−1 |dz|

�`1,`2 e
Na

∫ a

0
a−k dy + eNa

∫ +∞

a

y−k(1 + log2(y/a))2 dy

�k,`1,`2 e
Naa−k+1 + eNaa−k+1

∫ +∞

1
v−k(1 + log2 v)2 dv �k,`1,`2 e

Naa−k+1.

If we choose a = 1/N , the error term is �k,`1,`2 N
k−1 for k > 1. For a = 1/N , by (12)

and (16), the second remainder term in (13) for k > 1/2 is

�`1,`2 N
1/`1

∫
(1/N)

|E(y, 1/N, `2)| |eNz| |z|−k−1 |dz|

�`1,`2 N
1/`1

∫ 1/N

0
Nk+1/2 dy +N1/`1

∫ +∞

1/N
y−k−1/2 log2(Ny) dy

�k,`1,`2 N
k−1/2+1/`1 +Nk−1/2+1/`1

∫ +∞

1
v−k−1/2 log2 v dv �k,`1,`2 N

k−1/2+1/`1 .

Analogously, it is easy to see that the remaining term is �k,`1,`2 N
k−1/2+1/`2 .

With a little effort we can give an explicit dependence on k for the implicit constants
in the last three estimates.

Hence, by (9) and (11) we have∑
n≤N

r`1,`2(n) (N − n)k

Γ(k + 1)

= 1
2πi

∫
(1/N)

eNzz−k−1M(`1, z)M(`2, z) dz +Ok,`1,`2(Nk−1/2+1/`1)

= I1(N ; `1, `2, k) + I2(N ; k) + I3(N ; `1, k) + I3(N ; `2, k)

+ I4(N ; `1, `2, k) + I4(N ; `2, `1, k) + I5(N ; `1, `2, k) +Ok,`1,`2(Nk−1/2+1/`1),

say, where

I1(N ; `1, `2, k) = 1
2πi

Γ(1/`1)Γ(1/`2)
`1`2

∫
(1/N)

eNzz−k−1−λ dz,

I2(N ; k) = log2(2π)
2πi

∫
(1/N)

eNzz−k−1 dz,

I3(N ; `, k) = log(2π)
2πi

{
−Γ(1/`)

`

∫
(1/N)

eNzz−k−1−1/` dz

+
∫

(1/N)
eNzz−k−1

∑
ρ

z−ρ/`Γ
(
ρ

`

)
dz
}
,

I4(N ; `1, `2, k) = − 1
2πi

Γ(1/`1)
`1

∫
(1/N)

eNzz−k−1−1/`1
∑
ρ

z−ρ/`2Γ
(
ρ

`2

)
dz,
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I5(N ; `1, `2, k) = 1
2πi

∫
(1/N)

eNzz−k−1
∑
ρ1

∑
ρ2

z−ρ/`1−ρ/`2Γ
(
ρ1

`1

)
Γ
(
ρ2

`2

)
dz.

The evaluation of the integrals Ij is a straightforward application of (5) with s = Nz,
except that the interchange of the series with the integrals needs to be justified: see §5–7
for a proof that this is in fact permitted when k > 1. The proof that the double sum
over zeros converges absolutely for k > 1/2 is given in §8 below. Combining the resulting
expressions and dividing through by Nk we get Theorem 1.

4. Lemmas. We recall some basic facts in complex analysis. First, if z = a + iy with
a > 0, we see that for complex w we have

z−w = |z|−w exp(−iw arctan(y/a))

= |z|−<(w)−i=(w) exp
(
(−i<(w) + =(w)) arctan(y/a)

)
,

so that
|z−w| = |z|−<(w) exp(=(w) arctan(y/a)). (14)

We also recall that, uniformly for x ∈ [x1, x2], with x1 and x2 fixed, and for |y| → +∞,
by the Stirling formula (see, e.g., Titchmarsh [14, §4.42]) we have

|Γ(x+ iy)| ∼
√

2πe−π|y|/2|y|x−1/2. (15)

The following lemma generalises and improves Lemma 4.1 of [10], see also Lemma 5.1
of [6]. The improvement depends on the fact that the constant term log(2π) is now explicit
since we realised that, in the application, this term leads, in some cases, to a non-trivial
contribution in the final result. We follow the line of the proof in [10], but, in some cases,
the integration path has to be changed; for clarity we repeat the whole argument.

Lemma 1. Let ` ≥ 1 be an integer, z = a+ iy, where a > 0 and y ∈ R. Then

S̃`(z) = Γ(1/`)
`z1/` −

1
`

∑
ρ

z−ρ/`Γ
(ρ
`

)
− log(2π) + E(a, y, `),

where ρ = β + iγ runs over the non-trivial zeros of ζ(s) and

E(a, y, `)�` |z|1/2

{
1 if |y| ≤ a
1 + log2(|y|/a) if |y| > a.

(16)

Proof. Following the line of Hardy and Littlewood, see [4, §2.2], [5, Lemma 4] and of §4
in Linnik [13], we have

S̃`(z) = Γ(1/`)
`z1/` −

1
`

∑
ρ

z−ρ/`Γ
(ρ
`

)
− ζ ′

ζ
(0)−

`/4∑
m=1

Γ
(
−2m

`

)
z2m/`

− 1
2πi

∫
L`

ζ ′

ζ
(`w)Γ(w)z−w dw, (17)

where L` is the vertical line <(w) = −1/2 if 4 - ` and it is {−1/2 + it : |t| > C} ∪
{−1/2 + it : 1/` ≤ |t| ≤ C} ∪ γ` otherwise, C > 1/` is an absolute constant to be chosen
later and γ` is the right half-circle centred in −1/2 of radius 1/`.



CESÀRO AVERAGES IN ADDITIVE PROBLEMS 143

Now we estimate the integral in (17). Assume 4 - `. Writing w = −1/2 + it, we have
|(ζ ′/ζ)(`w)| �` log(|t| + 2), |z−w| = |z|1/2 exp(t arctan(y/a)) by (14) and, for |t| > C,
Γ(w)� |t|−1 exp(−π2 |t|) by (15). Letting LC = {−1/2 + it : |t| > C} we have∫

LC

ζ ′

ζ
(`w)Γ(w)z−w dw �` |z|1/2

∫
LC

log |t|
|t|

exp
(
−π2 |t|+ t arctan(y/a)

)
dt.

If ty ≤ 0 we call η the quantity π
2 + |arctan(y/a)| ∈ [π/2, π). If |y| ≤ a we define η as

π
2 − arctan(y/a) > π

2 − arctan(1) = π
4 . In the remaining case (|y| > a and ty > 0) we

set η = arctan(a/|y|) � a/|y|. Now fix C such that Cη < 1 (e.g., C = 1/π is allowed).
Letting u = ηt, we get∫

LC

ζ ′

ζ
(`w)Γ(w)z−w dw �` |z|1/2

∫ +∞

C

e−ηt
log t
t

dt = |z|1/2
∫ +∞

Cη

e−u
log(u/η)

u
du

= |z|1/2
∫ +∞

Cη

e−u
log u
u

du+ |z|1/2 log(1/η)
∫ +∞

Cη

e−u
du
u

= J1 + J2. (18)

We remark that 0 ≤ u−1 log u ≤ e−1 for u ≥ 1, since the maximum of u−1 log u is attained
at u = e. Since

0 ≤
∫ +∞

1
e−u

log u
u

du ≤ e−1
∫ +∞

1
e−u du� 1

and ∣∣∣∣∫ 1

Cη

e−u
log u
u

du
∣∣∣∣ ≤ ∫ 1

Cη

− log u
u

du =
[
−1

2 log2 u

]1

Cη

� log2(1/η)

we have J1 � |z|1/2 log2(1/η). For J2 it is sufficient to remark that

0 ≤ J2 ≤ |z|1/2 log(1/η)
(∫ 1

Cη

du
u

+
∫ +∞

1
e−udu

)
� |z|1/2 log2(1/η).

Inserting the last two estimates in (18), recalling the definition of η, remarking that the
integration over |t| ≤ C gives immediately a contribution �` |z|1/2, we get∫

L`

ζ ′

ζ
(`w)Γ(w)z−w dw �` |z|1/2

{
1 if |y| ≤ a
1 + log2(|y|/a) if |y| > a.

provided that 4 - `. Recalling (ζ ′/ζ)(0) = log(2π) and remarking that
`/4∑
m=1

Γ
(
−2m

`

)
z2m/` �` |z|1/2, (19)

we see that the case 4 - ` of the lemma is proved.
Assume now that 4 | `. The computation over LC can be performed as in the previous

case; we can also choose C = 1/π as we did before. On the vertical segments S given by
<(w) = −1/2, |=(w)| ∈ [1/`, C], we exploit the boundedness of the Γ-function and the
estimate |z−w| � |z|1/2 which holds on S since the argument of z is bounded there. This
gives

1
2πi

∫
S

ζ ′

ζ
(`w)Γ(w)z−w dw �` |z|1/2.
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It remains to consider the contribution over γ`; on this path we can again make use of
the boundedness of the Γ-function and that |z−w| � |z|1/2 since the argument of z is
bounded on γ`. This leads to

1
2πi

∫
γ`

ζ ′

ζ
(`w)Γ(w)z−w dw �` |z|1/2.

Summing up, for 4 | ` we see that the integral in (17) is dominated by the right hand
side of (16) and this, together with (19) and (ζ ′/ζ)(0) = log(2π), proves this case of the
lemma.

We remark that, at the cost of some other complications in the details, Lemma 1 can
be extended to the case ` ∈ R, ` > 0.

In the next sections we will need to perform several times a set of similar computations;
we collected them in the following two lemmas, which extend Lemmas 4.2 and 4.3 in [10].

Lemma 2. Let ` ≥ 1 be an integer, let β+iγ run over the non-trivial zeros of the Riemann
zeta-function and α > 1 be a parameter. For any fixed c ≥ 0 the series∑

ρ : γ>0

(
γ

`

)β/`−1/2 ∫ +∞

1
(log u)c exp

(
−γ
`

arctan 1
u

)
du

uα+β/`

converges provided that α > 3/2. For α ≤ 3/2 the series does not converge.

Proof. Setting y = arctan(1/u), for any real γ > 0 we have∫ +∞

1
exp
(
−γ
`

arctan 1
u

)
du

uα+β/` =
∫ π/4

0
exp
(
−γy
`

)
(sin y)α+β/`−2

(cos y)α+β/` dy

�α

∫ π/4

0
exp
(
−γy
`

)
yα+β/`−2 dy =

(
γ

`

)1−α−β/` ∫ πγ/(4`)

0
exp(−w)wα+β/`−2 dw

�α,`

(
γ

`

)1−α−β/` (
Γ(α− 1) + Γ(α+ 1/`− 1)

)
,

since 0 < β < 1. This shows that the series over γ converges for α > 3/2. For α = 3/2
essentially the same computation shows that the integral is � γ−1/2−β/` and it is well
known that in this case the series over zeros diverges.

Lemma 3. Let ` ≥ 1 be an integer, α > 1, z = a+ iy, a ∈ (0, 1) and y ∈ R. Let further
ρ = β + iγ run over the non-trivial zeros of the Riemann zeta-function. We have∑

ρ

∣∣∣∣γ`
∣∣∣∣β/`−1/2 ∫

Y1∪Y2

exp
(
γ

`
arctan y

a
− π

2

∣∣∣γ
`

∣∣∣) dy
|z|α+β/` �α,` a

1−α−1/`,

where Y1 = {y ∈ R : yγ ≤ 0} and Y2 = {y ∈ [−a, a] : yγ > 0}. The result remains true if
we insert in the integral a factor (log(|y|/a))c, for any fixed c ≥ 0.

Proof. We first work on Y1. By symmetry, we may assume that γ > 0. For y ∈ (−∞, 0]
we have (γ/`) arctan(y/a)− π

2 |γ/`| ≤ −
π
2 |γ/`| and hence the quantity we are estimating
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becomes∑
ρ : γ>0

(
γ

`

)β/`−1/2
exp
(
−π2

γ

`

)∫ 0

−∞

dy
|z|α+β/`

�α,`

∑
ρ : γ>0

(
γ

`

)β/`−1/2
exp
(
−π2

γ

`

)
a1−α−β/` �α,` a

1−α−1/`,

using 0 < β < 1, standard zero-density estimates and (12). We consider now the integral
over Y2. Again by symmetry we can assume that γ > 0 and so we get∑

ρ : γ>0

(
γ

`

)β/`−1/2 ∫ a

0
exp
(
γ

`

(
arctan y

a
− π

2

))
dy

|z|α+β/`

�
∑
ρ : γ>0

(
γ

`

)β/`−1/2
exp
(
−π4

γ

`

)∫ a

0

dy
|z|α+β/`

�α,`

∑
ρ : γ>0

(
γ

`

)β/`−1/2
exp
(
−π4

γ

`

)
a1−α−β/` �α,` a

1−α−1/`

arguing as above. The other assertions are proved in the same way.

5. Interchange of summation over zeros with the line integral in I3. We need
k > 1/2 in this section. We need to establish the convergence of∑

ρ

∣∣∣∣Γ(ρ`
)∣∣∣∣ ∫

(1/N)
|eNz| |z|−k−1 |z−ρ/`| |dz|. (20)

By (14) and the Stirling formula (15), we are left with estimating∑
ρ

∣∣∣∣γ`
∣∣∣∣β/`j−1/2 ∫

R
exp
(
γ

`
arctan(Ny)− π

2

∣∣∣γ
`

∣∣∣) dy
|z|k+1+β/` . (21)

We have just to consider the case γy > 0, |y| > 1/N since in the other cases the total
contribution is �k,` N

k+1/` by Lemma 3 with α = k + 1 and a = 1/N . By symmetry,
we may assume that γ > 0. We see that the integral in (21) is

�`

∑
ρ : γ>0

(
γ

`

)β/`−1/2 ∫ +∞

1/N
exp
(
−γ
`

arctan 1
Ny

)
dy

yk+1+β/`

= Nk
∑
ρ : γ>0

Nβ/`

(
γ

`

)β/`−1/2 ∫ +∞

1
exp
(
−γ
`

arctan 1
u

)
du

uk+1+β/` .

For k > 1/2 this is �k,` N
k+1/` by Lemma 2. This implies that the integrals in (21) and

in (20) are both �k,` N
k+1/` and hence the exchange steps for I3 are fully justified.

6. Interchange of summation over zeros with the line integral in I4. We need
k > 1/2− 1/`2 in this section. We need to establish the convergence of∑

ρ

∣∣∣∣Γ( ρ

`1

)∣∣∣∣ ∫
( 1
N )
|eNz| |z|−k−1−1/`2 |z−ρ/`1 | |dz| (22)
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and of the case in which `1 and `2 are interchanged. By (14) and the Stirling formula (15),
we are left with estimating∑

ρ

∣∣∣∣ γ`1

∣∣∣∣β/`1−1/2 ∫
R

exp
(
γ

`1
arctan(Ny)− π

2

∣∣∣∣ γ`1

∣∣∣∣) dy
|z|k+1+1/`2+β/`1

. (23)

We have just to consider the case γy > 0, |y| > 1/N since in the other cases the total
contribution is �k,`1,`2 Nk+λ by Lemma 3 with α = k + 1 + 1/`2 and a = 1/N . By
symmetry, we may assume that γ > 0. We have that the integral in (23) is

�`1

∑
ρ : γ>0

(
γ

`1

)β/`1−1/2 ∫ +∞

1/N
exp
(
− γ
`1

arctan 1
Ny

)
dy

yk+1+1/`2+β/`1

= Nk+1/`2
∑
ρ : γ>0

Nβ/`1

(
γ

`1

)β/`1−1/2 ∫ +∞

1
exp
(
− γ
`1

arctan 1
u

)
du

uk+1+1/`2+β/`1
.

For k > 1/2 − 1/`2 this is �k,`1,`2 N
k+λ by Lemma 2. This implies that the integrals

in (23) and in (22) are both �k,`1,`2 N
k+λ and hence the exchange step for I4 is fully

justified.

7. Interchange of the double summation over zeros with the line integral in I5.
We need k > 1 in this section. Arguing as in Sections 5–6, we first need to establish the
convergence of∑

ρ1

∣∣∣∣Γ(ρ1

`1

)∣∣∣∣ ∫
(1/N)

∣∣∣∣∑
ρ2

Γ
(
ρ2

`2

)
z−ρ2/`2

∣∣∣∣|eNz| |z|−k−1 |z−ρ1/`1 | |dz|. (24)

Using the Prime Number Theorem and (16), we first remark that∣∣∣∣∑
ρ2

Γ
(
ρ2

`2

)
z−ρ2/`2

∣∣∣∣�`2 N
1/`2 + |z|1/2 log2(2N |y|). (25)

By symmetry, we may assume that γ1 > 0. By (25), (12), (14) and (9), for y ∈ (−∞, 0]
we are first led to estimate∑

ρ1 : γ1>0

(
γ1

`1

)β1/`1−1/2
exp
(
−π2

γ1

`1

)(∫ 0

−1/N
Nk+1+1/`2+β1/`1 dy

+N1/`2

∫ −1/N

−∞

dy
|y|k+1+β1/`1

+
∫ −1/N

−∞
log2(2N |y|) dy

|y|k+1/2+β1/`1

)
�k,`1,`2 N

k+λ

by the same argument used in the proof of Lemma 3 with α = k+ 1/2 and a = 1/N . On
the other hand, for y > 0 we split the range of integration into (0, 1/N ]∪ (1/N,+∞). By
(25), (12) and Lemma 3 with α = k + 1 and a = 1/N , on [0, 1/N ] we have

N1/`2
∑

ρ1 : γ1>0

(
γ1

`1

)β1/`1−1/2 ∫ 1/N

0
exp
(
γ1

`1

(
arctan(Ny)− π

2

))
dy

|z|k+1+β1/`1

�k,`1,`2 N
k+λ.
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On the other interval, again by (12), we have to estimate∑
ρ1 : γ1>0

(
γ1

`1

)β1/`1−1/2 ∫ +∞

1/N
exp
(
−γ1

`1
arctan 1

Ny

)
N1/`2 + y1/2 log2(2Ny)

yk+1+β1/`1
dy

= Nk
∑

ρ1 : γ1>0
Nβ1/`1

(
γ1

`1

)β1/`1−1/2

×
∫ +∞

1
exp
(
−γ1

`1
arctan 1

u

)
N1/`2 + u1/2N−1/2 log2(2u)

uk+1+β1/`1
du.

Recalling (9), Lemma 2 with α = k + 1/2 shows that the last term is �k,`1,`2 N
k+λ.

This implies that the integral in (24) is �k,`1,`2 N
k+λ provided that k > 1 and hence we

can exchange the first summation with the integral in this case.
To exchange the second summation we have to consider∑

ρ1

∣∣∣∣Γ(ρ1

`1

)∣∣∣∣ ∑
ρ2

∣∣∣∣Γ(ρ2

`2

)∣∣∣∣ ∫
(1/N)

|eNz| |z|−k−1|z−ρ1/`1 | |z−ρ2/`1 | |dz|. (26)

By symmetry, we can consider γ1, γ2 > 0 or γ1 > 0, γ2 < 0.
Assuming γ1, γ2 > 0, for y ≤ 0 we have (γj/`j) arctan(Ny)− π

2 (γj/`j) ≤ −π2 (γj/`j),
j = 1, 2, and, by (14), the corresponding contribution to (26) is �k,`1,`2 N

k+λ since∑
ρ1 : γ1>0

(
γ1

`1

)β1/`1−1/2
exp
(
−π2

γ1

`1

)

×
∑

ρ2 : γ2>0

(
γ2

`2

)β2/`2−1/2
exp
(
−π2

γ2

`2

)(∫ 0

−∞

dy
|z|k+1+β1/`1+β2/`2

)

�k N
k+λ

∑
ρ1 : γ1>0

(
γ1

`1

)β1/`1−1/2
exp
(
−π2

γ1

`1

) ∑
ρ2 : γ2>0

(
γ2

`2

)β2/`2−1/2
exp
(
−π2

γ2

`2

)
,

using standard zero-density estimates, (12) and (9). On the other hand, for y > 0 we
split the range of integration into (0, 1/N ] ∪ (1/N,+∞). On the first interval we have∑

ρ1 : γ1>0

(
γ1

`1

)β1/`1−1/2 ∑
ρ2 : γ2>0

(
γ2

`2

)β2/`2−1/2

×
∫ 1/N

0
exp
((

γ1

`1
+ γ2

`2

)(
arctan(Ny)− π

2

))
dy

|z|k+1+β1/`1+β2/`2

�
∑

ρ1 : γ1>0

(
γ1

`1

)β1/`1−1/2 ∑
ρ2 : γ2>0

(
γ2

`2

)β2/`2−1/2

× exp
(
−π4

(
γ1

`1
+ γ2

`2

))∫ 1/N

0
Nk+1+β1/`1+β2/`2 dy

�k,`1,`2 N
k+λ

∑
ρ1 : γ1>0

(
γ1

`1

)β1/`1−1/2
exp
(
−π4

γ1

`1

) ∑
ρ2 : γ2>0

(
γ2

`2

)β2/`2−1/2
exp
(
−π4

γ2

`2

)
,

which is also�k,`1,`2 N
k+λ, by the same argument as above. With similar computations,
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on the other interval we have∑
ρ1 : γ1>0

(
γ1

`1

)β1/`1−1/2 ∑
ρ2 : γ2>0

(
γ2

`2

)β2/`2−1/2

×
∫ +∞

1/N
exp
((

γ1

`1
+ γ2

`2

)(
arctan(Ny)− π

2

))
dy

yk+1+β1/`1+β2/`2

= Nk
∑

ρ1 : γ1>0
Nβ1/`1

(
γ1

`1

)β1/`1−1/2 ∑
ρ2 : γ2>0

Nβ2/`2

(
γ2

`2

)β2/`2−1/2

×
∫ +∞

1
exp
(
−
(
γ1

`1
+ γ2

`2

)
arctan 1

u

)
du

uk+1+β1/`1+β2/`2
.

Arguing as in the proof of Lemma 2, we prove that the integral on the right is �k,`1,`2

(γ1 + γ2)−k−β1/`1−β2/`2 . The inequality
γ
β1/`1−1/2
1 γ

β2/`2−1/2
2

(γ1 + γ2)β1/`1+β2/`2
≤ 1
γ

1/2
1 γ

1/2
2

(27)

shows, by using (9), that it is sufficient to consider

Nk
∑

ρ1 : γ1>0

∑
ρ2 : γ2>0

Nβ1/`1+β2/`2
1

γ
1/2
1 γ

1/2
2 (γ1 + γ2)k

�k,`1,`2 N
k+λ

∑
ρ1 : γ1>0

1
γ
k+1/2
1

∑
ρ2 : 0<γ2≤γ1

1
γ

1/2
2
�k,`1,`2 N

k+λ
∑

ρ1 : γ1>0

log γ1

γk1

and the last series over zeros converges for k > 1.
Assume now γ1 > 0, γ2 < 0. For y ≤ 0 we have γ1

`1
arctan(Ny)− π

2
γ1
`1
≤ −π2

γ1
`1
, by (12)

and (9) the corresponding contribution to (26) is

�k,`1,`2

∑
ρ1 : γ1>0

(
γ1

`1

)β1/`1−1/2
exp
(
−π2

γ1

`1

)

×
{ ∑
ρ2 : γ2<0

∣∣∣∣γ2

`2

∣∣∣∣β2/`2−1/2[
exp
(
−π4

∣∣∣∣γ2

`2

∣∣∣∣) ∫ 0

−1/N
Nk+1+β1/`1+β2/`2 dy

+
∫ −1/N

−∞
exp
(
−
∣∣∣∣γ2

`2

∣∣∣∣(arctan(Ny) + π

2

))
dy

|y|k+1+β1/`1+β2/`2

]}
�k,`1,`2 N

k+λ
∑

ρ1 : γ1>0

(
γ1

`1

)β1/`1−1/2
exp
(
−π2

γ1

`1

) ∑
ρ2 : γ2<0

∣∣∣∣γ2

`2

∣∣∣∣β2/`2−1/2
exp
(
−π4

∣∣∣∣γ2

`2

∣∣∣∣)

+Nk+λ
∑

ρ1 : γ1>0

(
γ1

`1

)β1/`1−1/2
exp
(
−π2

γ1

`1

) ∑
ρ2 : γ2<0

∣∣∣∣γ2

`2

∣∣∣∣β2/`2−1/2

×
∫ +∞

1
exp
(
−
∣∣∣∣γ2

`2

∣∣∣∣ arctan 1
u

)
du

uk+1+β1/`1+β2/`2

�k,`1,`2 N
k+λ +Nk+λ

∑
ρ1 : γ1>0

(
γ1

`1

)β1/`1−1/2
exp
(
−π2 γ1

)
�k,`1,`2 N

k+λ

for k > 1/2, by Lemma 2 and standard zero-density estimates.
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On the other hand, the case γ1 > 0, γ2 < 0 and y > 0 can be estimated in a similar
way essentially exchanging the role of γ1 and γ2 in the previous argument.

This implies that the integral in (26) is�k,`1,`2 N
k+λ provided that k > 1. Combining

the convergence conditions for (24)–(26), we see that we can exchange both summations
with the integral provided that k > 1.

8. Convergence of the double sum over zeros. In this section we prove that the
double sum on the right of (3) converges absolutely for every k > 1/2; the other series in
(1) and (2) clearly converge for k > 0 or better. We need (15) uniformly for x ∈ [0, k+ 3]
and |y| ≥ T , where T is large but fixed: this provides both an upper and a lower bound
for |Γ(x+ iy)|. Let

Σ =
∑
ρ1

∑
ρ2

∣∣∣∣ Γ(ρ1/`1)Γ(ρ2/`2)
Γ(ρ1/`1 + ρ2/`2 + k + 1)

∣∣∣∣,
so that, by the symmetry of the zeros of the Riemann zeta-function, we have

Σ = 2
∑∑
ρ1 : γ1>0
ρ2 : γ2>0

∣∣∣∣ Γ(ρ1/`1)Γ(ρ2/`2)
Γ(ρ1/`1 + ρ2/`2 + k + 1)

∣∣∣∣+ 2
∑∑
ρ1 : γ1>0
ρ2 : γ2>0

∣∣∣∣ Γ(ρ1/`1)Γ(ρ2/`2)
Γ(ρ1/`1 + ρ2/`2 + k + 1)

∣∣∣∣
= 2(Σ1 + Σ2),

say. It is clear that if both Σ1 and Σ2 converge, then the double sum on the right-hand
side of (3) converges absolutely. In order to estimate Σ1 we choose a large T and let

D0 = {(ρ1, ρ2) : (γ1, γ2) ∈ [0, 2T ]2}, D3 = {(ρ1, ρ2) : γ2 ≥ T, T ≤ γ1 ≤ γ2},
D1 = {(ρ1, ρ2) : γ1 ≥ T, T ≤ γ2 ≤ γ1}, D4 = {(ρ1, ρ2) : γ2 ≥ T, 0 ≤ γ1 ≤ T},
D2 = {(ρ1, ρ2) : γ1 ≥ T, 0 ≤ γ2 ≤ T},

so that Σ1 ≤ Σ1,0 +Σ1,1 +Σ1,2 +Σ1,3 +Σ1,4, say, where Σ1,j is the sum with (ρ1, ρ2) ∈ Dj .
Now, D0 contributes a bounded amount, that depends only on T , and, by symmetry
again, Σ1,1 = Σ1,3 and Σ1,2 = Σ1,4. We also recall the inequality (27) which is valid for
all couples of zeros considered in Σ1. Hence

Σ1,1 �`1,`2

∑∑
ρ1 : γ1≥T

ρ2 : T≤γ2≤γ1

e−π(γ1/`1+γ2/`2)/2(γ1/`1)β1/`1−1/2(γ2/`2)β2/`2−1/2

e−π(γ1/`1+γ2/`2)/2(γ1/`1 + γ2/`2)β1/`1+β2/`2+k+1/2

�`1,`2

∑∑
ρ1 : γ1≥T

ρ2 : T≤γ2≤γ1

1
γ

1/2
1 γ

1/2
2 (γ1 + γ2)k+1/2

�`1,`2

∑
ρ1 : γ1≥T

1
γk+1

1

∑
ρ2 : T≤γ2≤γ1

1
γ

1/2
2
�`1,`2

∑
ρ1 : γ1≥T

log γ1

γ
k+1/2
1

.

A similar argument proves that

Σ1,2 �k,T,`1,`2

∑
ρ1 : γ1≥T

1
γk+1

1
,
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since Γ(ρ2) is uniformly bounded, in terms of T , for (ρ1, ρ2) ∈ D2. Summing up, we have

Σ1 �k,T,`1,`2 1 +
∑

ρ1 : γ1≥T

log γ1

γ
k+1/2
1

,

which is convergent provided that k > 1/2. In order to estimate Σ2 we use a similar
argument. Choose a large T and for {i, j} = {1, 2} set

E0(i, j) =
{

(ρ1, ρ2) :
(
γi
`i
,
γj
`j

)
∈ [0, 2T ]2

}
,

E1(i, j) =
{

(ρ1, ρ2) : γi
`i
≥ 2T, 0 ≤ γj

`j
≤ T

}
,

E2(i, j) =
{

(ρ1, ρ2) : γi
`i
≥ 2T, T ≤ γj

`j
≤ γi
`i
− T

}
,

E3(i, j) =
{

(ρ1, ρ2) : γi
`i
≥ 2T, γi

`i
− T ≤ γj

`j
≤ γi
`i

}
,

so that Σ2 ≤ Σ0(1, 2) + Σ1(1, 2) + Σ2(1, 2) + Σ3(1, 2) + Σ3(2, 1) + Σ2(2, 1) + Σ1(2, 1), say,
where Σr(i, j) is the sum with (ρ1, ρ2) ∈ Er(i, j). Now, E0 contributes a bounded amount,
that depends only on T , `1 and `2. We remark that similar arguments apply when dealing
with Σ1(1, 2) and Σ1(2, 1); Σ2(1, 2) and Σ2(2, 1); Σ3(1, 2) and Σ3(2, 1) respectively. Again
we use (15) as above; hence

Σ2(1, 2)

�`1,`2

( ∑∑
(ρ1,ρ2)∈E2(1,2)

γ2≤γ1/2
1

+
∑∑

(ρ1,ρ2)∈E2(1,2)
γ2>γ

1/2
1

) (γ1/`1)β1/`1−1/2(γ2/`2)β2/`2−1/2e−πγ2/`2

(γ1/`1 − γ2/`2)β1/`1+β2/`2+k+1/2 .

We bound the first sum by a further subdivision of the zeros ρ2, treating differently those
with β2 < `2/2 and the other ones, if any. The first sum is

�`1,`2 e
−πT

∑
γ1≥2T`1

γ
β1/`1−1/2
1

∑
γ2∈[T`2,γ

1/2
1 ]

γ
β2/`2−1/2
2

γ
β1/`1+β2/`2+k+1/2
1

�T,`1,`2

∑
γ1≥2T`1

1
γ
k+3/2
1

( ∑
β2<`2/2

γ2∈[T`2,γ
1/2
1 ]

+
∑

β2≥`2/2
γ2∈[T`2,γ

1/2
1 ]

)(γ2

γ1

)β2/`2−1/2

�T,`1,`2

∑
γ1≥2T`1

1
γ
k+3/2
1

( ∑
β2<`2/2

γ2∈[T`2,γ
1/2
1 ]

(
γ1

T

)1/2−β2/`2

+ γ
1/2
1 log γ1

)

�T,`1,`2

∑
γ1≥2T`1

log γ1

γ
k+1/2
1

.
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The rightmost series over zeros plainly converges for k > 1/2. The second sum is

�T,`1,`2

∑
γ1≥2T`1

γ
β1/`1−1/2
1 e−πγ

1/2
1 /`2

×
∑

γ2∈[γ1/2
1 ,(γ1/`1−T )`2]

γ
β2/`2−1/2
2

(γ1/`1 − γ2/`2)β1/`1+β2/`2+k+1/2

�T,`1,`2

∑
γ1≥2T`1

γ
β1/`1−1/2
1 e−πγ

1/2
1 /`2 (γ1 log γ1)T−(β1/`1+k+1/2)γ

1/2
1 ,

which is very small. The contribution of zeros in E1(1, 2) is treated in a similar fashion,
using the uniform upper bound Γ(ρ2)�T 1, and is also small. We now deal with Σ3(1, 2):
we have

Σ3(1, 2)�`1,`2

∑∑
(ρ1,ρ2)∈E3

e−πγ1/(2`1)γ
β1
`1
− 1

2
1 e−πγ2/(2`2)γ

β2
`2
− 1

2
2

(
min

k+1≤x≤k+3
0≤t≤T

|Γ(x+ it)|
)−1

�k,T,`1,`2

∑
ρ1 : γ1≥2T`1

e−πγ1/`1γ
β1/`1+1/`1
1 log(γ1 + T ),

provided that T is large enough. Here we are using Theorem 9.2 of Titchmarsh [15] with
T large but fixed. The series at the extreme right is plainly convergent.
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