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Abstract. We mix some of the novelties that have occurred recently in the field of explicit
multiplicative number theory, together with some questions that have not been answered yet
and with several new results.

1. Background. In the recent past several questions in multiplicative number theory
have known some explicit extensions: instead of knowing that the problem is solvable
provided the variables are large enough, a definite bound is given from which the result
is true. Let us mention the representation of integers as sums of a prime (or a prime
squared) and a square-free number by A. Dudek in [14] (and [15]), an explicit density
estimate for Dirichlet L-series by the author in [36], the complete solutions of the odd
Goldbach conjecture by H. Helfgott, a question that has been open for many decades,
bounds on the number of Diophantine quintuples by T. Trudgian in [47] or M. Cipu
in [7], and bounds on the least k-th power non-residue by E. Treviño in [46]. We cannot
list all of them, but they have a particularity: computing the constants in the classical
proof fails to do the job and new techniques are necessary. We focus in this article on
a crucial auxiliary tool: averages of arithmetical functions. Rather than trying to define
what arithmetical means here, let us say that the quantities to be averaged can roughly
be sorted in three classes:

• Averages of the von Mangoldt Λ-function,
• Averages of non-negative multiplicative functions,
• Averages of oscillating multiplicative functions.
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The first of these items have been extensively studied, while decent work exists con-
cerning the second one. We consider here mainly the third item, and its implications on
the second one. We will present work that bypasses the Perron formula, together with
several problems that are still open, e.g., finding a decent lower bound for the absolute
value of the Riemann zeta-function in a zero-free region.

Concerning primes, the situation is now essentially under control, thanks first to the
pioneering work of J. B. Rosser in [41], extended together with L. Schoenfeld in [43]. Nu-
merical verification of a partial Riemann hypothesis plays an important role and several
authors intervened there. We only mention the most recent of them, namely D. Platt
in [28]. These computations concern also the zeros of L-functions, and this enables us to
handle the distribution of primes in arithmetic progressions to some fixed modulus; the
situation is less satisfactory there but getting tamed. Authors are now going towards de-
rived quantities, e.g.,

ř

logppq{p and Euler products, like O. Bordellès in [5], the present
author in [30], the author’s former student R. Mawia in [49] and P. Dusart in [16].

For non-negative multiplicative functions the convolution method usually works. Be-
low we present two typical results in this area, that we use as starting points for three
questions to quantify the progress and difficulties. For the first problem, we quote a result
due to H. Cohen & F. Dress in 1988, which is still unsurpassed.

Theorem 1.1 (H. Cohen & F. Dress in [8]). For D ě 1 004, we have
ÿ

dďD

µ2pdq “
6D
π2 `O

˚
`

0.1333
?
D
˘

.

On assuming that D ě 438 653 presp. D ě 82 005q, we can replace 0.1333 by 0.02767
presp. 0.036438q.

We use our usual notation f “ O˚pgq to mean that |f | ď g. We produce in Corol-
lary 3.4 an asymptotic error term that is asymptotically smaller, but only when D ě

101468. Our method will have more impact on the second example we use for experi-
ments. Here is a consequence of the above theorem.

Corollary 1.2. For D ą 82 005, we have
ÿ

dďD

µ2pdq

d
“

6
π2

`

logD ` C2
˘

`O˚
ˆ

3ˆ 0.036438
?
D

˙

with
C2 “ γ ` 2

ÿ

pě2

log p
p2 ´ 1 “ 1.717 137 651 090 62 ¨ ¨ ¨

When D ě 438 653, we can replace 0.036438 by 0.02767. For D ě 1, we can replace
3ˆ 0.036438 by 0.43.

The proof of this corollary is straightforward and is delayed until Section 12. Theo-
rem 3.2 and Corollary 3.3 below improve on the quality of this result as soon as D ě 108

for the first one and as soon as D ě 3475 for the second one. The third question we
consider is linked with the Selberg sieve. Let us quote a result of J. Büthe.
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Theorem 1.3 (J. Büthe in [6]). For D ě 109, we have
ÿ

dďD

µ2pdq

ϕpdq
“ logD ` c0 `O˚

ˆ

58
?
D

˙

where
c0 “ γ `

ÿ

pě2

log p
ppp´ 1q “ 1.332 582 275 733 ¨ ¨ ¨

This is after the work of H. Riesel and R. C. Vaughan in [39] and the present author
in [31]. The constant c0 has been computed in [42, (2.10)]. Theorem 3.1 below improves
considerably on this result.

Having these examples and results at hand, the main questions that remain are:

• Can we do better?
• What about oscillating multiplicative functions?

We will see that both questions are linked.

2. An analytical detour. When asking about possible improvements, it is interest-
ing to see what the classical theory gives. The Dirichlet series associated with µ2pnq is
ζpsq{ζp2sq while the one associated with µ2pnq{ϕpnq reads

Dpsq “
ź

pě2

ˆ

1` 1
pspp´ 1q

˙

“ ζps` 1qζp4s` 4q
ζp2s` 2q

ź

pě2

ˆ

1´ 1
p´ 1

ˆ

1
p4s`3 `

1
p2s`2 ´

1
ps`1 ´

1
p3s`3

˙˙

.

Proof. Let us give some tools on how to obtain such factorizations. We set X “ 1{ps`1

and Y “ p{pp´ 1q, and then observe that

p1`XY qp1´Xqp1`X2q “ 1` pY ´ 1qXp1´X `X2q ´ Y X4

from which the claimed formula follows on noticing that 1`X2 “ p1´X4q{p1´X2q.

We then use a truncated Perron formula, shift the line of integration to the left of the
line <s “ ´1{2 but still within the zero-free region of ζp2s` 2q and classically obtain

ÿ

dďD

µ2pdq{ϕpdq “ logD ` C `O
`

expp´c
a

logDqD´1{2˘

for some positive constant c. We cannot push the line of integration further to the left
since we may otherwise encounter poles of 1{ζp2s ` 2q whose residues are uncontrolled.
The situation for

ř

n µ
2pnq is exactly the same, since its Dirichlet series is ζpsq{ζp2sq,

except that the difficult line is now <s “ 1.
If one wants to compute the constants in the above proof, we encounter a major

hurdle: bounds for 1{ζpsq are hard to get. As a matter of fact, F. Dress asked this very
question more than thirty years ago, though concerning

ř

n µpnq rather than
ř

n µpnq
2,

but the problem is the same. The best that has been obtained up to now has followed
from the usual theory of the Riemann zeta-function.
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Theorem 2.1 (T. Trudgian in [48]). When t ě 45 and σ ě 1´ 1{p8 log tq,
|1{ζpsq| ď 7 ¨ 106 log t.

Since the Riemann hypothesis has been checked for |t| ď 3¨109, we can only ensure that
log t ě 21.8 and the “constant” 7 ¨106 behaves more like t2{3. We use here the verification
of D. Platt in [29] because it has been subject of a publication, but X. Gourdon has
announced in 2004 in [21] a verification up to the height 2.445 ¨ 1012. This would sadly
not make a large difference here.

3. Doing better. So, how to go beyond simple methods and remain explicit? We have
changed “elementary” for “simple” in this sentence. Here “simple” means essentially that
the constants do not accumulate to produce some useless error term.

We have recently managed to put a toe in this direction with P. Akhilesh in [38], and
it is the history of this result that we recount below, with some comments and theorems
in between. As it turns out, while writing this paper (in fact when preparing the talk),
the author has improved on the result.

Theorem 3.1. For D ą 1, we have
ÿ

dďD

µ2pdq

ϕpdq
“ logD ` c0 `O˚

ˆ

11
?
D logD

˙

,

and equally for D ą 1, we have
ÿ

dďD

µ2pdq

ϕpdq
“ logD ` c0 `O˚

ˆ

61{25
?
D

˙

.

The version with P. Akhilesh has a 21 rather than 11 (and a 3.99 rather than 61{25 “
2.44) but is valid for a larger family (with a coprimality condition pd, qq “ 1 added).
The method here is simpler though it relies on the same mechanism we used. Note that
Lemma 9.3 below has also an independent interest: it contains the result of some finite
computation over the range r1, 109s that compares the error term with 1{D3{4. We will
first prove the following theorem.

Theorem 3.2. For D ě 1665, we have
ÿ

dďD

µ2pdq

d
“

6
π2

`

logD ` C2
˘

`O˚
ˆ

7{20
?
D logD

˙

.

When D ą 1, it is enough to replace the 7{20 with 3{5 pand even by 0.56q.

Again, Lemma 9.2 contains the result of some finite computation over the range
r1, 1011s that compares the error term with 1{D3{4. With the help of Theorem 3.2, we
can improve slightly on Corollary 1.2.

Corollary 3.3. When D ě 3475 is a real number, we have
ÿ

dďD

µ2pdq

d
“

6
π2

`

logD ` C2
˘

`O˚
ˆ

0.073
?
D

˙

.

A simple summation by parts yields the following (together with some finite compu-
tations; all of these details are relegated to Section 10).
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Corollary 3.4. When D ą 1 is a real number, we have
ÿ

dďD

µ2pdq “
6
π2D `O

˚

ˆ

1.06
?
D

?
logD

˙

.

This is better than the (basic) error term O˚p0.1333
?
Dq of Theorem 1.1 only when

D ě 1064 and better than O˚p0.02767
?
Dq (from Theorem 1.1 when D ě 438 653) only

when D ě 101468.
Theorem 8.1 below is the first key to the results above. It will enable us to prove

Theorem 3.2 from which we will deduce Theorem 3.1 by generalizing the method we
devised with P. Akhilesh in [38]. After explaining this one, we will set to tell how we
came to Theorem 8.1.

4. Setting the direction. We start our journey towards the proof of Theorem 3.1
and 3.2 by an Unbalanced Dirichlet Hyperbola Formula that we proved with P. Akhilesh
in [38, Theorem 1.3]. See H. Montgomery [26, Lemma 1] for a similar idea.

Theorem 4.1 (Unbalanced Dirichlet Hyperbola Formula). Let pgpmqqmě1 be a sequence
of complex numbers such that both series

ř

mě1 gpmq{m and
ř

mě1 gpmqplogmq{m con-
verge. We define G7pxq “

ř

mąx gpmq{m and assume that
ş8

1 |G
7ptq| dt{t converges. Let

A0 ě 1 be a real parameter. We have
ÿ

nďD

pg ‹ 1qpnq
n

“
ÿ

mě1

gpmq

m

ˆ

log D
m
` γ

˙

`

ż 8

D{A0

G7ptq
dt

t
`O˚pRq

where R is defined by

R “

ˇ

ˇ

ˇ

ˇ

ÿ

1ďaďA0

1
a
G7

ˆ

D

a

˙

`G7
ˆ

D

A0

˙ˆ

log A0

rA0s
´RprA0sq

˙
ˇ

ˇ

ˇ

ˇ

`
6{11
D

ÿ

mďD{A0

|gpmq|

where rA0s is the integer part of A0, while the remainder RpXq “
ř

nďX 1{n´ logX´γ.

The constant 6{11 “ 0.545 ¨ ¨ ¨ is commented on in [38, Lemma 2.1] and can be
replaced by the optimal 2plog 2 ` γ ´ 1q “ 0.540 ¨ ¨ ¨ . This theorem tells us that the key
to improving the estimate for µ2pdq{d is to get some non-trivial bound for

ř

`ąy µp`q{`
2.

In the same manner, the key to µ2pdq{ϕpdq is to estimate non-trivially
ÿ

`2kąy,
p`,kq“1

µ2pkqµp`q

kϕpkq`ϕp`q
.

Here, by “non-trivially”, we mean exploiting the cancellation offered by the µp`q factor.
This is the path we followed in [38] but we shall see in Section 8 that another path is
possible.

The above theorem covers the case of a convolution product g‹1, but it may be useful
to have a more general case. Let h be an arithmetical function (i.e. simply a sequence
of complex numbers phpnqqně1) and K0 and K1 be two complex numbers. We define the
remainder Rh, which in fact depends also on K0 and K1, by

@X ě 1,
ÿ

nďX

hpnq{n “ K0plogX `K1q `RhpXq. (1)
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Theorem 4.2 (Generalized Unbalanced Hyperbola Formula). Let pgpmqqmě1 be a se-
quence of complex numbers such that both series

ř

mě1 gpmq{m and
ř

mě1 gpmqplogmq{m
converge. We define G7pxq “

ř

mąx gpmq{m and assume that
ş8

1 |G
7ptq| dt{t converges.

Let A0 ě 1 be a real parameter and h, K0, K1 and Rh be as above. We have
ÿ

nďD

pg ‹ hqpnq

n
“ K0

ÿ

mě1

gpmq

m

ˆ

log D
m
`K1

˙

`K0

ż 8

D{A0

G7ptq
dt

t
`O˚pRhq

where Rh is defined by

Rh “

ˇ

ˇ

ˇ

ˇ

ÿ

aďA0

hpaq

a
G7

ˆ

D

a

˙

`G7
ˆ

D

A0

˙ˆ

K0 log A0

rA0s
´RhprA0sq

˙
ˇ

ˇ

ˇ

ˇ

`
ÿ

mďD{A0

ˇ

ˇ

ˇ

ˇ

gpmq

m
Rh

ˆ

D

m

˙
ˇ

ˇ

ˇ

ˇ

where rA0s is the integer part of A0.

Partial proof of Theorem 4.2. We start by proving the following formula:
ÿ

nďD

pg ‹ hqpnq

n
“ K0

ÿ

mě1

gpmq

m

ˆ

log D
m
`K1

˙

`K0

ż 8

D

G7ptq
dt

t

´K0K1G
7pDq `

ÿ

mďD

gpmq

m
Rh

ˆ

D

m

˙

.

(2)

This identity is linear in g, so it is enough to prove it for any positive integer k for
g “ δ¨“k, i.e. the function that takes the value 1 at k and the value 0 everywhere else.
In this case, G7ptq is 0 when t ą k and equal to 1{k otherwise, while pg ‹ hqpnq is hpn{kq
when k divides n and 0 otherwise. The identity to prove reduces to

ÿ

mďD{k

hpmq

km
“ K0

1
k

ˆ

log D
k
`K1

˙

`
K0

k
δDăk log k

D
´ δDăk

K0K1

k
`
δDěk
k

RhpD{kq.

On splitting according to whether D ă k or not, the reader will readily check the identity.
In order to continue, we need to rewrite the part

ÿ

D{A0ămďD

gpmq

m
Rh

ˆ

D

m

˙

.

This is done in rather technical Covering Remainder Lemma 11.1 that we prove in Sec-
tion 11.

As one can see, the preliminary step to Theorem 3.2 is to find a manner to handle
the Möbius function. The analytical way seems to be ruled out. On the other side and as
we have seen, lots of work has been done for the von Mangoldt Λ-function, and it would
be great to inherit from it.

5. Leading theme. The Dirichlet series associated with the von Mangoldt Λ-function
is ´ζ 1psq{ζpsq. The Euler product relates to primes, but by looking at it as ´ζ 1psq, defined
in terms of integers, divided by ζ, equally defined in terms of integers, we have a way to
relate primes to integers. This is in short the Riemann program. But for this program to
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work, we need ζpsq not to vanish and this is the crucial point. The factor ζ 1psq is most
probably superfluous. Pursuing this line of thought, we see that the distribution of the
primes should be “equivalent” to the distribution of the Dirichlet coefficients of 1{ζpsq,
i.e. to pµpnqqně1. This philosophy motivates the following theorem.
Theorem 5.1 (Axer–Landau Equivalence Theorem [23], [1] & [24]). The five propositions
are equivalent:
(1) #tprimes ď xu is asymptotic to x{ log x.
(2) ψpxq “

ř

nďx Λpnq is opxq.
(3) Mpxq “

ř

dďx µpdq is opxq.
(4) mpxq “

ř

dďx µpdq{d is op1q.
(5) m̌pxq “

ř

dďx µpdq logpx{dq{d is 1` op1q.
A quantitative version of this theorem would be numerically efficient! The equivalence

between (1) and (2) is trivial and we have given some ground for the equivalence of (2)
and (3). The statement that (2) implies (4) is somewhat surprising and comes from
E. Landau’s thesis in [23], while that the statement (3) implies (4) is due to A. Axer in [1].
We shall tell more on this subject later and it is in fact the subject of the survey [37].
The statement (5) concerning the function m̌ is a surprising addition.

In between, let us consider a related question.
Question 1. Can one bound efficiently |1{ζpsq|, in some zero-free region, in terms
of ψpxq?

In connection with this question we propose how to go from ψpxq to Mpxq in a not
too bad manner.

6. From the primes to the Möbius function. Let us continue our journey around
the Axer–Landau Equivalence Theorem. We first notice that W.-B. Zhang has exhibited
in [50] a Beurling system of integers where one hasMPpxq “ opxq without ψPpxq „ x. Our
final destination being numerical estimates, we are however more interested in the reverse
implication, i.e. to derive bounds for M from bounds for the primes. This phenomenon
is detailed in the survey [37]. This problem has been studied by A. Kienast in [22] and
by L. Schoenfeld in [44], and they proceeded as the author later did in [33] by using
some combinatorial identities. Tough we indeed get results, the process we use is heavy
and saves only some power of log. The higher this power, the more difficult the proof
becomes; but we have been unable to find a path that would enable a power saving. The
family of identities the author produced is simply more efficient than the one used by
A. Kienast. It is better to refer the reader to the cited paper and to only give here the
general flavour. The first interesting case reads

ÿ

`ďx

µp`q log2 ` “
ÿ

d`ďx

µp`q
`

Λ ‹ Λpdq ´ Λpdq log d
˘

. (3)

It is worth mentioning that the Selberg identity that is used for proving elementarily
the Prime Number Theorem is Λ ‹ Λpdq ` Λpdq log d “ pµ ‹ log2

qpdq and that, assuming
this theorem, both factors Λ ‹ Λpdq and Λpdq log d contribute equally to the average. In
particular, the function Λ ‹Λpdq´Λpdq log d should be looked upon as a remainder term.
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We get information of its average order by using the Dirichlet hyperbola formula; it would
most probably be better to use an explicit expression in terms of the zeros directly, but
this involves the residues of pζ 1{ζq2 and there lacks a control of those, while the residues
of ζ 1{ζ are well understood. Some more thought discloses that we need essentially the
L1-norm of such residues. Since they are non-negative integers for ζ 1{ζ, we may as well
compute their simple average, which is readily achieved by a contour integration that has
most of its path outside the critical strip. No such phenomenon is known to occur for
pζ 1{ζq2.

The reader may be wary of the Möbius factor that appears on the right-hand side
of (3), but only one such factor appears. It is maybe more apparent in the next identity
of this series:

ÿ

`ďx

µp`q log3 ` “
ÿ

d`ďx

µp`q
`

Λ ‹ Λ ‹ Λpdq ´ 3Λ ‹ pΛ logqpdq ` Λpdq log2 d
˘

.

When starting with the last identity with k “ 3, one can expect to save a log3 x on the
trivial estimate x, but the presence of the Möbius factor on the right-hand side reduces
that to a saving of one log x less, so log2 x. This is because the Dirichlet hyperbola method
is not used, though one may employ a recursion process: indeed, L. Schoenfeld does that,
followed by H. Cohen, F. Dress & M. El Marraki in [9], [13] and [17]. The present author
did not introduce such a step as it is numerically costly, but a more careful treatment is
possible here.
Theorem 6.1 ([33]). When D ě 464 402, we have

ˇ

ˇ

ˇ

ÿ

dďD

µpdq
ˇ

ˇ

ˇ
{D ď

0.0146 logD ´ 0.1098
plogDq2 .

Question 2. Can one introduce a recursion step in the proof of the above result to
increase the explicit saving?

The 0.0146 is to be compared with 3{28 from [17]. And, yes, it is amazing that one
is not able to do much better, like ď 10´6D for sensible values of D (our result requires
D ě 106 500 to reach such a conclusion) as in the case for the primes (see [19]).

The present author believes (as already stated elsewhere) that there exists A ą 1
such that

|Mpxq|
?
! max
x{AăyďxA

|ψpyq ´ y|{y ` x´1{4.

Question 3. Can one bound 1{ζpsq in terms of Mpxq in some zero-free region?
This question is trickier than it looks and the classical expression

1
ζpsq

“ s

ż 8

1
Mpxq

dx

xs`1

is apparently not sufficient to go beyond <s “ 1.

7. From Mpxq to mpxq “
ř

dďx µpdq{d. The reader may believe than an integration by
parts does the job, but there is a catch. Indeed, on the formula

mpxq “
Mpxq

x
`

ż x

1

Mptq dt

t2
,
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we see that the assumption Mpxq “ opxq is not enough to ensure that mpxq is even
bounded! The same problem occurs when going from the Chebyshev ψ-function to ψ̃pxq “
ř

nďx Λpnq{n. In this case, H. Diamond & W.-B. Zhang in [12] found a system of Beurling
integers where ψpxq is equivalent to x, but ψ̃pxq ´ log x is unbounded. No such counter-
example has been found for the Möbius function, though the present author expects
a similar phenomenon to occur.

We thus have to use some special property of the actual sequence we consider. Recall
that we are seeking quantitative results. In the case of the primes, it took the author
quite a while, but D. Platt and the present author finally cleared the situation in [32]
and [30]. Concerning the Möbius function, A. Axer in [1] produced a qualitative answer.
M. El Marraki in a preprint [18], that has only known a very confidential dissemination,
used an identity to do so, and we followed the same path. Our new ingredient is an
identity due to M. Balazard in [4]. Here is our result.

Theorem 7.1 ([35]). When D ě 463 421, we have
ˇ

ˇ

ˇ

ÿ

dďD

µpdq{d
ˇ

ˇ

ˇ
ď

0.0144 logD ´ 0.1
plogDq2 .

When D ě 97 000, we have
ˇ

ˇ

ˇ

ÿ

dďD

µpdq{d
ˇ

ˇ

ˇ
ď

1
69 logD .

M. El Marraki in the aforementioned preprint had 4.5 instead of 69. Since the magical
tool is a collection of identities, we recall one of these identities, so that the reader can
imagine the beasts we are looking at. In the proof of Proposition 6 of [3], M. Balazard
produces the following identity, valid for x ě 1:

mpxq “
Mpxq

x
`

4p1´ x´1q2

x
´

4p1´ x´1q3

3x2 `
1
x

ż x

1
Mpx{tqε11ptq dt (4)

where

ε11ptq “

ˆ

p2ttu ´ 1qt` ttu ´ ttu2

t2

˙2
.

From that he deduces the following theorem.

Theorem 7.2 (M. Balazard in [4]). When D ě 1, we have

|mpDq| ď
|MpDq|

D
`

1
D2

ż D

1
|Mptq| dt`

8
3D .

It turns out that M. Balazard was studying and trying to put some order in a col-
lection of identities produced by R. A. MacLeod in [25]. This very paper is entitled
A curious identity for the Möbius function, and indeed, the question is to know whether
such identities are ad hoc historical curiosities or whether some more information is lying
there.

The situation has been further cleared by a former student of mine, F. Daval [10], in
the following theorem.
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Theorem 7.3 (F. Daval in [10]). Select h : r0, 1s Ñ C, continuous and such that
ş1
0 hpuq du “ 1. When x ě 1, we have

mpxq ´
Mpxq

x
´

1
x

ż 1

1{x

hpyq

y
dy “

1
x

ż x

1
Mpx{tq

ˆ

1´ 1
t

ÿ

nďt

hpn{tq

˙

dt.

So we can handle the convolution of M against any “Riemann integral-remainder”!
On selecting h “ 1, one recovers the classical Meissel identity, while the choice h “ 2t
leads to the first MacLeod identity.

The class of these “Riemann integral-remainder” is not yet clear. Given f over r0, 1s,
say continuous, with integral equal to one, can it be approximated by such a remainder
term, or more precisely, what is the class of functions attained?

We show in Theorem 7.4 below that we get every identity in this manner, at least
when h is assumed to be C1.

7.1. The problem at large. Let us try to formalize the problem. We start from a reg-
ular function F : r1,8q Ñ C, for instance F ptq “ 1 or F ptq “ log t. The question is to
find two functions H and G and a constant C such that, for any x ě 1, we have

ÿ

nďx

µpnq

n
F px{nq ´ C

Mpxq

x
“

1
x

ż x

1
Mpx{tqGptq dt`Hpxq. (5)

We assume that H is smooth and “small”. To avoid solutions that would result from
integration by parts, we assume that

ż 8

1
|F ptq| dt{t “ 8,

ż 8

1
|Gptq| dt{t ă 8.

Indeed, an integration by parts yields the formula
1
x

ż x

1
Mpx{tqGptq dt “

ÿ

nďx

µpnq

n
F px{nq

but we have

8 “

ż 8

1
|F ptq|

dt

t
“

ż 8

1

ˇ

ˇ

ˇ

ˇ

1
t

ż t

1
Gpyq dy

ˇ

ˇ

ˇ

ˇ

dt

t
ď

ż 8

1
|Gpyq| dt{t ă 8,

which contradicts our conditions.
Equality (5) looks like a functional transform from F to G, but there is a lot of

slack! Indeed, when F “ 1 or when F ptq “ log t, the vector space of solutions is infinite
dimensional.

Note that, by looking at what happens at x “ 1, we find that C “ F p1q ´Hp1q.

7.2. A completeness result when F “ 1

Theorem 7.4. Assume relation (5) holds with F “ 1, G and H being C2 over r1,8q.
Then C “ 1 and the function defined over r0, 1s by hpzq “ pHp1{zq{zq1{z is C1 over
r0, 1s, satisfies

ş1
0 hpzq dz “ 1 and we have, when x ě 1,

Gpxq “ 1´ 1
x

ÿ

nďx

hpn{xq.
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We did not try to reach minimal hypotheses and, in particular, to relax the regularity
assumption on G.

Proof. When <s ă 0, we find that
ż 8

1

ÿ

nďx

µpnq

n
xs´1 dx “

ÿ

ně1

µpnq

n

ż 8

n

xs´1 dx “
´1

sζp1´ sq .

Note also that ps´ 1q
ş8

1 Mpxqxs´2 dx “ 1{ζp1´ sq. Again when <s ă 0, we find that
ż 8

1

1
x

ż x

1
Mpx{tqGptq dt xs´1 dx “

ż 8

1

1
x

ÿ

nďx

µpnq

ż x{n

1
Gptq dt xs´1 dx

“
ÿ

ně1
µpnq

ż 8

1

ż 8

nt

px{nqs´1ns´1 dx

x
Gptq dt

“
ÿ

ně1
µpnq

ż 8

1

ż 8

t

xs´1ns´1 dx

x
Gptq dt

“
ÿ

ně1
µpnqns´1

ˆ

´1
s´ 1

˙

Ǧpsq

on denoting the Mellin transform of G by Ǧpsq, i.e.

Ǧpsq “

ż 8

1
Gpxqxs´1 dx. (6)

This means, with respect to the usual theory where the functions are defined over r0,8q,
that we extend G to this interval by setting Gpxq “ 0 when x P r0, 1q. We infer from
these computations that, when <s ă 0,

Ǧpsq “
s´ 1
s

´ C ` ζp1´ sqps´ 1qȞpsq

or also

Ǧpsq “ 1´ C ` 1
s
p´ps´ 1qȞpsq ´ 1q `

ˆ

ζp1´ sq ` 1
s

˙

ps´ 1qȞpsq.

Since we ask that Ǧp0q exists, we need Ȟp0q “ 1. Furthermore, (5) with x “ 1 gives us
Hp1q “ 1 ` C. And since H is C2, its Mellin transform decreases as fast as 1{|s|2 when
s is large. In particular we should account for the 1´ C ´ s´1 of Ǧ. The 1 is the Mellin
transform of the Dirac measure at x “ 1 and ´1{s of the function 1r1,8q, but also of the
Y function defined by

Y pxq “

$

’

’

&

’

’

%

0 when x P r0, 1q,
1
2 when x “ 1,
1 when x ą 1.

This function is better suited for inverse Mellin transform. Since G is regular, its Mellin
transform has no Dirac part, which means that 1´ C “ 0 and thus

Ǧpsq “ Y̌ psq ` ζp1´ sqps´ 1qȞpsq.
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Let us start toward a reciprocal statement. We first notice that

ps´ 1qȞpsq “
“

xHpxqxs´1‰8
1 ´

ż 8

1
pxHpxqq1xs´1 dx.

We set
hp1{yq{y “ pyHpyqq1, Hpxq “

1
x

ż x

1
hp1{yq dy{y. (7)

The equation Ȟp0q “ 1 translates into
ż 8

1

ż x

1
hp1{vq dv

v

dx

x2 “

ż 8

1

ż 1

1{x
hpuq

du

u

dx

x2 “

ż 1

0
hpuq du “ 1.

We infer from this by inverse Mellin transform that

Gpxq ´ Y pxq “
1

2iπ

ż ´ 1
2`i8

´ 1
2´i8

ζp1´ sqps´ 1qȞpsqx´s ds

“
ÿ

ně1

1
n

1
2iπ

ż ´ 1
2`i8

´ 1
2´i8

ps´ 1qȞpsqpx{nq´s ds “ ´ 1
x

ÿ

nďx

hpn{xq

recovering F. Daval’s identity.

7.3. A functional approach when F “ 1. Starting from Theorem 7.3 and, remember-
ing the identities of MacLeod in Balazard’s form, we aim at writing the integral with M
in the form

ş

Mpx{tqf 1ptq dt. With this goal in sight we note that
ż x

0

ˆ

1´ 1
t

ÿ

nďt

hpn{tq

˙

dt “

ż 1

0
tuxu

hpuq

u
du.

So, given f : r1,8q Ñ C, we would like to solve fpxq “
ş1
0tuxu

hpuq
u du. The change of

variable y “ 1{x leads to the problem: given g : r0, 1s Ñ C, solve gpyq “
ş1
0
tu{yu
u{y hpuq du.

The operator, say T , over the Hilbert space L2pr0, 1sq which associates
ş1
0
tu{yu
u{y hpuq du

to h is a Hilbert–Schmidt, compact and contracting operator. Indeed, we readily check
that the kernel pu, yq ÞÑ tu{yu

u{y belongs to L2pr0, 1s2q and then, we for instance use the
classical textbook [20] (around equations (9.6)–(9.8)). Since

ż 1

0

ż 1

0

ˇ

ˇ

ˇ

ˇ

tu{yu

u{y

ˇ

ˇ

ˇ

ˇ

2
du dy “

ż 1

0

ż 1{y

0

ˇ

ˇ

ˇ

ˇ

tzu

z

ˇ

ˇ

ˇ

ˇ

2
dz y dy

ď

ż 1

0

ˆ

1`
ż 8

1

tzu

z2 dz

˙

y dy “ 1
2 p2´ γq ă 1,

we see by invoking the Cauchy–Schwarz inequality that T is strictly contracting. Indeed,
let ϕ be a normalized eigenvector of T associated with the eigenvalue λ, we have

|λ|2 “

ż 1

0
|λϕpyq|2 dy “

ż 1

0

ˇ

ˇ

ˇ

ˇ

ż 1

0

tu{yu

u{y
ϕpuq du

ˇ

ˇ

ˇ

ˇ

2
dy

ď

ż 1

0

ż 1

0

ˇ

ˇ

ˇ

ˇ

tu{yu

u{y

ˇ

ˇ

ˇ

ˇ

2
du

ż 1

0
|ϕpuq|2 du dy ď 1

2 p2´ γq.

The general theory tells us that there exists a sequence of complex numbers pλnqn tending
to zero (arranged in non-increasing order of their absolute value), and two orthonormal
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sequences of functions pψnqn and pϕnqn such that
ż 1

0
tu{yu

hpuq

u
du “

ÿ

ně1
λn

ż 1

0
hpuqψnpuq duϕnpyq

for every y P r0, 1s. By the paper [45] of D. W. Swann, this operator is of Shatten class p
for every p ą 1 (meaning that

ř

n |λn|
p ă 8), and the author suspects it is not of

trace class. The above decomposition is a consequence of the general theory of integral
operators and a more specific study should be able to disclose arithmetical properties.

The description of the operator T is possibly linked with the Nyman–Beurling criteria.
Indeed, this asserts that the characteristic function of p0, 1s belongs to the closure in
L2p0,8q of the set of functions defined by y ÞÑ tu{yu for any parameter u P p0, 1q (see
for instance [2]). The function gpyq{y would belong to this closure if it were defined for
y P p0,8q and not only for y P p0, 1s. We close this aside and resume the main course.

Question 4. Can one describe explicitly the triples pλn, ϕn, ψnq?

7.4. Other streams of identities. Continuing our exploration of this kind of identities,
we are led to the choice F pxq “ plog xqk in (5), for non-negative integer k. J.-P. Gram
had already an identity of this kind in 1884! R. A. MacLeod and M. Balazard produced
a full bunch of other identities, but a nice theory like the one of F. Daval in Theorem 7.3
is still missing.

Rather than expanding on this subject, the author prefers to concentrate here on one
application. Here is an identity proved in [35] by following [4] and [3]. For every x ě 1,
we have

ÿ

nďx

µpnq

n
log

ˆ

x

n

˙

´ 1 “ 6´ 8γ
3x ´

5´ 4γ
x2 `

6´ 4γ
3x4

` p 1
2 ´ γq

Mpxq

x
´

1
x

ż x

1
Mpx{tqh1ptq dt

where h is a function that satisfies t2|h1ptq| ď 7
4 ´ γ. This function can be very explicitly

described. This leads to the following unexpected result.

Theorem 7.5 ([35, Theorem 1.5]). When D ě 3 861, we have
ˇ

ˇ

ˇ

ˇ

ÿ

dďD

µpdq logpD{dq
d

´ 1
ˇ

ˇ

ˇ

ˇ

ď
0.00252 logD ´ 0.0077

plogDq2 .

When D ě 3 162, we have
ˇ

ˇ

ˇ

ˇ

ÿ

dďD

µpdq logpD{dq
d

´ 1
ˇ

ˇ

ˇ

ˇ

ď
1

396 logD .

Hence, not only do we save a logarithm, but we also save a large constant! Similar
results, though less spectacular, are available with the weight log2

pD{nq. They are in
principle available for higher powers of logpD{nq, but no one has yet explored this area,
nor found some order in it. For identities with logpD{nq, the fractional part that occurred
earlier is replaced with the remainder term

ř

nďt
1
n´ log t´γ. We shall see an application

of the above theorem in the next section.
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8. Impact on some oscillating multiplicative functions. Musing over the quality
of the numerics in Theorem 7.5, the author recently found the following result.

Theorem 8.1. When y ě 142 130, we have
ˇ

ˇ

ˇ

ˇ

ÿ

dąy

µpdq

d2

ˇ

ˇ

ˇ

ˇ

ď
0.0195 log y ´ 0.11

yplog yq2 .

When y ě 59 600, we have
ˇ

ˇ

ˇ

ˇ

ÿ

dąy

µpdq

d2

ˇ

ˇ

ˇ

ˇ

ď
1

50y log y .

We derive this bound by a simple but unusual process based on the following identity.

Lemma 8.2. Let papdqq be a complex valued sequence such that
ř

dě1 |apdq|{d ă 8. We
have

ÿ

dąy

apdq

d
“

ż 8

y

ÿ

dďt

apdq logpt{dq dt
t2
´

1
y

ÿ

dďy

apdq

ˆ

log y
d
` 1

˙

.

Proof. We readily find that
ż 8

y

ÿ

yădďt

apdq logpt{dq dt
t2
“

ÿ

dąy

apdq

ż 8

d

logpt{dq dt
t2

“
ÿ

dąy

apdq

d

ż 8

1
plog tq dt

t2
“

ÿ

dąy

apdq

d
.

Furthermore
ż 8

y

ÿ

dďy

apdq logpt{dq dt
t2
“

ÿ

dďy

apdq

d

ż 8

y{d

plog tq dt
t2
“

ÿ

dďy

apdq

y

ˆ

log y
d
` 1

˙

.

On adding both equalities, we get the lemma.

Proof of Theorem 8.1. We first establish the inequality for y ě 500 000. We employ
Lemma 8.2 with apdq “ µpdq{d and get

S “
ÿ

dąy

µpdq

d2 “

ż 8

y

ÿ

dďt

µpdq logpt{dq
d

dt

t2
´

ÿ

dďy

µpdq

dy

ˆ

log y
d
` 1

˙

.

Note that the contribution from the main term of
ř

dďt µpdq logpt{dq{d cancels out with
the one from

ř

dďy µpdq logpy{dq{d and thus

|S| ď

ż 8

y

p0.00252 log t´ 0.0077q dt
t2plog tq2 `

0.00252 log y ´ 0.0077
yplog yq2 `

0.0144 log y ´ 0.1
yplog yq2

ď

ż 8

y

p0.00252 log y ´ 0.0077q dt
t2plog tq log y `

0.00252 log y ´ 0.0077
yplog yq2 `

0.0144 log y ´ 0.1
yplog yq2

ď
0.01944 log y ´ 0.1154

yplog yq2 ď
0.0195 log y ´ 0.11

yplog yq2 .

We then use a GP-script to extend the result on the interval r142 130, 109s, noting
that 0.0195 log y ´ 0.11 ě 0 when y ě 282 and that the function y ÞÑ p0.0195 log y ´
0.11q{pyplog yq2q is first increasing and then decreasing.
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And again, the bound in Theorem 8.1 saves a constant and a logarithm. A careful look
at the proof of Theorem 8.1 discloses that the final constant is governed by the summand
ř

dďy apdq{y, meaning that we may benefit from a closer examination of it. This is the
meaning of the next result.

Theorem 8.3. When y ě 1043, we have
ˇ

ˇ

ˇ

ˇ

ÿ

dąy

µpdq

d2 ´
1
y

ÿ

dąy

µpdq

d

ˇ

ˇ

ˇ

ˇ

ď
0.0051 log y ´ 0.015

yplog yq2 .

When y ě 222, we have
ˇ

ˇ

ˇ

ˇ

ÿ

dąy

µpdq

d2 ´
1
y

ÿ

dąy

µpdq

d

ˇ

ˇ

ˇ

ˇ

ď
1

196y log y .

Proof. Let us establish the first inequality for y ě 4 000. We employ Lemma 8.2 with
apdq “ µpdq{d and get

S “
ÿ

dąy

µpdq

d2 `
1
y

ÿ

dďy

µpdq

d
“

ż 8

y

ÿ

dďt

µpdq logpt{dq
d

dt

t2
´

ÿ

dďy

µpdq

dy
log y

d
.

Note that
ř

dďy µpdq{d “ ´
ř

dąy µpdq{d. We infer from the above that

|S| ď

ż 8

y

p0.00252 log t´ 0.0077q dt
t2plog tq2 `

0.00252 log y ´ 0.0077
yplog yq2

ď

ż 8

y

p0.00252 log y ´ 0.0077q dt
t2plog tq log y `

0.00252 log y ´ 0.0077
yplog yq2

ď
0.00504 log y ´ 0.0154

yplog yq2 ď
0.0051 log y ´ 0.015

yplog yq2 .

We then use a GP-script to extend the result on the interval r1043, 106s, noting that
0.0051 log y ´ 0.015 ě 0 when y ě 16 and that the function y ÞÑ p0.0051 log y ´
0.015q{pyplog yq2q is first increasing and then decreasing.

Question 5. Can one relate
ř

dąx µpdq{d
2 to Mpyq directly via some identity and get a

better numerical result than Theorem 8.1?

By reading the proof, it is clear that such identities exist but a clear background like
the one we have between mpxq and Mpyq is missing.

We are now ready to prove Theorem 3.2.

9. Impact on some non-negative multiplicative functions

Proof of Theorem 3.2. We start with an easy observation.

Lemma 9.1. With RpXq “
ř

nďX 1{n´ logX ´ γ, we have
ˇ

ˇ

ˇ

ˇ

log A0

rA0s
´RprA0sq

ˇ

ˇ

ˇ

ˇ

ď
1{2
rA0s

.

When rA0s “ 1 presp. rA0s “ 2, resp. rA0s “ 3q, we can replace 1{2 by 0.3 presp. 0.36,
resp. 0.4q.
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Proof. We recall that, with N “ rA0s, we have

RpNq “
1

2N ´
1

12N2 `O
˚

ˆ

1
60N4

˙

and thus
log A0

N
´RpNq “ log A0

N
´

1
2N `

1
12N2 `O

˚

ˆ

1
60N4

˙

from which we easily deduce that
ˇ

ˇ

ˇ

ˇ

log A0

N
´RpNq

ˇ

ˇ

ˇ

ˇ

ď
|N logp1`N´1q ´ 1

2 `
1

12N | `
1

60N3

N
.

Corollary 1.2 only proves our result for D P r82 005, 5 ¨ 107s. So we have recourse to
direct computations.

Lemma 9.2. For D ď 1011, we have
ÿ

dďD

µ2pdq

d
“

6
π2

`

logD ` C2
˘

`O˚
ˆ

1
D3{4

˙

.

The constant in the numerator of 1{D3{4 oscillates in this range between 0.074 ¨ ¨ ¨
(around D “ 7.214 ¨1010˘107) and 0.977 ¨ ¨ ¨ (around D “ 3.63 ¨109˘107). It still seems
to decrease slowly. We adapted the GP/Pari script described in the proof of Lemma 2.1
of [34] and let it run for some days (on a desktop computer having only 8 Gigabytes of
RAM, the computation was split to intervals of length 2 ¨ 107).

This lemma proves Theorem 3.2 for D P r5000, 1011s. When D ě 1011, we use our
Unbalanced Dirichlet Hyperbola formula (Theorem 4.1) with the multiplicative function g
being defined by

gpp2q “ ´1, @k P t1u Y pr3,8r X Nq, gppkq “ 0. (8)

Hence we need to evaluate
G7pxq “

ÿ

m2ąx

µpmq

m2 (9)

for which Theorem 8.1 gives G7pxq “ O˚p1{p25
?
x log xqq when x ě p59600q2. Whence

we find that (in the notation of Theorem 4.1), provided that
a

D{A0 ě 1700:

R
a

D logD ď 0.04
ÿ

1ďaďA0

?
a
?

logD
a logpD{aq `

0.04
?
A0 logD

logpD{A0q

ˇ

ˇ

ˇ

ˇ

log A0

rA0s
´RprA0sq

ˇ

ˇ

ˇ

ˇ

`
0.504ˆ 0.62

?
logD

?
A0

` 0.04
a

D logD
ż 8

D{A0

dt{pt3{2 log tq.
(10)

The quantity
ş8

D{A0
dt{rt3{2 log ts is dealt with via

ż 8

D{A0

dt{rt3{2 log ts “
ż

1
2 logpD{A0q

e´u
du

u
ď

2
?
D logpD{A0q

ˆ

1´ 2
logpD{A0q

`
8

logpD{A0q

˙

.
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Let A1 be an integer parameter (we shall select A1 “ 71). We single out the term with
a ď A1 and use the inequality

ř

A1`1ďaďA0
1{
?
a ď

şA0
A1

dt{
?
t ď 1

2 p
?
A0 ´

?
A1q. This

yields

R
a

D logD

ď
ÿ

1ďaďA1

0.04
a

logpD{aq
`

0.04
2

?
A0 ´

?
A1

?
logD ´ logA0?

logD

`
0.04

?
A0

?
logD ´ logA0?

logD

1{2
A0 ´ 1

`
0.504ˆ 0.62

?
logD

?
A0

` 0.08
?
A0 logD

logpD{A0q

ˆ

1´ 2
logpD{A0q

`
8

logpD{A0q

˙

.

(11)

We choose A0 “ 0.504 0.62
0.04` 0.04

2
logD ě 71 when D ě expp23q, obtaining the final con-

stant 0.347, which we majorize by 7{20. This 0.347 would only be replaced by 0.345 if we
were assuming that D ě 1011. A numerical verification using GP/Pari [27] enables us to
finish the proof.

The proof of Corollary 3.3 follows from the above result when D ě 1010. Lemma 9.2
proves it for D P r36 000, 1011s and a finite verification concludes.

Proof of Theorem 3.2—continuation. Let us now turn to the summatory function of
µ2pdq{ϕpdq. There are two ways to handle the situation:

• Compare the summand to 1{d.
• Compare the summand to µ2pdq{d.

The first path consists in using our Unbalanced Dirichlet Hyperbola formula (Theo-
rem 4.1). This is the one we followed with P. Akhilesh in [38] and we show here how the
proof simplifies when we use the second path.

We start with a finite verification.

Lemma 9.3. When D P r1, 2 ¨ 109s, we have
ÿ

dďD

µ2pdq

ϕpdq
“ logD ` c0 `O˚p2.2{D3{4q.

The constant 2.2 above is an upper bound for a function that oscillates, whenD ranges
r1, 109s, between 0.52 and 2.16, the maximum being away from the beginning (after 106).

We relate µ2pdq{ϕpdq to µ2pdq{d in the following, next-to-trivial lemma.

Lemma 9.4. For any integer n ě 1, we have

µ2pnq
n

ϕpnq
“

ÿ

`m“k

θp`qµ2pmq

where θ is the multiplicative function defined on the prime powers pk by

θppkq “ p´1qk`1{pp´ 1q. (12)

Proof. Both functions being multiplicative, it is enough to check the identity on the
p-components of the Dirichlet series. To do so, it is enough to note that

1` p
p´1X

1`X “ 1` 1
p´ 1

X

1`X “ 1`
ÿ

kě1

p´1qk`1Xk

p´ 1 .
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As it turns out, the function θ that appears is much more difficult to handle precisely
than (the author) expected.

On a troublesome special function. On denoting by kpnq the squarefree kernel of n
(sometimes called the core of n), i.e. kpnq “

ś

p|n p, we find that

θpnq “
λpnkpnqq

ϕpkpnqq
.

The simplest function 1{kpnq has already been the subject of numerous questions; its
average order is known (see [11] and [40]) but difficult to get. We have

ÿ

nďN

1{kpnq “ exp
`

p1` op1qq
a

8plogNq{ log logN
˘

. (13)

An inspection of the proof of [11] discloses that a similar asymptotic is true for the
average

ř

nďN 1{ϕpkpnqq. In particular, it is not of the shape C logN , which means the
convolution method (which would compare it to a simpler function, say 1{n) will not
work here. The function θ, being not especially non-negative, is not covered by these
results.

Since we do not know how to be precise with the function θ, we will employ Rankin’s
trick. Notice that both Dirichlet series

$

’

’

’

&

’

’

’

%

T psq “
ÿ

ně1

θpnq

ns
“

ź

pě2

ˆ

1` 1
pp´ 1qpps ` 1q

˙

,

T˚psq “
ÿ

ně1

|θpnq|

ns
“

ź

pě2

ˆ

1` 1
pp´ 1qpps ´ 1q

˙ (14)

are absolutely convergent for <s ą 0 with T p1q “ π2{6. We also readily compute that

max
<sě1{2

|T˚psq| “
ź

pě2

ˆ

1` 1
pp´ 1qpp1{2 ´ 1q

˙

ď 10. (15)

Question 6. Can one find an efficient bound for |
ř

`ąt θp`q{`| ?

We will only use the upper bound
ř

`ąt |θp`q|{` for |
ř

`ąt θp`q{`| and then use Rankin’s
trick, losing at least the sign of θp`q in the process.

Resuming the proof. As a consequence of Lemma 9.4, we find that
ÿ

dďD

µ2pdq

ϕpdq
“

ÿ

`ě1

θp`q

`

ÿ

mďD{`

µ2pmq

m
.

We use our Generalized Unbalanced Hyperbola Formula (Theorem 4.2) and get
ÿ

dďD

µ2pdq

ϕpdq
“

ÿ

`ě1

θp`q

`

6
π2

ˆ

log D
`
` C2

˙

`
6
π2

ż 8

D{A0

G7ptq
dt

t

`O˚
ˆ
ˇ

ˇ

ˇ

ˇ

ÿ

aďA0

µ2paq

a
G7

ˆ

D

a

˙

`G7
ˆ

D

A0

˙ˆ

6
π2 log A0

rA0s
´Rµ2prA0sq

˙
ˇ

ˇ

ˇ

ˇ

˙

`O˚
ˆ

ÿ

mďD{A0

ˇ

ˇ

ˇ

ˇ

θpmq

m
Rh

ˆ

D

m

˙
ˇ

ˇ

ˇ

ˇ

˙
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where now we have set
G7pxq “

ÿ

mąx

θpmq{m.

Notice that, for any α0 P r0, 1q, we have |G7pxq| ď T˚p1 ´ α0q{x
α0 . By Lemma 9.3, we

can assume that D ě 109. We get
ÿ

dďD

µ2pdq

ϕpdq

“ logD ` c0 `O˚
ˆ

6
π2
T˚p1´ α0qA

α0
0

α0Dα0
`

ÿ

mďD{A0

ˇ

ˇ

ˇ

ˇ

θpmq

m
Rh

ˆ

D

m

˙
ˇ

ˇ

ˇ

ˇ

˙

`O˚
ˆ

T˚p1´ α0q

Dα0

ÿ

aďA0´1

µ2paq

a1´α0
`
T˚p1´ α0q

pD{A0qα0

ˇ

ˇ

ˇ

ˇ

1` 6
π2 log A0

rA0s
´Rµ2prA0sq

ˇ

ˇ

ˇ

ˇ

˙

.

We select A0 “ 1 and notice that Rµ2p1q “ 1 ´ 6
π2C2. Let us take a parameter L “ Dβ

for some β P p0, 1q. We note that when D{M0 ě 1665, we have
?
D

ÿ

mďD

ˇ

ˇ

ˇ

ˇ

θpmq

m
Rh

ˆ

D

m

˙
ˇ

ˇ

ˇ

ˇ

ď
7
20

ÿ

mďM0

|θpmq|
a

m logpD{mq

`

ˆ

T˚p1{2q ´
ÿ

mďM0

|θpmq|
?
m

˙

0.56
a

logpD{Lq
` 0.43

ˆ

T˚p
1
2 ´ αq ´

ÿ

mďM0

|θpmq|

m1{2´α

˙

1
?
DLα

by using Theorem 3.2 when m P r1,M0s with the constant 7{20, then Theorem 3.2 when
m P rM0 ` 1, Ls this time with the constant 0.56, and then the last part of Corollary 1.2
when m P pL,Ds. With D ě 109, we select α0 “ 0.81, M0 “ 80, α “ 0.26, β “ 0.78 and
get a constant ď 11.

Concerning the error term in 1{
?
D, the preceding result proves it when D ě 109.

Lemma 9.3 enables us to extend it to D ě 3 and a direct verification concludes.

10. Proof of Corollary 3.4. We start with an easy lemma.

Lemma 10.1. When D ě 1665, we have
ż D

1665

dt
?
t log t

ď
2
?
DplogD ´ 2q

?
logDplogD ´ 3q

´ 29.

Proof. We first note that
ż D

1665

dt
a

t log3 t
ď

2
?
D

plogDq3{2
`

ż D

1665

3 dt
a

t log5 t
ď

2
?
D

plogDq3{2
`

3
logD

ż D

1665

3 dt
a

t log3 t

whence
ż D

1665

dt
a

t log3 t
ď

2
?
D

?
logDplogD ´ 3q

.

Now, an integration by parts again gives us
ż D

1665

dt
?
t log t

“
2
?
D

?
logD

´
2
?

1665
?

log 1665
`

ż D

1665

dt
a

t log3 t

and the lemma follows readily.
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Let us now prove Corollary 3.4. We find that
ÿ

dďD

µ2pdq “ D
ÿ

dďD

µ2pdq

d
´

ż D

0

ÿ

dďt

µ2pdq

d
dt

“ D

ˆ

ÿ

dďD

µ2pdq

d
´

6
π2 plogD ` C2q

˙

´
6
π2 pD logD ´D ` C2Dq

´

ż D

0

ˆ

ÿ

dďt

µ2pdq

d
´

6
π2 plog t` C2q

˙

dt

“
6
π2D `O

˚

ˆ

7
?
D{20

?
logD

˙

´

ż 1665

0

ˆ

ÿ

dďt

µ2pdq

d
´

6
π2 plog t` C2q

˙

dt

`O˚
ˆ
ż D

1665

7{20
?
t log t

dt

˙

.

We directly compute that
ż 1665

0

ˆ

ÿ

dďt

µ2pdq

d
´

6
π2 plog t` C2q

˙

dt

“
ÿ

dď1665

µ2pdqp1665´ dq
d

´
6
π2 p1665 logp1665q ´ 1665` 1665C2q “ ´0.7248 ¨ ¨ ¨ .

We also appeal to the above lemma and deduce that
ÿ

dďD

µ2pdq “
6
π2D `O

˚

ˆ 7
20
?
Dp3 logD ´ 7q

?
logDplogD ´ 3q

˙

.

We can assume that D ě 1032 and get that this error term is also O˚p1.06
?
D{
?

logDq.
When 82 005 ď D ď 1032, our estimate is a consequence of Theorem 1.1 and a readily-
achieved finite verification justifies the extension of the range to D ą 1.

11. The Covering Remainder Lemma. We work under the assumption detailed just
before the statement of Theorem 4.2.

Lemma 11.1 (The Covering Remainder Lemma). Let pgpmqqmě1 be a sequence of complex
numbers such that

ř

mě1 gpmq{m converges. Define G7pxq “
ř

mąx gpmq{m. Let A0 ě 1
be a real number and let rA0s denote its integer part. We have

ÿ

X{A0ămďX

gpmq

m
Rh

ˆ

X

m

˙

“ K0K1G
7pXq `K0

ż A0

1
G7

ˆ

X

t

˙

dt

t
´

ÿ

1ďaďA0

hpaq

a
G7

ˆ

X

a

˙

´G7
ˆ

X

A0

˙ˆ

K0 log A0

rA0s
´RhprA0sq

˙

.

Proof. We set B “ rA0s to ease the typing. When a is a positive integer, b P ra, a ` 1s,
and m is inside pX{b,X{as, we have

K0

ˆ

log X
m
`K1

˙

`RhpX{mq “
ÿ

nďX{m

hpnq

n
“

ÿ

nďa

hpnq

n
“ K0plog a`K1q `Rhpaq
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from which we infer that RhpX{mq “ Rhpaq ´K0
şX{m

a
dt{t. This implies that

ÿ

X{bămďX{a

gpmq

m
RhpX{mq “

ÿ

X{bămďX{a

gpmq

m
Rhpaq ´K0

ż b

a

ÿ

X{bămďX{t

gpmq

m

dt

t
.

We see at this level that the proof of the Covering Remainder Lemma of [38] applies,
simply multiplying the integral by K0, replacing R by Rh. Since this part is not long, we
copy it for the comfort of the reader.

We sum the construction step over a P t1, . . . , Bu with the choice b “ minpa` 1, A0q.
On using the notation G7, we get

ÿ

X{A0ămďX

gpmq

m
RhpX{mq

“
ÿ

aďB

ˆ

G7
ˆ

X

minpa` 1, A0q

˙

´G7
ˆ

X

a

˙˙

Rhpaq

`K0
ÿ

aďB

ż minpa`1,A0q

a

ˆ

G7
ˆ

X

t

˙

´G7
ˆ

X

minpa` 1, A0q

˙˙

dt

t
.

Some shuffling is called for. Here is the first step:
ÿ

X{A0ămďX

gpmq

m
RhpX{mq

“
ÿ

2ďaďB`1
G7

ˆ

X

minpa,A0q

˙

Rhpa´ 1q ´
ÿ

aďB

G7
ˆ

X

a

˙

Rhpaq

`K0

ż A0

1
G7

ˆ

X

t

˙

dt

t
´K0

ÿ

aďB

G7
ˆ

X

minpA0, a` 1q

˙

log minpA0, a` 1q
a

which we rewrite in the form (we set Rp0q “ 0)
ÿ

X{A0ămďX

gpmq

m
RhpX{mq

“
ÿ

1ďaďB
G7

ˆ

X

a

˙

pRhpa´ 1q ´Rhpaqq `G7
ˆ

X

A0

˙

RhpBq

`K0

ż A0

1
G7

ˆ

X

t

˙

dt

t
´K0

ÿ

aďB

G7
ˆ

X

minpA0, a` 1q

˙

log minpA0, a` 1q
a

.

Here is the second step:
ÿ

X{A0ămďX

gpmq

m
RhpX{mq “ ´G

7pXqRhp1q `K0

ż A0

1
G7

ˆ

X

t

˙

dt

t

`
ÿ

2ďaďB
G7

ˆ

X

a

˙ˆ

Rhpa´ 1q ´Rhpaq ´K0 log a

a´ 1

˙

`G7
ˆ

X

A0

˙ˆ

RhpBq ´K0 log A0

B

˙

.
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It is then obvious to establish the claimed formula since Rhp1q “ hp1q ´ K0K1 and
´hpaq{a “ Rpa´ 1q `K0 logpa´ 1q ´ pRpaq `K0 logpaqq when a ě 2.

12. Proof of Corollary 1.2. We simply use the following identity which comes from
an integration by parts:

ÿ

dďD

µ2pdq

d
“

6
π2 plogD ` C2q `

ř

dďD µ
2pdq ´ 6

π2D

D
´

ż 8

D

ˆ

ÿ

dďt

µ2pdq ´
6
π2 t

˙

dt

t2
.

On plugging the estimate given by Theorem 1.1 inside, we get our result. The constant
term that appears is simply identified.

The constant in the numerator of 0.43{
?
D can be reduced by this process to

ˆ

6
π2 plog 5` C2q ´

11
6

˙

?
5 “ 0.422 ¨ ¨ ¨

but no more.
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