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Abstract. We explicitly determine those sets of nonnegative integers which occur as sets of
lengths in all numerical monoids.

1. Introduction and main result. Numerical monoids have been objects of interest
ever since the work of Frobenius. Beyond number theory, numerical monoids have close
connections to various branches of commutative algebra. We provide two examples. First,
numerical semigroup rings and hence numerical monoids play a crucial role in combina-
torial commutative algebra ([5, 4, 7]). Second, numerical monoids are the simplest cases
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of finitely primary monoids which appear as localizations of non-principal orders in num-
ber fields at prime ideals containing the conductor ([16, Chapter 2.10]). Motivated by
all these connections, the study of the arithmetic of numerical monoids has found wide
interest in the literature.

Factorization Theory originated from algebraic number theory before it branched
out into various subfields of algebra ([2, 3, 8, 11, 16]). The goal is to understand from
a qualitative and quantitative point of view the various phenomena of non-uniqueness
of factorizations into atoms (irreducible elements) that can occur in non-factorial do-
mains and monoids. We refer to Narkiewicz’s monograph [26] for a presentation from
a number theoretic point of view and to recent progress in the quantitative theory due
to Kaczorowski ([25]).

We fix notation and recall some basic definitions. Let H be an additively written,
commutative, and cancellative monoid. If a = u1 + . . . + uk, where k ∈ N and u1, . . . , uk

are atoms of H, then k is called a factorization length of a and the set L(a) of all possible
factorization lengths is called the set of lengths of a. If a ∈ H is invertible, then we set
L(a) = {0}, and L(H) = {L(a) |a ∈ H} denotes the system of all sets of lengths. For
a finite set L = {m1, . . . , m`} ⊂ N0 with ` ∈ N0 and m1 < . . . < m`, we denote by
∆(L) = {mi−mi−1 | i ∈ [2, `]} the set of distances of L, where [2, `] = {2, . . . , `}. The set

∆(H) =
⋃

L∈L(H)

∆(L)

is the set of distances of the monoid H (also called the delta set of H), and if ∆(H) 6= ∅,
then min ∆(H) = gcd ∆(H) ([16, Proposition 1.4.4]).

The focus of the present note is on numerical monoids. However, before considering
them, we survey what is known about a further well-studied class of monoids, namely
transfer Krull monoids, and we highlight that their arithmetic is quite different from that
of numerical monoids. Transfer Krull monoids are monoids that allow a weak transfer
homomorphism to a monoid of product-one sequences over a subset of an abelian group.
Thus this class contains all commutative Krull monoids (in particular, the multiplicative
monoids of principal orders in number fields) but also wide classes of non-commutative
Dedekind domains (see [29, 2, 30] and [15] for a survey). Let H be a transfer Krull monoid
over a finite abelian group G. Then

L(H) = L(B(G)), (1.1)

where B(G) is the monoid of product-one sequences over G. The monoid H is half-
factorial (i.e., |L| = 1 for all L ∈ L(H)) if and only if |G| < 3. Suppose that |G| ≥ 3.
Then sets of lengths have a well-described structure ([16, Chapter 4]) and the given
description is known to be best possible ([28]). The set of distances ∆(H) is an interval
with min ∆(H) = 1 ([21]) whose maximum is unknown in general ([22]) (this is in contrast
to the fact that in finitely generated Krull monoids any finite set ∆ with min ∆ = gcd ∆
may occur as set of distances [17]).

The standing conjecture is that the system of sets of lengths is characteristic for
the group (see [15] for a survey, and [19, 23, 32, 31] for recent progress). This means
that L(H) 6= L(H ′) for all Krull monoids H ′ having prime divisors in all classes and
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class group G′ not being isomorphic to G (here we need |G| ≥ 4). If true, this would
yield another purely arithmetical characterization of the class group for this class of
monoids. Answering a question of Narkiewicz, Kaczorowski gave the first purely arith-
metical characterization of the class group ([24]), and we refer to [16, Chapter 7] for
further information on such characterizations.

The question, which sets of nonnegative integers are sets of lengths in all non-half-
factorial transfer Krull monoids over a finite abelian group, is completely answered.

Theorem A. We have⋂
(1)

L
(
B(G)

) (a)=
⋂
(2)

L(H) (b)=
{

y + 2k + [0, k]
∣∣ y, k ∈ N0

} (c)=
⋂
(3)

L
(
B(G)

)
,

where the intersection

• (1) is taken over all finite abelian groups G with |G| ≥ 3,
• (2) is taken over all non-half-factorial transfer Krull monoids H over finite abelian
groups,
• (3) is taken over all finite groups with |G| ≥ 3.

We recall that equation (a) easily follows from equation (1.1), equation (b) is proved
in [20, Section 3], and equation (c) can be found in [27, Proposition 4.1].

Now we consider numerical monoids, where by a numerical monoid, we mean an
additive submonoid of (N0, +) whose complement in N0 is finite. Thus numerical monoids
are finitely generated. Let H ⊂ (N0, +) be a numerical monoid and A(H) = {n1, . . . , nt}
be its set of atoms with t ∈ N and 1 ≤ n1 < . . . < nt. Then, clearly, t = 1 if and only
if n1 = 1 if and only if H = N0. Suppose that t ≥ 2. Obviously, every nonzero element
has a factorization into atoms and max L(a) ≤ a/n1 for all a ∈ H. Furthermore, we have
{n1, n2} ⊂ L(n1n2), whence

{(N − i)n1 + in2 | i ∈ [0, N ]} ⊂ L(Nn1n2) for every N ∈ N .

Therefore, although all sets of lengths are finite, there are arbitrarily large sets of lengths.
Furthermore, systems of sets of lengths of numerical monoids and systems of sets of
lengths of transfer Krull monoids are distinct. More precisely, if H is any numerical
monoid distinct from N0 and H ′ is any transfer Krull monoid (over any subset of any
abelian group), then L(H) 6= L(H ′) by [20, Theorem 5.5].

We formulate a main arithmetical finiteness result (the first statement follows from
[6, Proposition 2.9] and the second statement is a special case of [16, Theorem 4.3.6]).

Theorem B. Let H be a numerical monoid and A(H) = {n1, . . . , nt} its set of atoms
with t ∈ N≥2 and 1 < n1 < . . . < nt.

1. ∆(H) is finite and min ∆(H) = gcd(n2 − n1, . . . , nt − nt−1).
2. There exists some M ∈ N0 such that every set of lengths L ∈ L(H) has the form

L = L′ ] {y, y + d, . . . , y + `d} ] L′′ ⊂ y + dZ,

where y, ` ∈ N0, L′ ⊂ y − [1, M ], L′′ ⊂ y + `d + [1, M ], and d = min ∆(H).
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The following two questions ensue.

(1) Can the above structural results be improved or do realization theorems show that
they are best possible?

(2) Are there sets of lengths which are characteristic for a given numerical monoid (in
the sense that they do not occur as a sets of lengths in any other numerical monoid)
and are there sets of lengths which occur in any numerical monoid?

The standing conjecture on sets of distances of numerical monoids says that every
finite set ∆ ⊂ N with min ∆ = gcd ∆ occurs as the set of distances. However, this is
very open and for partial results we refer to [10]. Since every finite set L ⊂ N≥2 can
be realized as a set of lengths in a numerical monoid ([18]), every finite set of positive
integers is contained in the set of distances of some numerical monoid. The maximum of
the set of distances is unknown (in terms of the atoms) and this question seems to have
the same complexity as questions about the Frobenius number. For partial results and
computational approaches we refer to [9, 12, 13, 14].

There are numerical monoids containing no characteristic sets of lengths. Indeed,
by [1], there are distinct numerical monoids H1 and H2 such that L(H1) = L(H2). In our
main result we determine all sets of nonnegative integers which occur as sets of lengths
in all numerical monoids. In particular, it turns out these are only finitely many sets
whereas the associated intersection for transfer Krull monoids is infinite, as can be seen
from Theorem A.

Theorem 1. We have ⋂
L(H) =

{
{0}, {1}, {2}

}
,

where the intersection is taken over all numerical monoids H ( N0. More precisely, for
every t ∈ N≥6 ⋂

|A(H)|=t

L(H) =
{
{0}, {1}, {2}

}
,

and for every t ∈ [2, 5] ⋂
|A(H)|=t

L(H) =
{
{0}, {1}, {2}, {3}

}
,

where the intersections are taken over all numerical monoids H with the given properties.

2. Proof of the main theorem. Let H be a numerical monoid. Recall that L(0) = {0}
by our convention and, by definition, for an element u ∈ H we have L(u) = {1} if
and only if u ∈ A(H). Thus {0} and {1} are elements of each of the intersections. If
A(H) = {n1, . . . , nt}, where t ∈ N≥2 and 1 < n1 < . . . < nt, then L(2n1) = {2}. Thus
{2} is an element of each of the intersections as well.

For m ∈ N≥2 and d ∈ N, let Hm,d be the numerical monoid generated by
{1 + (m − 1)d, 1 + md, . . . , 1 + (2m − 2)d}; note that this is a numerical monoid be-
cause gcd(1 + (m − 1)d, . . . , 1 + (2m − 2)d) = 1, and 1 + (2m − 2)d < 2(1 + (m − 1)d)
guarantees that each of the generating elements is an atom. By [6, Theorem 3.9]

∆(Hm,d) = {d}.
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Thus, for distinct d and d′, we see that L(Hm,d) ∩ L(Hm,d′) cannot contain sets of
cardinality greater than 1, in other words this intersection is a subset of {{k} |k ∈ N0}.
This implies that each of the intersections in the statement of our result is contained in
{{k} |k ∈ N0}.

To complete the proof of our result, it suffices to establish the following assertions.

A1. For every m ≥ 2 and for every k ≥ 4, there is a numerical monoid H with
|A(H)| = m such that {k} /∈ L(H).

A2. For every m ≥ 6, there is a numerical monoid H with |A(H)| = m such that
{3} /∈ L(H).

A3. If |A(H)| = 3, then {3} ∈ L(H).
A4. If |A(H)| = 4, then {3} ∈ L(H).
A5. If |A(H)| = 5, then {3} ∈ L(H).

Proof of A1. Let m ≥ 2 and let H be the numerical monoid generated by A = [m, 2m−1];
note that A(H) = A. First, we assert that it suffices to show that {4} /∈ L(H). Let k ≥ 5,
and let a ∈ H with k ∈ L(a), say, a = a1 + . . . + ak with ai ∈ A(H). If {4} /∈ L(H), it
follows that a′ = a1 + a2 + a3 + a4 has a factorization a′ = a′1 + . . . + a′l with a′i ∈ A(H)
and l 6= 4. Then, a′1 + . . . + a′l + a5 + . . . + ak is a factorization of lengths l + k − 4 of a,
whence L(a) 6= {k}.

Now, let a ∈ H with 4 ∈ L(a). This means that a is in the 4-fold sumset of A,
that is a ∈ 4A = [4m, 8m − 4]. If a ≥ 5m, then a − m ∈ 4A and 4 ∈ L(a − m). Thus
5 ∈ 1 + L(a −m) ⊂ L(a), showing that L(a) 6= {4}. If a ≤ 5m − 1, then a − (m + 1) ∈
[2m, 4m−2] = 2A and 2 ∈ L(a− (m + 1)). Thus 3 ∈ 1 + L(a− (m + 1)) ⊂ L(a), and again
L(a) 6= {4}.

Proof of A2. Let m ≥ 6 and let H be the numerical monoid generated by

A = {m} ∪ [m + 3, 2m− 1] ∪ {2m + 1, 2m + 2}.

We note that A(H) = A. For the 2-fold, 3-fold, and 4-fold sumsets of A we obtain

2A = {2m} ∪ [2m + 3, 4m + 4],
3A = {3m} ∪ [3m + 3, 6m + 6],
4A = {4m} ∪ [4m + 3, 8m + 8],

which implies that 3A ⊂ 2A ∪ 4A. Thus for every a ∈ H with 3 ∈ L(a) it follows that
L(a) ∩ {2, 4} 6= ∅.

Proof of A3. Assume to the contrary that there exists a numerical monoid H with three
atoms, say A(H) = {n1, n2, n3} with 1 < n1 < n2 < n3, such that {3} 6∈ L(H). Since
3 ∈ L(2n1 + n2), the element 2n1 + n2 must have a further factorization length. Since
2n1 + n2 cannot be a multiple of n1, it follows that max L(2n1 + n2) = 3. Thus,
2 ∈ L(2n1 + n2) and it follows that 2n1 + n2 = 2n3. Similarly, we infer that 3n1
must have a factorization of length 2. Since 3n1 < 2n1 + n2 = 2n3, it follows that
3n1 ∈ {2n2, n2 + n3}.

Suppose that 3n1 = n2 + n3. Then, using the just established equalities, n2 − n1 =
(2n1 + n2)− 3n1 = 2n3 − (n2 + n3) = n3 − n2 =: d. Thus n2 = n1 + d and n3 = n1 + 2d,
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which implies that 3n1 = n2 +n3 = 2n1 +3d whence n1 = 3d. Since gcd(n1, n2, n3) = 1, it
follows that d = 1 whence (n1, n2, n3) = (3, 4, 5). However, since L(11) = {3}, we obtain
a contradiction.

Suppose that 3n1 = 2n2. Then n2−n1 = 2(n3−n2), say n3−n2 = d. Then n2 = n1+2d,
3n1 = 2n1 + 4d whence n1 = 4d, n2 = 6d, and n3 = 7d. Since gcd(n1, n2, n3) = 1, it
follows that d = 1 whence (n1, n2, n3) = (4, 6, 7). However, since L(15) = {3}, we obtain
a contradiction.

Proof of A4. Assume to the contrary that there exists a numerical monoid H with four
atoms, say A(H) = {n1, n2, n3, n4} with 1 < n1 < n2 < n3 < n4, such that {3} 6∈ L(H).
Then as in A3 we obtain 2 ∈ L(3n1) and 2 ∈ L(2n1 + n2), which implies

2n1 + n2 ≥ 2n3. (2.1)

If 2n1 + n3 would have a factorization of length at least four, then

2n1 + n3 ≥ n1 + 3n2 > (2n1 + n2) + n2
(2.1)
≥ 2n3 + n2,

a contradiction. Thus 2 ∈ L(2n1 + n3), which implies 2n1 + n3 ∈ {n2 + n4, 2n4}, hence

2n1 + n3 ≥ n2 + n4 . (2.2)

If 2n1 + n4 would have a factorization of length two, then 2n1 + n4 ≤ 2n3 but

2n1 + n4 > 2n1 + n2
(2.1)
≥ 2n3, a contradiction.

Therefore, 2n1 + n4 has a factorization of length at least four, which implies that
2n1 + n4 ≥ n1 + 3n2 = (2n1 + n2) + n2 + (n2 − n1)

(2.1)
≥ 2n3 + n2 + (n2 − n1) = (2n1 + n3) + (n3 − n1) + 2(n2 − n1)

(2.2)
≥ n2 + n4 + (n3 − n1) + 2(n2 − n1).

(2.3)

Consequently, we infer that

2n1 ≥ n2 + (n3 − n1) + 2(n2 − n1) whence 3n1 ≥ n2 + n3 + 2(n2 − n1) > n2 + n3,

which implies that 3n1 ∈ {2n3, n2 + n4, n3 + n4, 2n4}. If 3n1 = 2n3, then 2n1 + n2 ≥
n3 + n4 whence 2n1 + n3 = 2n4 and if 3n1 ≥ n2 + n4, then 2n1 + n3 > n2 + n4 whence
2n1 + n3 = 2n4. Thus in any case we have 2n1 + n3 = 2n4 and we can improve the last
inequality in (2.3) whence

2n1 + n4 ≥ 2n4 + (n3 − n1) + 2(n2 − n1).

Therefore, 2n1 ≥ n4 +(n3−n1)+2(n2−n1) and adding n1 we obtain that 3n1 ≥ n4 +n3 +
2(n2− n1) > n3 + n4. This implies that 3n1 = 2n4, a contradiction to 2 ∈ L(2n1 + n2).

Proof of A5. Again, assume to the contrary that there exists a numerical monoid H with
five atoms, say A(H) = {n1, n2, n3, n4, n5} with 1 < n1 < n2 < n3 < n4 < n5, such that
{3} 6∈ L(H). Then as in A4 we obtain that 2 is an element of L(3n1), of L(2n1 + n2), and
of L(2n1 + n3). Moreover,

2n1 + n2 ≥ 2n3 and 2n1 + n3 ≥ n2 + n4. (2.4)
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We proceed to show that 2 ∈ L(2n1 + n4). Assume not. Then, L(2n1 + n4) contains
an element greater than or equal to 4 and it follows that 2n1 + n4 ≥ n1 + 3n2. Similarly
to A4 we get, using (2.4),

2n1 + n4 ≥ n1 + 3n2

= (2n1 + n2) + n2 + (n2 − n1) ≥ 2n3 + n2 + (n2 − n1)
whence n4 ≥ n3 + (n3 − n1) + 2(n2 − n1). In combination with 2n1 + n3 ≥ n2 + n4, that
is, n3 ≥ n4 + n2 − 2n1, we get n4 ≥ n4 + (n3 − n1) + 3(n2 − n1) − n1. Equivalently,
n1 ≥ (n3 − n1) + 3(n2 − n1) and 5n1 ≥ n3 + 3n2. This yields 3n1 > n2 + n3. Moreover,
2n1 + n4 ≥ n1 + 3n2, which means n1 + n4 ≥ 3n2, and this implies 2n1 + n2 < 3n2 ≤
n1 + n4. Thus, 2n1 + n2 ∈ {n2 + n3, 2n3}. Yet, since 2n1 + n2 > 3n1 > n2 + n3, this is
a contradiction, as both 2n1 + n2 and 3n1 would need to equal 2n3. This contradiction
shows that max L(2n1 + n4) < 4, and whence 2 ∈ L(2n1 + n4).

We consider the possible factorizations of 2n1 +n4 of length 2. The factorization must
not contain n1 or n4. Moreover, 2n1 + n4 is strictly greater than 2n1 + n2 ≥ 2n3 and
2n1 + n3 ≥ n2 + n4. Thus, 2n1 + n4 ∈ {n2 + n5, n3 + n5, 2n5} and we distinguish these
three cases.

Case 1 : 2n1 + n4 = n2 + n5. Since 2n1 + n3 < 2n1 + n4 = n2 + n5 and since by (2.4)
we have 2n1 + n3 ≥ n2 + n4, it follows that 2n1 + n3 ∈ {n2 + n4, 2n4}. We distinguish
the two cases.

Case 1.1 : 2n1 + n3 = n2 + n4. Since 2n3 ≤ 2n1 + n2 < 2n1 + n3 = n2 + n4, we
get 2n1 + n2 = 2n3. Considering differences we get n4 − n3 = n5 − n4 and moreover
n3 − n2 = (n4 − n3) + (n2 − n3). Thus, n4 − n3 = 2(n3 − n2). We set d = n3 − n2. We
have 3n1 ∈ {2n2, n2 + n3}. We distinguish the two cases.

Case 1.1.1 : 3n1 = 2n2. Considering differences we get n2 − n1 = 2(n3 − n2) = 2d.
Consequently, (n1, n2, n3, n4, n5) = (n1, n1 +2d, n1 +3d, n1 +5d, n1 +7d). From 3n1 = 2n2
we infer that n1 = 4d. We get d = 1, and (n1, n2, n3, n4, n5) = (4, 6, 7, 9, 11). Thus,
n1 + n3 = n5, a contradiction.

Case 1.1.2 : 3n1 = n2 + n3. Considering differences we get n2 − n1 = n3 − n2 = d.
Thus, (n1, n2, n3, n4, n5) = (n1, n1 + d, n1 + 2d, n1 + 4d, n1 + 6d). From 3n1 = n2 + n3 we
infer that n1 = 3d whence n1 + n2 = n4, a contradiction.

Case 1.2 : 2n1 + n3 = 2n4. We get 2n1 + n2 ∈ {2n3, n3 + n4}. We distinguish the two
cases.

Case 1.2.1 : 2n1 + n2 = 2n3. Considering differences we get n3 − n2 = 2(n4 − n3).
Moreover, n4−n3 = (n5−n4)+(n2−n4). Thus, setting d = n4−n3 we have n3−n2 = 2d

and n5 − n4 = 4d. We have 3n1 ∈ {2n2, n2 + n3} and distinguish cases.
Case 1.2.1.1 : 3n1 = 2n2. Considering differences we get n2−n1 = 2(n3−n2) = 4d. It

follows that (n1, n2, n3, n4, n5) = (n1, n1 +4d, n1 +6d, n1 +7d, n1 +11d). From 3n1 = 2n2
we infer that n1 = 8d. We get d = 1, and (n1, n2, n3, n4, n5) = (8, 12, 14, 15, 19). We check
that L(35) = {3}, a contradiction.

Case 1.2.1.2 : 3n1 = n2 + n3. Considering differences we get n2 − n1 = n3 − n2. It
follows that (n1, n2, n3, n4, n5) = (n1, n1+2d, n1+4d, n1+5d, n1+9d). From 3n1 = n2+n3
we infer that n1 = 6d. We get d = 1, and (n1, n2, n3, n4, n5) = (6, 8, 10, 11, 15). We check
that L(27) = {3}, a contradiction.
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Case 1.2.2 : 2n1 + n2 = n3 + n4. It follows that 3n1 ∈ {2n2, n2 + n3, n2 + n4, 2n3}. We
distinguish cases.

Case 1.2.2.1 : 3n1 = 2n2. Considering differences we get n3 − n2 = n4 − n3 =: d.
Moreover, n2 − n1 = (n4 − n2) + (n3 − n2) = 3d and n4 − n1 = n5 − n2. Thus,
(n1, n2, n3, n4, n5) = (n1, n1 + 3d, n1 + 4d, n1 + 5d, n1 + 8d). From 3n1 = 2n2 we in-
fer that n1 = 6d. We get d = 1, and (n1, n2, n3, n4, n5) = (6, 9, 10, 11, 14). We check that
L(26) = {3}, a contradiction.

Case 1.2.2.2 : 3n1 = n2 + n3. Considering differences we get n3 − n2 = n4 − n3 =: d

and n2 − n1 = n4 − n2 = 2d. Moreover, n4 − n1 = n5 − n3. Thus, (n1, n2, n3, n4, n5) =
(n1, n1 + 2d, n1 + 3d, n1 + 4d, n1 + 7d). From 3n1 = n2 + n3 we infer that n1 = 5d whence
n1 + n2 = n5, a contradiction.

Case 1.2.2.3 : 3n1 = n2 + n4. Considering differences we get n2 − n1 = n3 − n2 =: d

and n3−n2 = n4−n3 = d. Moreover, n4−n1 = n5−n4 = 3d. Thus, (n1, n2, n3, n4, n5) =
(n1, n1 + d, n1 + 2d, n1 + 3d, n1 + 6d). From 3n1 = n2 + n4 we infer that n1 = 4d whence
n1 + n3 = n5, a contradiction.

Case 1.2.2.4 : 3n1 = 2n3. Considering differences we get n2 − n1 = n4 − n3 =: d and
n3 − n2 = n4 − n3 = d. Moreover, n4 − n1 = n5 − n3 + (n2 − n3) and thus n5 − n3 =
(n4 − n1) + (n3 − n2) = 4d. Thus, (n1, n2, n3, n4, n5) = (n1, n1 + d, n1 + 2d, n1 + 3d,

n1 + 6d). From 3n1 = 2n3 we infer that n1 = 4d. We get d = 1, and (n1, n2, n3, n4, n5) =
(4, 5, 6, 7, 10). Thus, n1 + n3 = n5, a contradiction.

Case 2 : 2n1 + n4 = n3 + n5. Since 2n1 + n3 < 2n1 + n4 = n3 + n5, it follows that
2n1 + n3 ∈ {n2 + n4, 2n4, n2 + n5}. We distinguish the three cases.

Case 2.1 : 2n1 + n3 = n2 + n4. We get 2n1 + n2 = 2n3. Considering differences we get
n4 − n3 = (n3 − n2) + (n5 − n4) and n3 − n2 = (n4 − n3) + (n2 − n3). It follows that
n4 − n3 = 2(n3 − n2) and n5 − n4 = (n4 − n3) − (n3 − n2). We set d = n3 − n2 to get
n4 − n3 = 2d and n5 − n4 = d. We infer that 3n1 ∈ {2n2, n2 + n3} and distinguish the
two cases.

Case 2.1.1 : 3n1 = 2n2. Considering differences we get n2 − n1 = 2(n3 − n2) = 2d. It
follows that (n1, n2, n3, n4, n5) = (n1, n1 + 2d, n1 + 3d, n1 + 5d, n1 + 6d). From 3n1 = 2n2
we infer that n1 = 4d whence n1 + n2 = n5, a contradiction.

Case 2.1.2 : 3n1 = n2 + n3. Considering differences we get n2 − n1 = n3 − n2 = d. It
follows that (n1, n2, n3, n4, n5) = (n1, n1 +d, n1 +2d, n1 +4d, n1 +5d). From 3n1 = n2 +n3
we infer that n1 = 3d whence n1 + n2 = n4, a contradiction.

Case 2.2 : 2n1 + n3 = 2n4. We infer that 2n1 + n2 ∈ {2n3, n3 + n4} and distinguish
the two cases.

Case 2.2.1 : 2n1 + n2 = 2n3. Considering differences we get n3 − n2 = 2(n4 − n3).
Moreover, n4 − n3 = n5 − n4 + (n3 − n4) and thus n5 − n4 = 2(n4 − n3). We infer that
3n1 ∈ {2n2, n2 + n3, n2 + n4} and distinguish three cases. Set d = n4 − n3.

Case 2.2.1.1 : 3n1 = 2n2. Considering differences we get n2 − n1 = 2(n3 − n2) = 4d.
Thus, it follows that (n1, n2, n3, n4, n5) = (n1, n1 + 4d, n1 + 6d, n1 + 7d, n1 + 9d). From
3n1 = 2n2 we infer that n1 = 8d. We get d = 1, and (n1, n2, n3, n4, n5) = (8, 12, 14, 15, 17).
We check that L(33) = {3}, a contradiction.
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Case 2.2.1.2 : 3n1 = n2 + n3. Considering differences we get n2 − n1 = n3 − n2 =
2d. Thus, it follows that (n1, n2, n3, n4, n5) = (n1, n1 + 2d, n1 + 4d, n1 + 5d, n1 + 7d).
From 3n1 = n2 + n3 we infer that n1 = 6d. We get d = 1, and (n1, n2, n3, n4, n5) =
(6, 8, 10, 11, 13). We check that L(25) = {3}, a contradiction.

Case 2.2.1.3 : 3n1 = n2 + n4. Considering differences we get n2 − n1 = (n3 − n2) +
(n3 − n4) = d. Thus, it follows that (n1, n2, n3, n4, n5) = (n1, n1 + d, n1 + 3d, n1 + 4d,

n1 +6d). From 3n1 = n2 +n4 we infer that n1 = 5d whence n1 +n2 = n5, a contradiction.
Case 2.2.2 : 2n1 + n2 = n3 + n4. Considering differences we get n3 − n2 =

n4−n3 =: d. Moreover, n4−n3 = n5−n4 +(n3−n4) and thus n5−n4 = 2(n4−n3) = 2d.
We observe that 3n1 ∈ {2n2, n2 + n3, n2 + n4, 2n3} and distinguish cases.

Case 2.2.2.1 : 3n1 = 2n2. Considering differences we get n2 − n1 = n4 − n2 +
(n3 − n2) = 3d. Thus, (n1, n2, n3, n4, n5) = (n1, n1 + 3d, n1 + 4d, n1 + 5d, n1 + 7d). From
3n1 = 2n2 we infer that n1 = 6d. We get d = 1, and (n1, n2, n3, n4, n5) = (6, 9, 10, 11, 13).
We check that L(25) = {3}, a contradiction.

Case 2.2.2.2 : 3n1 = n2 + n3. Considering differences we get n2 − n1 = n4 − n2 = 2d.
Thus, (n1, n2, n3, n4, n5) = (n1, n1 + 2d, n1 + 3d, n1 + 4d, n1 + 6d). From 3n1 = n2 + n3
we infer that n1 = 5d. We get d = 1, and (n1, n2, n3, n4, n5) = (5, 7, 8, 9, 11). We check
that L(21) = {3}, a contradiction.

Case 2.2.2.3 : 3n1 = n2 + n4. Considering differences we get n2 − n1 = n3 − n2 = d.
Thus, (n1, n2, n3, n4, n5) = (n1, n1 + d, n1 + 2d, n1 + 3d, n1 + 5d). From 3n1 = n2 + n4 we
infer that n1 = 4d whence n1 + n2 = n5, a contradiction.

Case 2.2.2.4 : 3n1 = 2n3. Considering differences we get n2−n1 = n4−n3 = d. Thus,
(n1, n2, n3, n4, n5) = (n1, n1 + d, n1 + 2d, n1 + 3d, n1 + 5d). From 3n1 = 2n3 we infer that
n1 = 4d whence n1 + n2 = n5, a contradiction.

Case 2.3 : 2n1 + n3 = n2 + n5. We obtain that 2n1 + n2 ∈ {2n3, n3 + n4, 2n4} and
distinguish the three cases.

Case 2.3.1 : 2n1 + n2 = 2n3. Considering differences we get n4 − n3 = n3 − n2 =: d.
Moreover, n4 − n2 = n5 − n3 = 2d and therefore n5 − n4 = d. We infer that 3n1 ∈
{2n2, n2 + n3, n2 + n4} and distinguish the three cases.

Case 2.3.1.1 : 3n1 = 2n2. Considering differences we get n2 − n1 = 2(n3 − n2) = 2d.
Thus, (n1, n2, n3, n4, n5) = (n1, n1 + 2d, n1 + 3d, n1 + 4d, n1 + 5d). From 3n1 = 2n2 we
infer that n1 = 4d whence 2n1 = n4, a contradiction.

Case 2.3.1.2 : 3n1 = n2 + n3. Considering differences we get n2 − n1 = n3 − n2 = d.
Thus, (n1, n2, n3, n4, n5) = (n1, n1 + d, n1 + 2d, n1 + 3d, n1 + 4d). From 3n1 = n2 + n3 we
infer that n1 = 3d whence 2n1 = n4, a contradiction.

Case 2.3.1.3 : 3n1 = n2 + n4. Considering differences we get n2 − n1 = n3 − n2 −
(n4 − n3) = 0, a contradiction.

Case 2.3.2 : 2n1 + n2 = n3 + n4. Considering differences we get n4 − n3 =
n3 − n2 =: d and n5 − n4 = n4 − n2 = 2d. We have 3n1 ∈ {2n2, n2 + n3, n2 + n4, 2n3}.
We distinguish the four cases.
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Case 2.3.2.1 : 3n1 = 2n2. Considering differences we get n2 − n1 = n4 − n2 +
(n3 − n2) = 3d. Thus, (n1, n2, n3, n4, n5) = (n1, n1 + 3d, n1 + 4d, n1 + 5d, n1 + 7d). From
3n1 = 2n2 we infer that n1 = 6d. We get d = 1, and (n1, n2, n3, n4, n5) = (6, 9, 10, 11, 13).
We check that L(25) = {3}, a contradiction.

Case 2.3.2.2 : 3n1 = n2 + n3. Considering differences we get n2 − n1 = n4 − n2 = 2d.
Thus, (n1, n2, n3, n4, n5) = (n1, n1 + 2d, n1 + 3d, n1 + 4d, n1 + 6d). From 3n1 = n2 + n3
we infer that n1 = 5d. We get d = 1, and (n1, n2, n3, n4, n5) = (5, 7, 8, 9, 11). We check
that L(21) = {3}, a contradiction.

Case 2.3.2.3 : 3n1 = n2 + n4. Considering differences we get n2 − n1 = n3 − n2 = d.
Thus, (n1, n2, n3, n4, n5) = (n1, n1 + d, n1 + 2d, n1 + 3d, n1 + 5d). From 3n1 = n2 + n4 we
infer that n1 = 4d whence n1 + n2 = n5, a contradiction.

Case 2.3.2.4 : 3n1 = 2n3. Considering differences we get n2−n1 = n4−n3 = d. Thus,
(n1, n2, n3, n4, n5) = (n1, n1 + d, n1 + 2d, n1 + 3d, n1 + 5d). From 3n1 = 2n3 we infer that
n1 = 4d whence n1 + n2 = n5, a contradiction.

Case 2.3.3 : 2n1 + n2 = 2n4. Considering differences we get n4 − n3 = n3 − n2 =: d

and n3 − n2 = (n5 − n4) + (n2 − n4), that is, n5 − n4 = n4 − n2 + (n3 − n2) = 3d. We
have 3n1 ∈ {2n2, n2 + n3, n2 + n4, 2n3, n3 + n4}. We distinguish the five cases.

Case 2.3.3.1 : 3n1 = 2n2. Considering differences we get n2 − n1 = 2(n4 − n2) = 4d.
Thus, (n1, n2, n3, n4, n5) = (n1, n1 + 4d, n1 + 5d, n1 + 6d, n1 + 9d). From 3n1 = 2n2 we
infer that n1 = 8d. We get d = 1, and (n1, n2, n3, n4, n5) = (8, 12, 13, 14, 17). We check
that L(31) = {3}, a contradiction.

Case 2.3.3.2 : 3n1 = n2 + n3. Considering differences we get n2 − n1 = n4 − n2 +
(n4 − n3) = 3d. Thus, (n1, n2, n3, n4, n5) = (n1, n1 + 3d, n1 + 4d, n1 + 5d, n1 + 8d).
From 3n1 = n2 + n3 we infer that n1 = 7d. We get d = 1, and (n1, n2, n3, n4, n5) =
(7, 10, 11, 12, 15). We check that L(27) = {3}, a contradiction.

Case 2.3.3.3 : 3n1 = n2 + n4. Considering differences we get n2 − n1 = n4 − n2 = 2d.
Thus, (n1, n2, n3, n4, n5) = (n1, n1 + 2d, n1 + 3d, n1 + 4d, n1 + 7d). From 3n1 = n2 + n4
we infer that n1 = 6d. We get d = 1, and (n1, n2, n3, n4, n5) = (6, 8, 9, 10, 13). We check
that L(23) = {3}, a contradiction.

Case 2.3.3.4 : 3n1 = 2n3. Considering differences we get n2 − n1 = 2(n4 − n3) = 2d.
Thus, (n1, n2, n3, n4, n5) = (n1, n1 + 2d, n1 + 3d, n1 + 4d, n1 + 7d). From 3n1 = 2n3 we
infer that n1 = 6d, and we conclude as in the preceding case.

Case 2.3.3.5 : 3n1 = n3 + n4. Considering differences we get n2 − n1 = n4 − n3 = d.
Thus, (n1, n2, n3, n4, n5) = (n1, n1 + d, n1 + 2d, n1 + 3d, n1 + 6d). From 3n1 = n3 + n4 we
infer that n1 = 5d whence n1 + n2 = n5, a contradiction.

Case 3 : 2n1 + n4 = 2n5. It follows that 2n1 > n5. We consider 2n1 + n5. Since 2n5 <

2n1 + n5 < 4n1, the first inequality shows that L(2n1 + n5) cannot contain 2, the second
shows that L(2n1+n5) cannot contain 4 or any larger element. Thus, L(2n1+n5) = {3}.
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