
NUMBER THEORY WEEK 2017
BANACH CENTER PUBLICATIONS, VOLUME 118

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES

WARSZAWA 2019

EVEN ASCENDING POWERS

JÖRG BRÜDERN
Mathematisches Institut, Universität Göttingen

Bunsenstrasse 3–5, D-37073 Göttingen
E-mail: bruedern@uni-math.gwdg.de

To Jurek, on the occasion
of his sixtieth birthday

Abstract. Almost all natural numbers not divisible by eight are the sum of a square, a fourth,
a sixth and an eighth power. This is established in quantitative form.

1. Introduction. In 1949 Klaus Roth introduced an aesthetically attractive variant of
Waring’s problem. He discussed representations of natural numbers as sums of ascending
powers. With s and n natural numbers, consider the family of diophantine equations

s∑
j=1

xj+1
j = n. (1.1)

Let H be the smallest number s such that for all sufficiently large n there is a solution to
(1.1) in natural numbers xj , and let H+ be the smallest s such that this is so for almost
all1 n. Roth [10] first showed that H+ = 3 and then [11] added the bound H ≤ 50. This
last estimate spawned much work over decades, currently culminating in the inequality
H ≤ 14 of Ford [5]. It is conjectured that H = 3, but this seems well beyond the scope
of existing technology.

In this paper we consider Roth’s problem with even powers only. Let He be the
smallest number s such that, for all large n, the diophantine equations

s∑
j=1

x2j
j = n (1.2)
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1A certain statement concerning natural numbers holds for almost all n if the proportion of
those n ≤ N where the statement is true, tends to 1 as N →∞.
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have solutions in natural numbers xj . Let H+
e be the smallest s where the equations (1.2)

have such solutions for almost all n. From the inequality

#{(x, y, z) ∈ N3 : x2 + y4 + z6 ≤ N} ≤ N11/12

we infer that no more than N11/12 of the natural numbers n not exceeding N can be
written as n = x2 + y4 + z6. Next, consider the equation

x2
1 + x4

2 + x6
3 + x8

4 = n. (1.3)

Reduction modulo 16 shows that whenever n ≡ 8 mod 16 then there is no solution in
integers xj . In particular, there is a positive proportion of natural numbers n that have
no representation of the form (1.3). This implies that H+

e ≥ 5. However, an analysis of
local solubility of (1.3) reveals that the only obstruction occurs in the 2-adic integers.
Indeed, among the numbers that are not divisible by 8, almost all are the sum of a
square, a biquadrate, a sixth power and an eighth power of natural numbers. This is
a consequence of our main result concerning the number r(n) of solutions of (1.3) in
natural numbers xj .

Theorem. There is a positive number c with the property that whenever N is sufficiently
large, then

r(n) ≥ cn1/24(log log 9n)−1/c

holds for all but at most N91/93 exceptions among the numbers n 6≡ 0 mod 8 with n ≤ N .

The remarks preceding the theorem show that no such result can be expected to hold
for the equation x2 + y4 + z6 = n. Further, we note that H+

e = 5. This follows from the
theorem by taking x5 = 0 when n 6≡ 0 mod 8, and x5 = 1 when 8 |n, in the equation

x2
1 + x4

2 + x6
3 + x8

4 + x10
5 = n.

A formal application of the Hardy–Littlewood method suggests an asymptotic formula
for r(n) of the shape

r(n) ∼
Γ( 3

2 )Γ( 5
4 )Γ( 7

6 )Γ( 9
8 )

Γ( 25
24 )

S(n)n1/24,

wherein

S(n) =
∞∑
q=1

q∑
a=1

(a,q)=1

q∑
xj=1

1≤j≤4

e

(
a(x2

1 + x4
2 + x6

3 + x8
4 − n)

q

)
(1.4)

is the singular series associated with the equation (1.3). It turns out that S(n) converges
absolutely, and that S(n) = 0 for n ≡ 8 mod 16, but there is a constant D > 1 with
(log log 9n)−D � S(n) � (log log 9n)D for all n 6≡ 0 mod 8. In particular, the lower
bound for r(n) recorded in the theorem is of the expected order of magnitude.

Our estimate for the number of exceptional n in the theorem is probably far from the
truth. The proposed asymptotic formula, if true, would show the number of exceptions
be finite. At this time, a mean square approach via the circle method to this kind of
questions is limited by square root cancellation in the minor arc estimate. Thus, at best,
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one could hope for an estimate like O(N23/24) for the size of the exceptional set. In terms
of the exponent of N , the bound supplied in our theorem is therefore slightly better than
half way between what square root cancellation would give, and a merely qualitative
almost all estimate.

The proof of the theorem proceeds by applying the circle method to a modified count
of the solutions to (1.3), with the sixth power restricted to smooth numbers. For the
approach to succeed, we have to introduce unconventional elements to the treatment of
both the minor and the major arcs. These novel features should impact the theory well
beyond this communication, and we therefore describe them here in general terms but
for a detailed account the reader is referred to later sections of this paper.

The minor arc analysis is performed in mean square over n. It is here where the square
root cancellation barrier is relevant. The method rests on an elaborate pruning process.
The driving force behind pruning is an amplification method. Hitherto, one would start
with an application of Weyl’s inequality or some variant thereof, outside a rather large
set of major arcs. On these major arcs, the Weyl sum in question is well approximable
by certain complete Weyl sums, and this allows one to compute certain low moments
over major arcs much more precisely than would be possible for moments over R/Z. For
an example and more comment on this matter, see (2.15) below, and the remarks that
follow that estimate. Since weaker estimates of Weyl’s type will now suffice to produce
acceptable bounds, we end up with slimmer major arcs. This strategy, often in iterated
form, was a fruitful one in numerous applications.

Classical pruning, however, seems to be deemed to failure when applied to (1.3). In-
stead, we replace the role of Weyl’s inequality partly with a different procedure. We begin
by postulating upper bounds on sixth and eighth power Weyl sums that are far stronger
than currently available Weyl bounds. Based on this assumption, routine pruning is pos-
sible along the lines indicated in the preceding paragraph. We then explore the opposite
situation where the Weyl sums are large (but not very large) through an argument of
Chebyshev’s type, leading to improved moment estimates. As soon as these moments are
better controlled than what is known for these moments over R/Z, then one has another
amplifier at hand. The amplified moment can be recycled in a recursive process that
again leads to a pruning device. In favourable circumstances, this machinery provides
a workable tool in situations outside the scope of the traditional approach. The work
in §3 appears to be the first successful implementation of such ideas. The new method is
applied twice, in an initial pruning with a smooth sixth power Weyl sum, and on certain
intermediate arcs with a classical eighth power Weyl sum. There are many other possible
uses for this new device, as we intend to demonstrate in a forthcoming article.

On the major arcs, we proceed in two steps. We work in mean square over n while
approximating all standard Weyl sums by complete ones. This is routine, and it separates
a truncated kind of singular series for a square, a biquadrate and an eighth power from
a similarly modified singular integral. We will then have to deal with the smooth sixth
power. Here we are forced to work for individual n, because of our poor understanding
of the distribution of smooth numbers in arithmetic progressions. It seems that at the
current state of affairs with the latter, any attempt to work an average over n will result in
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woefully weak estimates for the exceptional set. We therefore indeed consider the already
modified form of the major arc contribution for individual n. After a series of somewhat
unusual transformations, we will be able to bring in an estimate of Bombieri–Vinogradov
type for smooth numbers. Fortunately, this can be imported from the work of Wolke [16],
for example. We will then be able to extract a leading term that factorises into singular
series and singular integral in the expected way.

The idea of using results on the distribution of smooth numbers in arithmetic pro-
gressions on average is not entirely new. This writer has applied a related technique
within his work on sums of four cubes [3], almost thirty years ago. On that occa-
sion, we relied on the principles behind a character sum approach to versions of the
Barban–Davenport–Halberstam theorem for general sequences, rather than the Barban–
Davenport–Halberstam theorem itself. In principle, this is a superior approach because
much inflated major arcs are acceptable to variance methods, but for the problem at
hand, the somewhat complicated machinery seems to be at odds with the inhomogeneity
of the diophantine equation. We therefore propose a radically different implementation
that brings in the average distribution over arithmetic progressions directly. This sim-
plifies matters considerably, and one can choose to work with variances or estimates
of Bombieri–Vinogradov type. We express our hope that the renovated design helps to
popularize the method among workers on Waring’s problem and its variants.

We have not said anything about He yet. The Freiman–Scourfield theorem [7, 12]
shows that He is finite. A decent estimate for He can be obtained by combining the
methods of this paper with those of Ford [5], but limitations of space do not permit to
include an account of this here.

2. The arsenal. In this section we collect together standard estimates for Weyl sums,
and fix some notation. Further, we present some applications of the pruning lemma. The
material included here is for frequent use in the sequel, while more refined weaponry will
be developed in due course.

Our primary parameter is N , a large real number. We apply the familiar convention
concerning the letter ε: whenever the letter ε occurs in a statement, it is asserted that
the statement is true for any fixed positive value assigned to ε. Should the statement
involve a Landau or Vinogradov symbol, then the implicit constant will depend on ε.
Note that with this convention we are allowed to conclude from A � Nε, B � Nε

that AB � Nε, for example. In some parts of this work we apply a similar convention
concerning the letter C: a statement involving C is valid provided that C is sufficiently
large. We will use this only finitely often, and therefore C can be chosen to be the same
number throughout.

Let k be a natural number, k ≥ 2. Let Pk = N1/k and define the Weyl sum
fk(α) =

∑
x≤Pk

e(αxk).

Its adelic approximation involves

Sk(q, a) =
q∑

x=1
e

(
axk

q

)
, vk(β) = 1

k

∑
m≤N

m1/k−1e(βm), (2.1)
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and whenever a ∈ Z, q ∈ N and β ∈ R one has

fk

(
a

q
+ β

)
= q−1Sk(q, a)vk(β) +O

(
qε(q +Nq|β|)1/2), (2.2)

see Vaughan [14, Theorem 4.1]. If |β| ≤ 1
2 then (Vaughan [14, Lemma 2.8])

vk(β)� Pk(1 +N |β|)−1/k. (2.3)

The simple upper bound ([14, Theorem 4.2])

q−1Sk(q, a)� q−1/k ((a, q) = 1) (2.4)

is often not good enough for us. Let κk be the multiplicative function that, for primes p
and u ≥ 0, 2 ≤ v ≤ k, is defined by

κk(p1+uk) = kp−u−1/2, κk(pv+uk) = p−u−1. (2.5)

Then, by Lemmata 4.3 and 4.4 of Vaughan [14], one has

q−1Sk(q, a)� κk(q) ((a, q) = 1), (2.6)

and directly from the definition we see that∑
q≤Q

κk(q)2 ≤
∏
p≤Q

(
1 + k2

p
+O

(
1
p2

))
� Qε. (2.7)

Besides the familiar lemma of Hua we only require the elementary mean values∫ 1

0
|f2(α)f4(α)2|2 dα� N1+ε,

∫ 1

0
|f2(α)f4(α)f8(α)2|2 dα� N1+ε. (2.8)

that are special cases of [1, Lemma 1].
We now turn to moment estimates for smooth Weyl sums of degree 6. Let A(P,R)

denote the set of natural numbers not exceeding P with all their prime factors below R.
Then put

g(α, P,R) =
∑

x∈A(P,R)

e(αx6).

Write δ(3) = 1
11 , δ(4) = 1

3 and δ(5) = 0.7247. Then, for any ε > 0 there is a number
η > 0 with the property that the estimates∫ 1

0
|g(α, P, P η)|2s dα� P s+δ(s)+ε (2.9)

hold for s = 3, 4 and 5. This follows from Vaughan [13] for s = 3 and 4, and from
the Appendix in Vaughan and Wooley [15] for s = 5. Note here that η depends on ε.
However, a consideration of the underlying diophantine equations shows that if (2.9)
holds for a particular value of η, then (2.9) is also valid for all smaller values of η. When
applying our convention concerning the letter ε we will call upon (2.9) only finitely often,
so a fixed positive value of η, sufficiently small in terms of ε, will do. Having chosen this,
we put

g6(α) = g(α, 1
2P6, P

η
6 ). (2.10)
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Next, we introduce a Farey dissection of the unit interval U = (N−1/2, 1 +N−1/2]. By
Dirichlet’s theorem, U is contained in the union of intervals {α : |qα− a| ≤ N−1/2} with

1 ≤ a ≤ q ≤ N1/2, (a, q) = 1 (2.11)

while it is easily seen that the shortened intervals {α : |qα − a| ≤ 1
2N
−1/2} are disjoint

when a, q range over (2.11). Hence there are half-open intervals I(q, a) = (α′q,a, α′′q,a] with

{α : |qα− a| ≤ 1
2N
−1/2} ⊂ I(q, a) ⊂ {α : |qα− a| ≤ N−1/2}

and the property that U is their disjoint union as a, q run over (2.11). The exact location
of α′q,a, α′′q,a is of no relevance.

Let 1 ≤ Q ≤ N1/2, and define the major arcs M(Q) as the union of the intervals

{α ∈ I(q, a) : |qα− a| ≤ Q/N} (2.12)

with 1 ≤ a ≤ q ≤ Q, (a, q) = 1. Note that for Q ≤ 1
2N

1/2 the intervals (2.12) are simply
given by |qα− a| ≤ Q/N .

The standard pruning device is [2, Lemma 1]. The following reformulation is readier
to use within this paper.

Lemma 1. Notation as above. Let ul be non-negative real numbers, and put

U(α) =
∑
|l|≤L

ule(αl).

Then, whenever 1 ≤ Q ≤ N1/2 one has∫
M(Q)

|f2(α)U(α)|2 dα� U(0)2Nε +QNε

∫ 1

0
|U(α)|2 dα. (2.13)

Proof. Let α ∈ I(q, a), and write α = (a/q) + β. Then, by (2.2), (2.3) and (2.4), we see
that

|f(α)|2 � N(q +Nq|β|)−1 + qε(q +Nq|β|)� N1+ε(q +Nq|β|)−1 (2.14)

Hence, at least when Q ≤ 1
2N

1/2, we may apply [2, Lemma 1] with Ψ(α) = |U(α)|2 and

ψh =
∑
l−l′=h

ulul′

to see that ∫
M(Q)

|f2(α)U(α)|2 dα� Nε
(
Qψ0 +

∑
h

ψh

)
.

By orthogonality,

ψ0 =
∫ 1

0
|U(α)|2 dα

while the ψh sum to |U(0)|2, as required. When 1
2N

1/2 < Q ≤ N1/2, the now fuzzy ends
of the intervals defining the major arcs obstruct a direct reference to [2, Lemma 1], yet
an inspection of the proof of this lemma shows that the situation is entirely covered by
the argument given there, and the bound (2.13) follows in the same way.

We now give some applications of Lemma 1, in the order they appear in the course
of the argument. We take U(α) = f4(α)g6(α) and note that by orthogonality and an
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elementary divisor argument one has∫ 1

0
|f4(α)g6(α)|2 dα� P4P6.

Hence, when N5/12 ≤ Q ≤ N1/2, Lemma 1 yields∫
M(Q)

|f2(α)f4(α)g6(α)|2 dα� NεQP4P6. (2.15)

For comparison, and to substantiate a comment made in the introduction, note here that∫ 1

0
|f2(α)f4(α)g6(α)|2 dα� P2P4P6,

as one readily confirms by counting the diagonal solutions of the underlying diophantine
equation. The bound (2.15) saves over this, and the saving increases with shrinking values
of Q. This feature is typical for a traditional pruning estimate.

Next, take Q = N5/12 and U(α) = f8(α)6. Then, by Schwarz’s inequality and Hua’s
lemma [14, Lemma 2.5], one finds that∫ 1

0
|f8(α)|12 dα ≤

(∫ 1

0
|f8(α)|8 dα

)1/2(∫ 1

0
|f8(α)|16 dα

)1/2
� P

17/2+ε
8 � P 12

8 Q−1.

Hence, Lemma 1 reveals ∫
M(N5/12)

|f2(α)f8(α)6|2 dα� P 12+ε
8 . (2.16)

With Q as before we now choose U(α) = g6(α)2f8(α). Here Hölder’s inequality gives∫ 1

0
|g2

6f8|2 dα ≤
(∫ 1

0
|g6|6 dα

)2/3(∫ 1

0
|f8|4 dα

)1/6(∫ 1

0
|f8|8 dα

)1/6
.

Again, we use Hua’s lemma to estimate the second and third factor while (2.9) estimates
the first. This gives∫ 1

0
|g2

6f8|2 dα� Nε
(
P

3+1/11
6

)2/3(
P 2

8
)1/6(

P 5
8
)1/6 � P 4

6P
2
8N
−5/12,

as one readily checks. Therefore, Lemma 1 shows that∫
M(N5/12)

|f2(α)g6(α)2f8(α)|2 dα� P 4
6P

2
8N

ε,

and from (2.16) and Schwarz’s inequality we finally deduce that∫
M(N5/12)

|f2(α)g6(α)|2|f8(α)|7 dα� P 2
6P

7
8N

ε. (2.17)

This is the second of our pruning estimates. The odd power attached to f8 is a curious
feature, preventing a direct application of Lemma 1. The bound (2.17) is the best possible,
save for the factor Nε.

3. Unconventional attack. We launch our attack by preparing the ground for an
application of the Hardy–Littlewood method. Let

F (α) = f2(α)f4(α)g6(α)f8(α). (3.1)
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Then, whenever n ≤ N , the integral

%(n,N) =
∫
U

F (α)e(−αn) dα (3.2)

counts the solutions of (1.3) with xj ∈ N and x3 ∈ A( 1
2P6, P

η
6 ). Hence it is evident that

r(n) ≥ %(n,N) (n ≤ N). (3.3)

There is quite some flexibility in the definition of major and minor arcs, and we take

M = M(N1/13), m = U \M.

Then
%(n,N) = %M(n,N) + %m(n,N) (3.4)

where, for a measurable set a ⊂ U, we wrote

%a(n,N) =
∫
a

F (α)e(−αn) dα.

The principal goal of this section is to show that %m(n,N) is small in mean square.
In the interest of brevity, we put

θ = 1
24 −

δ(5)
36 = 0.021536 . . . (3.5)

and note that θ > 2/93.

Lemma 2. One has ∑
n≤N

|%m(n,N)|2 � N13/12−θ+ε.

The proof will occupy the remainder of this section. This part is, perhaps, the most
original aspect of this paper. We begin by noting that m = M(N1/2) \M(N1/13). We
write N(Q) = M(2Q) \M(Q). Then m is covered by no more than logN sets N(Q) with
N1/13 ≤ Q ≤ 1

2N
1/2. By Bessel’s inequality, we see that there is a value of Q in this

range with ∑
n≤N

|%m(n,N)|2 ≤
∫
m

|F (α)|2 dα ≤ (logN)
∫
N(Q)

|F (α)|2 dα. (3.6)

We consider cases, depending on the size of Q. Put Q = Nω. Then 1
13 ≤ ω < 1

2 . The
range 5

12 ≤ ω < 1
2 is considered first. We choose a parameter X with 1 ≤ X ≤ P6 and

split N(Q) into the sets

B = {α ∈ N(Q) : |g6(α)| ≥ P6X
−1} and C = N(Q) \ B.

Then, since g6(α)� P6X
−1 holds on C, we apply Schwarz’s inequality in the form∫

C
|F |2 dα ≤

(∫ 1

0
|f2f4f

2
8 |2 dα

)1/2(∫
M(2Q)

|f2f4g6|2 dα
)1/2

sup
α∈C
|g6(α)|,

to conclude from (2.8) and (2.15) that∫
C
|F |2 dα�

(
N1+ε)1/2(QP4P6

)1/2
P6X

−1 � N7/8+εQ1/2X−1. (3.7)
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On the set B we explore the fact that g6 is large. By (2.9),∫
B
|g6|8 dα ≤ X2P−2

6

∫ 1

0
|g6|10 dα� X2P

3+δ(5)+ε
6 . (3.8)

Note that when X is not too large this is considerably stronger than the bound provided
by (2.9) with s = 4. This amplification effect is the pivotal element in the pruning
procedure. By Hölder’s inequality,∫
B
|F |2 dα ≤

(∫ 1

0
|f2f4f

2
8 |2 dα

)1/2(∫ 1

0
|f2f

2
4 |2 dα

)1/4(∫
B
|g6|8 dα

)1/4
sup

α∈N(Q)
|f2(α)|1/2.

By (2.14), for α ∈ N(Q) one has |f2(α)|2 � N1+εQ−1. From (2.8) and (3.8) we infer∫
B
|F |2 dα� N3/4+ε(X2P

3+δ(5)
6

)1/4
N1/4Q−1/4 � N9/8+δ(5)/24+εX1/2Q−1/4. (3.9)

We balance (3.9) and (3.7), keeping in mind the condition that 1 ≤ X ≤ P6. With
X = Nξ the far right of (3.7) becomes NΘ+ε where

Θ = 7
8 + ω

2 − ξ. (3.10)

If we write the right hand side of (3.9) as NΛ+ε, then Λ = 9
8 + δ(5)

24 + 1
2ξ−

1
4ω. We choose

ξ = ω

2 −
1
6 −

δ(5)
36

to arrange that Θ = Λ. From 5
12 ≤ ω < 1

2 and the numerical value for δ(5) one quickly
confirms that 1

100 ≤ ξ ≤
1
12 , an admissible choice. With this value of ξ we see from (3.10)

and (3.5) that

Θ = 7
8 + 1

6 + δ(5)
36 = 13

12 − θ.

Consequently, the estimates (3.7) and (3.9) add to∫
N(Q)

|F (α)|2 dα� N13/12−θ+ε. (3.11)

We now turn to the case where 1
6 ≤ ω < 5

12 , and more precisely, where 2Q ≤ N5/12,
as we may assume. Then N(Q) ⊂M(N5/12). Let

D = {α ∈ N(Q) : |f8(α)|2 ≤ P 2
8N
−θ}, E = N(Q) \ D.

The treatment of the set D is straightforward. One imports (2.15) to conclude that∫
D
|F (α)|2 dα ≤ P 2

8N
−θ
∫
M(N5/12)

|f2f4g6|2 dα� N13/12−θ+ε. (3.12)

When α ∈ E one has |f8(α)|2 > P 2
8N
−θ, and therefore,∫

E
|f2g6f8|2 dα < N5θ/2P−5

8

∫
N(Q)

|f2g6|2|f8|7 dα.

From (2.17) we deduce that∫
E
|f2g6f8|2 dα� P 2

6P
2
8N

5θ/2+ε. (3.13)
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Now take k = 4 in (2.2) and use (2.3) and (2.4) to confirm that, for α ∈ N(Q), one has

|f4(α)|2 � N1/2Q−1/2 +Q1+ε � N5/12+ε = P 2
4N

ε−1/12. (3.14)

Since 5
2θ −

1
12 < −θ we conclude from (3.13) and (3.14) that∫

E
|F (α)|2 dα� N13/12−θ+ε.

In view of (3.12) we now see that (3.11) also holds in the range 1
6 ≤ ω ≤

5
12 .

This leaves the range 1
13 ≤ ω ≤

1
6 . A straightforward application of Lemma 1 yields∫

N(Q)
|f2(α)g6(α)|2 dα� P 2+ε

6 ,

while the first inequality in (3.14) shows that |f4(α)|2 � P 2
4N
−1/26 whenever α ∈ N(Q).

The trivial estimate for f8 now suffices to conclude that∫
N(Q)

|F (α)|2 dα� N13/12−1/26+ε,

a bound much superior to (3.11). Lemma 2 now follows from (3.6).

4. Decoupling. In this section we begin with the major arc analysis, by separating
the singular series from the singular integral as far as one can get without entering the
distribution of smooth numbers. The decoupling will take several steps. We begin by
introducing more notation. For 1 ≤ a ≤ q ≤ N1/13 and (a, q) = 1 let

P(q, a) = {α : |α− (a/q)| ≤ N−1/3}.

These intervals are disjoint, at least when N is large. We write P for their union, and for
k ≥ 2 we define f∗k : P→ C by

f∗(α) = q−1Sk(q, a)vk
(
α− (a/q)

)
whenever α ∈ P(q, a).

Let A ⊂ P be measurable and put

%∗A(n,N) =
∫
A

f∗2 (α)f∗4 (α)f∗8 (α)g6(α)e(−αn) dα. (4.1)

Classical major arc work provides us with the following estimate.

Lemma 3. One has ∑
n≤N

|%M(n,N)− %∗P(n,N)|2 � N13/12−1/26+ε.

Proof. The main difficulty is with the approximation of %M(n,N) by %∗M(n,N). By (3.1),
(3.2) and (4.1), followed by Bessel’s inequality and a trivial bound for g6, one finds that∑

n≤N

|%M(n,N)− %∗M(n,N)|2 �
∫
M

|f2f4f8 − f∗2 f∗4 f∗8 |2|g6|2 dα

� P 2
6

∫
M

|f2f4f8 − f∗2 f∗4 f∗8 |2 dα. (4.2)
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Further, by (2.2) we see that fk − f∗k � N1/26+ε holds uniformly on M. Hence, using
trivial bounds frequently, one first finds that

f2f4 = (f2 − f∗2 )f4 + f∗2 (f4 − f∗4 ) + f∗2 f
∗
4 = f∗2 f

∗
4 +O(P2N

1/26+ε),

and then, since the measure of M is O(N−11/13), multiplication of the preceding line
with f8 suffices to confirm the bound∫

M

|f2f4 − f∗2 f∗4 |2|f8|2 dα� P 2
2P

2
8N

1/13+ε
∫
M

dα� P 2
8N

3/13+ε. (4.3)

Next, we first observe that∫
M

|f∗2 f∗4 |2|f8 − f∗8 |2 dα� N1/13+ε
∫
M

|f∗2 f∗4 |2 dα,

and then we use (2.3), (2.4), (2.5) and (2.6) to confirm that∫
M

|f∗2 f∗4 |2 dα ≤ P 2
2P

2
4
∑
q≤P8

q∑
a=1

(a,q)=1

q−1κ4(q)2
∫ ∞
−∞

(1 +N |β|)−3/2 dβ � P 2
4
∑
q≤P8

κ4(q)2.

We invoke (2.7) to bound the sum on the far right, and then conclude that∫
M

|f∗2 f∗4 |2|f8 − f∗8 |2 dα� P 2
4N

1/13+ε.

This we combine with (4.3) and apply the elementary inequality

|u+ v|2 ≤ 2|u|2 + 2|v|2 (4.4)

to estimate the integral in the lower line of (4.2), thus producing the bound∑
n≤N

|%M(n,N)− %∗M(n,N)|2 � N. (4.5)

The next step is to compare %∗P(n,N) with %∗M(n,N). Their difference is %∗P\M(n,N),
so that Bessel’s inequality yields∑

n≤N

|%∗M(n,N)− %∗P(n,N)|2 ≤
∫
P\M

|f∗2 f∗4 f∗8 g6|2 dα ≤ P 2
6

∫
P\M

|f∗2 f∗4 f∗8 |2 dα.

By (2.3), (2.4) and (2.5), and then (2.7), we see∫
P\M

|f∗2 f∗4 f∗8 |2 dα� P 2
2P

2
4P

2
8
∑
q≤P13

q−1/2κ8(q)2
∫ ∞
P13/(qN)

(1 +N |β|)−7/4 dβ

� P 2
4P

2
8
∑
q≤P13

P
−3/4
13 q1/4κ8(q)2 � (P4P8)2P

ε−1/2
13 ,

and it follows that ∑
n≤N

|%∗M(n,N)− %∗P(n,N)|2 � N13/12−1/26+ε.

We combine this with (4.5), and apply (4.4). The lemma follows.
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We are ready to perform the decoupling. It is convenient to present %∗P(n,N) in
another way. Let q ∈ N, m ∈ Z, and let Y be a positive real number. Define

A(q,m) = q−3
q∑
a=1

(a,q)=1

S2(q, a)S4(q, a)S8(q, a)e
(
−am

q

)
, (4.6)

J(N,Y,m) =
∫ Y

−Y
v2(β)v4(β)v8(β)e(−βm) dβ. (4.7)

Then, by (2.1), (2.10) and (4.1),

%∗P(n,N) =
∑

y∈A( 1
2P6,P

η
6 )

∑
q≤P13

A(q, n− y6)J(N,N−1/3, n− y6). (4.8)

Note that A(q,m) is independent of N while J is independent of q. We wish to remove
the dependence on N also from the J-integral, at least for m < N . We therefore bring in
the function J(N, 1

2 ,m) = J(N,m), say, and compare (4.8) with

%†(n,N) =
∑

y∈A( 1
2P6,P

η
6 )

∑
q≤P13

A(q, n− y6)J(N,n− y6). (4.9)

The difference %†(n,N)− %∗P(n,N) is then given by∑
y∈A( 1

2P6,P
η
6 )

∑
q≤P13

A(q, n− y6)
∫
N−1/3≤|β|≤1/2

v2(β)v4(β)v8(β)e(β(y6 − n)) dβ,

so that Cauchy’s inequality delivers

|%†(n,N)− %∗P(n,N)|2

≤ A
∑
y≤P6

∣∣∣∫
N−1/3≤|β|≤1/2

v2(β)v4(β)v8(β)e(βy6)e(−βn) dβ
∣∣∣2 (4.10)

where
A =

∑
y∈A( 1

2P6,P
η
6 )

∣∣∣ ∑
q≤P13

A(q, n− y6)
∣∣∣2.

By (4.6), (2.4) and (2.6), the inequality

A(q,m)� q1/2κ4(q)κ8(q) (4.11)

holds uniformly m, and therefore, by (2.7) and Cauchy’s inequality, the estimate∑
q≤Q

|A(q,m)| � Q1/2+ε (4.12)

holds uniformly in m as well. This shows A� P6P
1+ε
13 . Further, Bessel’s inequality yields∑

n≤N

∣∣∣∫
N−1/3≤|β|≤1/2

v2(β)v4(β)v8(β)e(βy6)e(−βn) dβ
∣∣∣2 ≤ ∫

N−1/3≤|β|≤1/2
|v2v4v8|2 dβ,

and here, by (2.3), the right hand side does not exceed

� (P2P4P8)2
∫ ∞
N−1/3

(1 +N |β|)−7/4 dβ � P 2
4P

2
8N
−1/2.
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Collecting together, summation of (4.10) over n delivers the desired estimate∑
n≤N

|%∗P(n,N)− %†(n,N)|2 � (P4P6P8)2N1/13−1/2 � N. (4.13)

The expression (4.9) simplifies further. Indeed, by (4.7), (2.1) and orthogonality, we
have

J(N,m) = 1
64

∑
1≤l2,l4,l8≤N
l2+l4+l8=m

l
−1/2
2 l

−3/4
4 l

−7/8
8 .

Note here that for 1 ≤ m ≤ N the sum J(m,N) is independent of N . We suppose
that 1

2N < n ≤ N and take m = n − y6 with 1 ≤ y ≤ 1
2P6. Then m > 3

8N , and two
applications of [14, Lemma 2.9] show that

J(N,m) = Γm−1/8 +O(m−1/4)

where Γ = Γ(3
2 )Γ( 5

4 )Γ( 9
8 )/Γ( 7

8 ). We therefore bring in the sum

σ(n,N) =
∑

y∈A( 1
2P6,P

η
6 )

∑
q≤P13

A(q, n− y6)(n− y6)−1/8. (4.14)

where again we suppose that 1
2N < n ≤ N . According to the penultimate display

and (4.9), there are numbers E(m) with E(m)� N−1/4, and such that

%†(n,N)− Γσ(n,N) =
∑

y∈A( 1
2P6,P

η
6 )

∑
q≤P13

A(q, n− y6)E(n− y6).

Hence, by (4.12) and elementary estimates, whenever 1
2N < n ≤ N , one has

%†(n,N)− Γσ(n,N)� P6P
1/2+ε
13 N−1/4,

and we conclude that ∑
N/2<n≤N

|%†(n,N)− Γσ(n,N)|2 � N. (4.15)

It is time to sum up the initial circle method work, performed in mean square
over n. Indeed, on combining (4.15) with (4.13) and the results from Lemmata 2 and 3
through (3.4) and repeated use of (4.4), we may conclude as follows.

Lemma 4. One has ∑
N/2<n≤N

|%(n,N)− Γσ(n,N)|2 � N13/12−θ+ε.

5. Local interlude. In this section we gather local information encoded by A(q,m).
The precise estimates that we obtain for A(q,m) are then applied to the cognate sum

B(q, n) =
q∑
b=1
|A(q, n− b6)|. (5.1)

Lemma 5. Suppose that m,n ∈ Z. Then A(q,m) and B(q, n) are multiplicative in q.
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Proof. The argument of proof of [14, Lemma 2.11] yields the multiplicativity of A(q,m).
Also, by (4.6), we see that A(q,m) has period q in m. Therefore, whenever q = q1q2 with
(q1, q2) = 1, we may substitute b = b1q2 + b2q1 in (5.1) to verify that

B(q, n) =
q1∑
b1=1

q2∑
b2=1
|A(q1, n− (b1q2)6)A(q2, n− (b2q1)6)|.

Here b1q2 runs over a complete set of residues modulo q1 as b1 does, so that the sum of
|A(q1, n− (b1q2)6)| over b1 is B(q1, n). By symmetry, it follows that B(q, n) is multiplica-
tive.

By Lemma 5, it suffices to consider the case where q is a power of a prime p. In
addressing this case, we frequently require the reduction formula

Sk(pu+k, a) = pk−1Sk(pu, a) (5.2)

that is valid for odd primes p with p - a, all u ≥ 0 and k = 2, 4, 8. If, in addition, one has
2 ≤ u ≤ k, then

Sk(pu, a) = pu−1. (5.3)

When p = 2, (5.2) still holds for all u ≥ 2. Later we also require (5.2) and (5.3) for k = 6
where these statements hold for primes p > 3. When p = 2 or 3 we have (5.2) for u ≥ 2
(p = 2) or u ≥ 1 (p = 3). All of this are special cases of [14, Lemma 4.4].

The case u = 1 is more subtle. With χ a Dirichlet character modulo p, let

τ(χ) =
p−1∑
a=1

χ(a)e(a/p)

denote the Gauß sum and recall that |τ(χ)|2 = p whenever χ is non-principal. Let Xk

denote the set of non-principal characters χ modulo p where χk is principal. There are
(k, p− 1)− 1 such characters. Lemma 4.3 of Vaughan [14] asserts that

Sk(p, a) =
∑
χ∈Xk

χ(a)τ(χ̄) (p odd, p - a, k = 2, 4, 6, 8). (5.4)

Since k is even, the set Xk contains the Legendre symbol, and this is the only element
of X2. Hence, by (5.4) with a = 1, one finds that S(p, 1) is the Gauß sum for the Legendre
symbol. Then, using (5.4) again, we obtain

S2(p, a) =
(
a

p

)
S2(p, 1) (p - a). (5.5)

Lemma 6. Let m ∈ Z, let u ∈ N, and let p be an odd prime. Then A(p8+u,m) = 0 unless
p8 |m in which case one has A(p8+u,m) = pA(pu,m/p8). For p = 2 this remains valid
for all u ≥ 2.
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Proof. By (4.6) and (5.2),

A(p8+u,m) = p−7−3u
p8+u∑
a=1
p-a

S2(pu, a)S4(pu, a)S8(pu, a)e
(
− am

p8+u

)

= p−7−3u
pu∑
b=1
p-b

p8∑
c=1

S2(pu, b)S4(pu, b)S8(pu, b)e
(
− (b+ puc)m

p8+u

)
.

The sum over c vanishes unless p8 |m, and in that event it produces a factor p8. The
lemma follows.

Within the proofs of the next lemmata we will encounter Ramanujan’s sum

cq(m) =
q∑
a=1

(a,q)=1

e

(
−am

q

)
,

and we require the explicit evaluations

cpu(m) = 0 (pu−1 - m), cpu(m) = −pu−1 (pu−1 ‖m), cpu(m) = ϕ(pu) (pu |m)

that are valid for all primes p, all u ≥ 1 ([8, Theorem 272]).

Lemma 7. Let m ∈ Z, and let p be a prime. Then A(p,m)� p−1(p,m)1/2.

Proof. This is trivial for p = 2 so we suppose that p is odd. By (4.6), (5.4) and (5.5),

A(p,m) = p−3S2(p, 1)
∑
χ4∈X4

∑
χ8∈X8

τ(χ̄4)τ(χ̄8)
p−1∑
a=1

(
a

p

)
χ4χ8(a)e

(
−am

p

)
.

It will be convenient to denote, temporarily, the Legendre symbol modulo p by χ2.
First suppose that p |m. Then the sum over a is trivially smaller than p in modu-

lus, and the estimate for the Gauß sum yields the crude bound |A(p,m)| ≤ 21p−1/2.
Next suppose that p - m. If the character χ2χ4χ8 is principal, then the sum over a is
a Ramanujan sum, adding up to −1. If χ2χ4χ8 is non-principal, then the substitution
b = −am transforms the sum over a into the Gauß sum τ(χ2χ4χ8), save for a factor of
modulus 1. This yields |A(p,m)| ≤ 21p−1, as required.

Lemma 8. Let m ∈ Z, and let p be an odd prime. Then A(p2,m) = p−3cp2(m).

Proof. This is immediate from (4.6), (5.2) and (5.3).

Lemma 9. Let m ∈ Z, let p be an odd prime and suppose that 3 ≤ u ≤ 8. If pu−1 - m,
then A(pu,m) = 0. If pu−1 |m and u is even, then

A(pu,m)� p−1(p,mp1−u) (u = 4, 6), A(p8,m)� (p,m/p7).

If pu−1 |m and u is odd, then A(pu,m)� p−1/2(p,mp1−u)1/2. One has A(p3,m)� p−1,
and if p3 |m then A(p3,m) = 0. Finally, one has A(p7,m) � 1, and if p7 |m then
A(p7,m) = 0.
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Proof. In the case where u is even, we apply (4.6), (5.2) and (5.3) and infer

A(pu,m) = p−ucpu(m) (u = 4, 6), A(p8,m) = p−7cp8(m).

All claims now follow from the evaluation of Ramanujan’s sum.
Now let u = 7. By (5.2), (5.3) and (5.5), we find that

A(p7,m) = S2(p, 1)
p7

p7∑
a=1
p-a

(
a

p

)
e

(
−am
p7

)
= S2(p, 1)

p7

p−1∑
b=1

p6∑
c=1

(
b

p

)
e

(
− (b+ pc)m

p7

)
.

The sum over c vanishes except when p6 |m, and in that case, we write m = p6m′ to infer

A(p7,m) = S2(p, 1)
p

p−1∑
b=1

(
b

p

)
e

(
−bm

′

p

)
.

If p |m′ then the sum over b vanishes, and if p - m′, then we may sum over bm′ in place
of b to see that the sum over b is a quadratic Gauss sum. This establishes all claims
concerning the case u = 7.

The case u = 3 is very similar: here (5.2), (5.3) and (5.5) give

A(p3,m) = S2(p, 1)
p4

p3∑
a=1
p-a

(
a

p

)
e

(
−am
p3

)
.

Proceeding as before, we find that the sum on the right vanishes unless p2 |m, and in
that case we write m = p2m′ to conclude that

A(p3,m) = S2(p, 1)
p2

p−1∑
b=1

(
b

p

)
e

(
−bm

′

p

)
.

We now argue as in the case u = 7 to confirm all claims concerning the case u = 3.
This leaves the case u = 5. By (5.2) and (5.3),

A(p5,m) = 1
p6

p5∑
a=1
p-a

S2(p, a)S4(p, a)e
(
−am
p5

)
= 1
p6

p−1∑
b=1

p4∑
c=1

S2(p, b)S4(p, b)e
(
− (b+ pc)m

p5

)
.

As before, the sum over c vanishes unless p4 |m. In that case, we write m = p4m′, and
then find via (5.4) and (5.5) that

A(p5,m) = S2(p, 1)
p2

∑
χ4∈X4

τ(χ̄4)
p−1∑
b=1

(
b

p

)
χ4(b)e

(
−bm

′

p

)
.

The Legendre symbol is among the characters in X4, and for this character the sum
over b is cp(m′). Hence, the Legendre symbol contributes to A(p5,m) an amount bounded
by p−1(p,m′) in modulus. If the Legendre symbol is the only character in X4 then we
are finished. Otherwise, there are two further characters in X4, both of order 4. When
multiplied with the Legendre symbol, they remain non-principal, so that the sum over b
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vanishes when p |m′, but transforms into a Gauss sum when p - m′. This confirms all
claims concerning the case u = 5.

The following rough version of our earlier lemmata is readier to use, and often suffices.

Lemma 10. Let m ∈ Z, and let p be an odd prime. Suppose that t ≥ 2. Then A(pt,m) = 0
unless pt−1 |m in which case one has A(pt,m)� p[t/8]−1/2(p,mp1−t)1/2.

Proof. Write t = u + 8v with 1 ≤ u ≤ 8. Suppose that A(pt,m) 6= 0. Repeated use
of Lemma 6 shows that p8v |m, and that A(pt,m) = pvA(pu,mp−8v). Note here that
[t/8] = v for u ≤ 7, and [t/8] = v + 1 for u = 8. If u = 1, then the lemma follows from
Lemma 7. If u = 2 then it can be deduced from Lemma 8, and if u ≥ 3, then from
Lemma 9.

We require similar information for p = 2 but do not need to be so precise. Hence, we
suppose that t ≥ 10, and write t = 8v + u with 2 ≤ u ≤ 9. Then, by Lemma 6, we have
A(2t,m) = 0 unless 28v |m in which case

A(2t,m) = 2vA(2u, 2−8vm). (5.6)

Finally we study the value of A(pt, n− y6) as y varies.

Lemma 11. Let t ≥ 2, let p be an odd prime dividing n, and let pν ‖n.

(i) Let t ≤ ν + 1. If 6 - t− 1 then A(pt, n− y6) = 0, except when pt | y6, and in that case
A(pt, n− y6) = A(pt, n). If 6 | t− 1 then A(pt, n− y6) = 0, except when p(t−1)/6 | y.

(ii) Let t ≥ ν + 2. Then A(pt, n− y6) = 0, except when 6 | ν and pν/6 | y.

Proof. Put n = pνn′. By Lemma 10 we see that A(pt, n−y6) 6= 0 implies pt−1 |pνn′−y6.
First suppose that t ≤ ν + 1. Then, it follows that pt−1 | y6, and if 6 - t − 1, we may

conclude that pt | y6. For t ≤ ν, we now see that pt |n − y6, and hence, A(pt, n− y6) =
A(pt, pt) = A(pt, n). For t = ν+1 and 6 - t−1 = ν, we still have pt | y6 and A(pt, n−y6) =
A(pt, n). This verifies the first clause of (i).

Now consider the case 6 | t − 1. Then pt−1 | y6 is the same as p(t−1)/6 | y. This estab-
lishes (i).

Finally, suppose that t ≥ ν + 2. Then pt−1 |pνn′ − y6 is impossible unless 6 | ν and
pν/6 | y. This is (ii).

We now turn to the sum B(pt, n). In the discussion, it will be convenient to have at
hand an estimate for the number ψn(q) of incongruent solutions to y6 ≡ n mod q.

Lemma 12. For each n ∈ N the function ψn is multiplicative. Let p is an odd prime with
n = pνn′ and p - n′. Then, for 1 ≤ t ≤ ν one has ψn(pt) = pt−1−[(t−1)/6]. For t > ν one
has ψn(pt) = 0 except when 6 | ν where ψn(pt) ≤ 6p5ν/6.

This belongs to the elementary theory of congruences, and needs no proof here. It
should be noted, however, that we have not excluded the case ν = 0.

Lemma 13. Let t = 1 or 2. Then, uniformly in n ∈ N and primes p, one has B(pt, n)� 1.

Proof. We may suppose that p > 2 since the claim is trivial for p = 2. Since there are
no more than 6 incongruent solutions to b6 ≡ n mod p, the bound for B(p, n) follows
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immediately from (5.1) and Lemma 7. Further, by Lemma 8,

B(p2, n) = p−3
p2∑
b=1
|cp2(n− b6)|.

The evaluation of Ramanujan’s sum shows that only those b where b6 ≡ n mod p make
a non-zero contribution, and there are no more than 6p such b with 1 ≤ b ≤ p2. The
trivial bound |cp2(m)| ≤ p2 now yields B(p2, n) ≤ 6, as required.

For larger powers of an odd prime p, we begin with a crude bound that is uniform
in n. From (5.1) and Lemma 10 we see that for t ≥ 3 one has

B(pt, n) ≤
(
ψn(pt−1)p1/2 + ψn(pt)

)
p[t/8]. (5.7)

Now t > ν implies t− 1− [(t− 1)/6] ≥ 5ν/6. By Lemma 11, B(pt, n) ≤ 12pM where

M = [ t8 ] + max
(
t− 3

2 − [ t−2
6 ]; t− 1− [ t−1

6 ]
)
.

It follows that M ≤ t− 1. Further, [ t−1
6 ] ≥ [ t8 ] + 1 holds for all t ≥ 25, so that one then

has M ≤ t− 3
2 . Finally, the trivial inequalities [ t−2

6 ] ≥ t−2
6 −

5
6 and [ t−1

6 ] ≥ t−1
6 −

5
6 imply

M ≤ 23
24 t. We summarise these findings.

Lemma 14. Uniformly in n and primes p, one has

B(pt, n)� pt−1 (t ≥ 3), B(pt, n)� pt−3/2 (t ≥ 25), B(pt, n)� p23t/24.

If pν ‖n and 0 ≤ ν ≤ 4 then
B(pt, n)� pt−3/2 (5.8)

holds for all t ≥ 3. If ν = 6 then (5.8) holds for t ≥ 9, if ν = 12 then (5.8) holds for
t ≥ 13, and if ν = 18 then for t ≥ 19.

Proof. We begin by considering odd primes p. In this case the first clause has already
been proved, so we may concentrate on (5.8). If ν = 0 then Lemma 12 gives ψn(pl) ≤ 6
for all l ≥ 1, and so, by (5.7) we have B(pt, n) � p1/2+[t/8] which is much better than
claimed. For ν = 1 Lemma 12 yields ψn(pl) = 0 for l ≥ 2, and (5.7) gives B(pt, n) = 0
for t ≥ 3. The same argument applies for ν = 2, t ≥ 4 and ν = 3, t ≥ 5. By Lemma 9,

B(p3, p2n′) =
p3∑
b=1

b6≡p2n′ mod p2

|A(p3, p2n′ − b6)| = p2|A(p3, p2n′)| � p,

while a similar computation delivers

B(p3, p3n′) = p2|A(p3, p3)| = 0, B(p4, p3n′) =
p4∑
b=1

b6≡p3n′ mod p3

|A(p4, p3n′)| � p2.

This proves (5.8) for ν ≤ 4. The cases of (5.8) where ν = 6, 12 or 18 all follow from (5.7)
coupled with the final clause of Lemma 12. The proof is complete for odd primes.
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Now consider p = 2. Let t ≥ 25 and write t = 8v + u with 2 ≤ u ≤ 9, as in (5.6),
which gives

B(2t, n) =
2t∑
b=1
|A(2t, n− b6)| = 2v

2t∑
b=1

28v | n−b6

|A(2u, 2−8v(n− b6))|.

Elementary counting of the solutions of n − b6 ≡ 0 mod 28v now shows that the bound
B(pt, n) � p23t/24 also holds for p = 2, at least for t ≥ 25. For t ≤ 25, the sum B(2t, n)
takes only finitely many values, and therefore, all other claims in the lemma are true and
trivial for p = 2.

6. Higher powered tristesse. Equipped with sufficient information about the function
A(q,m) and its relatives, we now return to our main theme. In view of Lemma 4, the
next task ahead of us is the asymptotic evaluation of σ(n,N), as defined in (4.14). This
sum involves the smooth monotonic weight (n− y6)−1/8 that can be removed by partial
summation. Thus, we are led to study the sum

Υn(P ) = Υn(P,Q) =
∑

y∈A(P,Pη6 )

∑
q≤Q

A(q, n− y6) (6.1)

where we will always choose Q = N1/13 and assume that
1
2N < n ≤ N, 8 - n, P6 exp(−

√
logN) ≤ P ≤ 1

2P6, (6.2)
smaller P being of lesser relevance.

In this and the next two sections we establish an asymptotic formula for Υn(P ). The
basic idea is one of great simplicity. Since the summand A(q, n − y6) depends only on
y mod q, one sorts the smooth y into progressions, modulo q, and then uses results on
their distribution in these progressions on average over q. Unfortunately A(q, n − y6) is
sometimes too large for a straightforward treatment. It turns out that higher powers of
primes dividing q do not cooperate with an estimate of Bombieri–Vinogradov type, in
particular if these prime powers also divide n. We therefore initiate the analysis with
a chain of preparatory estimates to mollify the effects of undesired factors.

For natural numbers q and k ≥ 2 let
qk =

∏
pl ‖ q
l≥k

pl

denote the k-full part of q. Throughout this section, but this section only, an index
attached to a natural number will always have this meaning. We begin by examining the
contribution to (6.1) arising from q where q25 is large. Let L ≥ 1 be a parameter. Then,
by Rankin’s trick followed by sorting the y-summation in arithmetic progressions, we find∑

q≤Q
q25>L

∑
y∈A(P,Pη6 )

|A(q, n− y6)| ≤
∑
q≤Q

(
q25

L

)1/96 q∑
b=1
|A(q, n− b6)|

∑
y≤P

y≡b mod q

1

� PL−1/96
∑
q≤Q

q−1q
1/96
25 B(q, n). (6.3)
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Note that we have used here that q ≤ Q ≤ P . By Lemma 14, there is a number C ≥ 1
with B(pt, n) ≤ Cpt−1 for all primes p, all t ≥ 1. Further, again by Lemma 14, when
t ≥ 25, one has

p−95t/96B(pt, n)� min
(
p−3/2+t/96, p−t/32),

and so, by multiplicativity of B, one finds that the right hand side of (6.3) is bounded
by

� PL−1/96
∏
p≤Q

(
1 +

24∑
t=1

p−tB(pt, n) +
∞∑
t=25

p−95t/96B(pt, n)
)

� PL−1/96
∏
p≤Q

(
1 + 24C

p
+O(p−33/32)

)
� PL−1/96(logN)24C . (6.4)

As the simplest application, we take L = 1 and then have∑
q≤Q

∑
y∈A(P,Pη6 )

|A(q, n− y6)| � P (logN)24C . (6.5)

Similarly, we may take
L = (logN)2400C (6.6)

and then infer that ∑
q≤Q
q25>L

∑
y∈A(P,Pη6 )

|A(q, n− y6)| � P (logN)−C . (6.7)

Note that we were able to control q25 because the estimate p−tB(pt, n) � p−3/2 was
available for t ≥ 25. However, when p - n4 then Lemma 14 provides this critical estimate
already for t ≥ 3. Therefore, we define

Qn = {q ∈ N : p | q ⇒ p4 |n}.

Then, any natural number q factorises uniquely into q = q∗q† with q† ∈ Qn and
(q∗, n4) = 1. Although this factorisation depends on n, we have suppressed this in the
notation because we now work with only one large n. In accordance with the conventions
introduced earlier in this section, the cubefull part of q∗ is q∗3 , for example. We may now
copy the argument from (6.3) to (6.7) to confirm the estimate∑

q≤Q
q∗3>L

∑
y∈A(P,Pη6 )

|A(q, n− y6)| � P (logN)−C , (6.8)

where from now on L is always given by (6.6). To verify (6.8), one applies Rankin’s trick
with (q∗3/L)1/96. The analogue of (6.4) then becomes

PL−1/96
∏
p≤Q
p | n4

(
1 + 24C

p
+O(p−33/32)

) ∏
p≤Q
p-n4

(
1 + 2C

p
+
∞∑
t=3

p−95t/96B(pt, n)
)
,

and from here, the estimation is completed as before. Further, we may factor q† as

q† = q(4)q(5)q(6) · · · (6.9)
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where q(ν) is composed of primes p with pν ‖n only. Again, this factorisation is unique,
and we may use Lemma 14 again to control the size of q(6)

9 , q(12)
13 and q(18)

19 , where again
we find that the portion of (6.5) where at least one of these three numbers exceeds L, is
bounded by O(P (logN)−C)).

Finally we limit the size of q†3. Unfortunately we are unable to do this on the loga-
rithmic scale. Thus, put

K = exp(
√

logN), (6.10)
and follow the ideas in (6.3) to see that∑
q≤Q
q†3>K

|A(q, n− y6)| � PK−1/96
∏
p≤Q
p-n4

(
1 + 24C

p

) ∏
p | n4

(
1 + C

24∑
t=1

pt/96−1 +O
(
p−33/32))

� PK−1/97
∏
p4 | n

(
1 + 24Cp−3/4)� PK−1/98. (6.11)

We summarise our findings. Let L, K be given by (6.6), (6.10). Then define Υ′n(P )
to denote the portion of the sum (6.1) where q is restricted by the extra conditions
q25 ≤ L, q∗3 ≤ L, q†3 ≤ K, q

(6)
9 ≤ L, q

(12)
13 ≤ L, q

(18)
19 ≤ L. (6.12)

On combining (6.7), (6.8), (6.11) and the discussion following (6.9), we deduce that
Υn(P ) = Υ′n(P ) +O(P (logN)−1). (6.13)

7. Trouble ahead. We now embark on the approximation argument that ultimately
removes the smoothness condition from the y-sum in (6.1). This is a technically very
demanding endeavour. Most of the difficulties arise from prime divisors of the 4-full part
of n, and if one were prepared to consider 4-free n only then a much more economic
treatment would be possible.

The starting point is the restricted sum Υ′n(P ), as defined via (6.12). We present this
sum in a form more suitable for the argument to follow. Let U denote the set of cubefree
numbers, and let

V = {v ∈ N : p | v ⇒ p3 | v, p4 |n}, W = {w ∈ N : p |w ⇒ p3 |w, p4 - n}.

Then, a number q ∈ N factors uniquely as q = uvw with u ∈ U , v ∈ V, w ∈ W pairwise
coprime. Note that w = q∗3 , v = q†3 in the notation of the previous section that we do no
longer use now. Recall also 8 - n so that all v ∈ V are odd. We factor v further. Let p be
a prime with pt ∈ V and pν ‖n. We say that pt is of

– class 1 if t 6≡ 1 mod 6, 3 ≤ t ≤ min(ν + 1, 24),
– class 2 if t ≡ 1 mod 6, 3 ≤ t ≤ min(ν + 1, 24) except when ν = 12 and 18, in which
case 3 ≤ t ≤ min(ν, 24),

– class 3 if t = 8, ν = 6,
– class 4 if pt is in none of the classes 1, 2 and 3.

Let Vj be the set of all v ∈ V composed of pt ‖ v with pt of class j only. Then, v factors
uniquely into v = v1v2v3v4 with vj ∈ Vj coprime in pairs, and a given q factors as
q = uvw = uv1v2v3v4w. We use this factorisation throughout this section.
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We recast the conditions (6.12) in terms of this factorisation. Given q, first consider
the corresponding v4 = v4(q) ∈ V4. Let pt ‖ v4 and pν ‖n. If t ≥ 25 then pt is a divisor
of q25 in (6.12), and hence of q†25. Next suppose that ν + 2 ≤ t ≤ 24, 6 - ν. Then, by
Lemma 11, A(pt, n− y6) = 0 for all y, and hence, A(q, n− y6) = 0 for all y; such q may
be omitted from the sum defining Υ′n(P ). If ν+2 ≤ t ≤ 24 and 6 | ν, then ν = 6, 12 or 18,
and pt | q(6)

9 q
(12)
13 q

(18)
19 . This shows that v4 | q†25q

(6)
9 q

(12)
13 q

(18)
19 , in the notation of (6.12), and

we then see that v4 actually equals q†25q
(6)
9 q

(12)
13 q

(18)
19 . In particular, the definition of class 4

could also be given directly, in terms of ν and t. Further, we see that any q ∈ N with
q ≤ Q that satisfies (6.12) and is such that A(q, n− y6) does not vanish identically in y,
has exactly one factorisation q = uv1v2v3v4w as above, with u ∈ U , vj ∈ Vj , w ∈ W and

w ≤ L, v1v2v3v4 ≤ K, v4 ≤ L4, uvw ≤ Q, u, v1, v2, v3, v4, w coprime in pairs. (7.1)

Conversely, if u, vj and w run independently over these conditions, with v4 restricted to
a suitable subset, we cover all q satisfying (6.12).

Next, we extract more consequences of Lemma 11. Let q ∈ N and n ∈ N be given.
We say that the number s is a significant divisor of q (relative to n) if s | q and for all
y ∈ N with A(q, n − y6) 6= 0 one has s | y. Note that 1 is always a significant divisor.
Also, there is a multiplicative property: if q1 and q2 are coprime with significant divisors
sj of qj , then s1s2 is a significant divisor of q1q2. To see this, note that Lemma 5 shows
that A(q1q2, n − y6) 6= 0 implies A(qj , n − y6) 6= 0, and then we have sj | y for j = 1, 2,
which in turn gives s1s2 | y, as required.

We now determine significant divisors of pt ∈ V in classes 1, 2 and 3. For pt of class 1,
Lemma 11 tells us that s(pt) = p1+[(t−1)/6] is a significant divisor, and for class 2 we may
take s(pt) = p(t−1)/6. For pt of class 3, we have t = 8 and ν = 6, and again by Lemma 11,
s(p8) = p is a significant divisor. Now, if pt is a prime power of class 4, or a prime power
not in V, then we take s(pt) = 1 and extend s to a multiplicative function on N. Then
s(q) is a significant divisor of q, for all q ∈ N, and if q is translated into the form (7.1),
then s(q) = s(v) = s(v1)s(v2)s(v3). By (7.1) and the definition of Υ′n(P ) in (6.12), we get

Υ′n(P ) =
∑
q≤Q

(6.12)

∑
z∈A(P/s(q),Pη6 )

A(q, n− s(q)6z6)

=
∑
u,v,w
(7.1)

∑
z∈A(P/s(v),Pη6 )

A(q, n− s(v)6z6). (7.2)

The reader may have expected the condition s(q) ∈ A(Q,P η6 ) in the outer sums, but
s(q) = s(v) divides v1v2v3, and in view of (7.1) we have s(q) ≤ K ≤ P η6 , so the smooth-
ness is automatically guaranteed. In (7.2), we factor A(uvw,m), and begin with the
divisor v1. We take y = s(v2v3)z and apply Lemma 11 and multiplicativity to see that

A(v1, n− s(v)6z6) = A(v1, n− s(v1)6y6) = A(v1, n) (7.3)

is independent of z. Further, from the definition of s we find that s(v2)6 | v2, and that
s(v3)8 = v3. In particular, the factor A(v2v3, n − s(v)6z6) depends only on z modulo
v2v3/s(v2v3)6. For notational simplicity, we now put

r = uwv2v3v4/s(v2v3)6, (7.4)
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and then infer that

Υ′n(P ) =
∑
v1∈V1

A(v1, n)
∑

u,v2,v3,v4,w
(7.1)

r∑
b=1

A
(
uv2v3v4w, n−s(v)6b6

)
Ψ(P/s(v), P η6 , r, b) (7.5)

where Ψ(X,Y, q, a) denotes the number of m ∈ A(X,Y ) with m ≡ a mod q. Simi-
larly, we denote the number of m ∈ A(X,Y ) with (m, q) = 1 by Ψq(X,Y ), and put
Ψ(X,Y ) = Ψ1(X,Y ). Then define

D∗q (X,Y ) = max
(a,q)=1

∣∣∣∣Ψ(X,Y, q, a)− Ψq(X,Y )
ϕ(q)

∣∣∣∣, Dq(Z, Y ) = max
1≤X≤Z

D∗q (X,Y ). (7.6)

Lemma 15. Fix real numbers δ > 0, A ≥ 1 and C ≥ 1. Then, whenever 1 ≤ Q ≤ Z1/2−δ

one has ∑
q≤Q

Cω(q)Dq(Z, Y )� Z(logZ)−A.

Proof. This is a rough version of a Bombieri–Vinogradov theorem for smooth numbers,
and the case C = 1 is due to Wolke [16]. For larger values of C, we apply the case
C = 1 with 2A in place of A. Then, for C > 1, the contribution of those q where
Cω(q) ≤ (logZ)A is bounded by O(Z(logZ)−A), as desired. To estimate the sum over q
with Cω(q) > (logZ)A, we use Rankin’s trick and the trivial bound D(q, Z) � Z/ϕ(q).
Then this part of the sum is

� (logZ)−2A
∑
q≤Q

C3ω(q)

ϕ(q) � (logZ)C
3−2A,

and the result follows, at least for large A, and this suffices.

We wish to use this within (7.5), and therefore arrange the sum over b according
to d = (b, r). In that situation, any m ≡ b mod r counted by Ψ(P/s(v), P η6 , r, b) will
have d |m, and this is possible only when d ∈ A(r, P η6 ). From now on, the smoothness
parameter (Y in Lemma 15) in our discussion below will always be P η6 , and for brevity
we drop this from the notation. Thus, we now write A(r) for A(r, P η6 ) and Ψ(X, r, b) for
Ψ(X,P η6 , r, b), for example. Also, we put s = s(v) and sj = s(vj) whenever there is need
to save space. In this notation, by (7.5), the sum Υ′n(P ) equals

=
∑
v1∈V1

A(v1, n)
∑

u,v2,v3,v4,w
(7.1)

∑
d | r

d∈A(r)

r∑
b=1

(b,r)=d

A(uv2v3v4w, n− s6b6)Ψ
(
P

ds
,
r

d
,
b

d

)

=
∑
v1∈V1

A(v1, n)
∑

u,v2,v3,v4,w
(7.1)

∑
d | r

d∈A(r)

r/d∑
b′=1

(b′,r/d)=1

A(uv2v3v4w, n− s6d6b′6)Ψ
(
P

ds
,
r

d
, b′
)
,

and we replace Ψ with Ψr/d to arrive at

Υ′n(P ) = Mn(P ) + En(P ) (7.7)
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where Mn(P ) is the sum∑
v1∈V1

A(v1, n)
∑

u,v2,v3,v4,w
(7.1)

∑
d | r

d∈A(r)

r/d∑
b=1

(b,r/d)=1

A(uv2v3v4w, n−s6d6b6)ϕ
( r
d

)−1
Ψr/d

(
P

ds

)
, (7.8)

and, in view of (7.6), we have

|En(P )|

≤
∑
v1∈V1

|A(v1, n)|
∑

u,v2,v3,v4,w
(7.1)

∑
d | r

r/d∑
b=1

(b,r/d)=1

∣∣A(uv2v3v4w, n− s6d6b6)
∣∣D∗r/d( Pds

)
. (7.9)

Note that in (7.9) we dropped the smoothness of d to produce an upper bound. We now
concentrate on the sum over b. We substitute s(v1)b for b, observing that (s(v1), r) = 1,
and then see that we may replace the factor s6 = s(v)6 with s(v2v3)6. Next suppose that
uv2v3v4w = q′q′′ with (q′, q′′) = 1. Then s(v2v3) also splits into s′s′′ where s′ and s′′ are
divisors of q′, q′′, respectively. Further, we have r = r′r′′ and d = d′d′′ with r′ = q′/s′

and d′ | r′; likewise for r′′, d′′. Following the proof of Lemma 5, we now find via the
substitution b = b′ r

′′

d′′ + b′′ r
′

d′ that the sum
r/d∑
b=1

(b,r/d)=1

|A(q′q′′, n− (s′s′′d′d′′b)6)|

equals
r′/d′∑
b′=1

(b′,r′/d′)=1

|A(q′, n− (s′s′′d′r′′b′)6)|
r′′/d′′∑
b′′=1

(b′′,r′′/d′′)=1

|A(q′′, n− (s′s′′d′′r′b′′)6)|.

We may substitute b′ for s′′r′′b′ and symmetrically for b′′, recalling (s′′r′′, r′) = 1, to
rewrite the last product as

r′/d′∑
b′=1

(b′,r′/d′)=1

|A(q′, n− (s′d′b′)6)|
r′′/d′′∑
b′′=1

(b′′,r′′/d′′)=1

|A(q′′, n− (s′′d′′b′′)6)|. (7.10)

In this specific sense, the sum over b in (7.9) has a multiplicative property. We break
r into r = uv4wr2r3 where rj = vj/s(vj)6, and factor the sum over d into independent
sums over dj | rj , d′ |uv4w. Then, by (7.10),

r/d∑
b=1

(b,r/d)=1

|A(uv2v3v4w, n− s6d6b6)| = Bd′(uv4w)B̂(v1, d1)B̂(v2, d2) (7.11)

where

Bd(q) =
q/d∑
b=1

(b,q/d)=1

|A(q, n− (db)6)|, B̂(vj , dj) =
rj/dj∑
b=1

(b,rj/dj)=1

|A(vj , n− (sjdjb)6)|.
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By (5.1), we have ∑
d | q

Bd(q) = B(q, n),

and we deduce that Bd′(uv4w) � Cω(u)L10 because again Bd′(uv4w) factorises, the
u-part is bounded by Cω(u) in view of Lemma 13, and by Lemma 11 and (7.1) we see
that the v4w-part is bounded by O(L10). We plug this information into (7.9) and factor
the sum over d as described in the above discussion. Then

En(P )� L10
∑
v1∈V1

|A(v1, n)|
∑

u,v2,v3,v4,w
(7.1)

Cω(u)
∑
d | r

B̂(v1, d1)B̂(v2, d2)D∗r/d(P/(ds)). (7.12)

We now estimate B̂ which again factorises according to the prime factorisation of vj .
Hence, let pt ‖ v2. Then pt is of class 2, we have 6 | t− 1 and 3 ≤ t ≤ 24, so that t = 7 or
13 or 19. Also, by definition, s(p7) = p, s(p13) = p2 and s(p19) = p3. Further, with pν ‖n
as usual, we have ν ≥ 6 for t = 7, and ν ≥ 13 for t = 13, and ν ≥ 19 for t = 19. Now, for
d = pl with l = 0 or 1,

B̂(pt, pl) =
p1−l∑
b=1
p-b

|A(pt, n− pt−1+6lb6)|.

This gives B̂(pt, p) = |A(pt, n)| and

B̂(pt, 1) ≤ (p− 1) max
p-b
|A(pt, n− pt−1b6)|.

By Lemma 9, we find that B̂(p7, p)� 1 and B̂(p7, 1)� p. Similarly,

B̂(p13, p)� p|A(p5, p5)| � p, B̂(p13, 1)� pmax
p-b
|A(p13,−p12b6)| � p3/2,

B̂(p19, p) = p2|A(p3, p3)| = 0, B̂(p19, 1)� pmax
p-b
|A(p19,−p18b6)| � p2.

In particular, we infer that B̂(v2, d2)� Cω(v2)s(v2), with C sufficiently large. Similarly,
for pt of class 3, we have p6 ‖n and

B̂(p8, pl) =
p2−l∑
b=1
p-b

|A(p8, n− (p1+lb)6)| (0 ≤ l ≤ 2).

Hence, by Lemma 9, we have B̂(p8, pl) = 0 for l ≥ 1 and

B̂(p8, 1) =
p2∑
b=1
p-b

|A(p8, p6(n′ − b6))| =
p2∑
b=1

b6≡n′ mod p

|A(p8, p6(n′ − b6))|

in which n = p6n′ with p - n′. Hence, there are at most six incongruent solutions of
b6 ≡ n′ mod p2, and at most 6p solutions of b6 ≡ n′ mod p with 1 ≤ b ≤ p2. By Lemma 9
this shows that B̂(p8, 1)� p = s(p8). Consequently, we have now shown that

B̂(v1, d1)B̂(v2, d2)� Cω(v2v3)s(v2v3), (7.13)
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and (7.12) reduces to

En(P )� L10
∑
v1∈V1

|A(v1, n)|
∑

u,v2,v3,v4,w
(7.1)

Cω(uv2v3)s2s3
∑
d | r

D∗r/d(P/(ds1s2s3)).

We apply a dyadic dissection argument according to the size of s(v2v3). By (7.1),
we have v2v3 ≤ K, whence s2s3 ≤ (v2v3)1/6 ≤ K1/6. We cover the interval [1,K] by
O(logK) intervals of the shape S ≤ s(v2v3) ≤ 2S to see that there is an S ∈ [1,K1/6]
with

En(P )� L10(logK)S
∑
v1∈V1

|A(v1, n)|
∑

u,v2,v3,v4,w
S≤s(v2v3)≤2S

(7.1)

Cω(uv2v3)
∑
d | r

Dr/d(P/(ds1S)).

We may now reassemble the complicated summation. We wish to sum over r instead
of u, v2, v3, v4 and w. The number of v2 ∈ V2 producing the same value of s(v2) is
bounded by 24ω(v2) while v3 → s(v3) is a bijection. It follows that at most 24ω(v2) tuples
u, v2, v3, v4, w correspond to the same r while r and uv2v3v4w have the same prime
divisors. Hence, Cω(uv2v3)24ω(v2) ≤ (24C)ω(r) and r ≤ Q/v1. It follows that

En(P )� L11S
∑
v1∈V1

|A(v1, n)|
∑

r≤Q/v1

(24C)ω(r)
∑
d | r

Dr/d(P/(ds1S)), (7.14)

with S as before. We write r = dr′ and exchange the order of summation. Then∑
r≤Q/v1

(24C)ω(r)
∑
d | r

Dr/d

(
P

ds1S

)
≤

∑
d≤Q/v1

(24C)ω(d)
∑

r′≤Q/(dv1)

(24C)ω(r′)Dr′

(
P

ds1S

)
. (7.15)

We are ready to apply Lemma 15. Indeed, P/(ds1S) � PN−εd−1 � PQ−1N−2ε �
N1/12, and hence we take Z = P/(ds1S) and Y = P η6 in Lemma 15 which in view of(

Q

dv1

)2
≤ P

ds1S
N−1/80

are admissible choices. The right hand side of (7.15) is therefore bounded by

�
∑

d≤Q/v1

(24C)ω(d)PS−1(ds(v1))−1(logN)−A � PS−1s(v1)−1(logN)24C−A,

with A at our disposal. By (7.14), we arrive at

En(P )� PL11(logN)24C−A
∑
v1∈V1

|A(v1, n)|
s(v1) . (7.16)

Finally, ∑
v1∈V1

|A(v1, n)|
s(v1) ≤

∏
pν ‖ n
ν≥4

(
1 +

min(ν+1,24)∑
t=3

6-t−1

|A(pt, n)|
s(pt)

)
. (7.17)

For pt of class 1, we have s(pt) = p for 3 ≤ t ≤ 6, and A(pt, n) � 1 by Lemma 9.
Similarly, s(pt) = p2 for 8 ≤ t ≤ 12 while A(pt, n) � p, at least when ν is so large that
these t occur in the sum over t. In both cases, we have A(pt, n)/s(pt)� p−1, and this is
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so also in the ranges 14 ≤ t ≤ 18 and 20 ≤ t ≤ 24 where s(pt) = p3 and p4, respectively.
This is readily checked via Lemmata 9 and 10. Hence, the individual factors in (7.17) are
of the form 1 +O(1/p), showing that (7.17) is bounded by (logn)ε. In (7.16) we take A
large and arrive at

En(P )� P (logN)−1. (7.18)

8. Singular recovery. This section is a direct continuation of the previous one, and
we keep the notation used there. We analyse the sum Mn(P ), defined in (7.8). We will,
step by step, reassemble the puzzle and extract an asymptotic formula that features the
singular series (1.4).

The smoothness condition on the divisor d in (7.8) is a nuisance, and we remove this
by truncating the u-sum appropriately. In fact, by (7.1), the numbers v2, v3, v4 and w are
all smaller than P η6 , and therefore all their divisors are actually in A(Q). Let M′n(P ) be
the portion of the sum (7.8) where u ≤ K, and let M′′n(P ) be the complementary part,
with u > K. Then

Mn(P ) = M′n(P ) + M′′n(P ), (8.1)

and in the sum defining M′n(P ) we now have r < P η6 , at least when N is large, so that
all d | r are appropriately smooth. Hence we can write

M′n(P ) =
∑

u,v1,v2,v3,v4,w
u≤K,(7.1)

A(v1, n)
∑
d | r

r/d∑
b=1

(b,r/d)=1

A(uv2v3v4w, n− s6d6b6)
Ψr/d(P/(ds))

ϕ(r/d) , (8.2)

and

|M′′n(P )| ≤
∑

u,v1,v2,v3,v4,w
u>K,(7.1)

|A(v1, n)|
∑
d | r

∣∣∣ r/d∑
b=1

(b,r/d)=1

A(uv2v3v4w, n− s6d6b6)
∣∣∣Ψr/d

(
P/(ds)

)
ϕ(r/d) ,

The trivial bounds Ψr/d(P/ds)� P/ds and ϕ(q)� q/(log log 9q)−1 yield

|M′′n(P )| � P (logN)ε
∑

u,v1,v2,v3,v4,w
u>K,(7.1)

|A(v1, n)|
s1s2s3r

∑
d | r

∣∣∣ r/d∑
b=1

(b,r/d)=1

A(uv2v3v4w, n−s6d6b6)
∣∣∣. (8.3)

Here we consider the sum over b. This is similar to the sum considered in the argument
leading to (7.10) and (7.11), save that |A| is replaced by A. Hence, it transpires that the
modified analogues of (7.10) and (7.11) are also valid, and in particular, we see that

r/d∑
b=1

(b,r/d)=1

A(uv2v3v4w, n− s6d6b6) = B∗d′(uv4w)B̂∗(v2, d2)B̂∗(v3, d3)

where the notation is the same as in (7.11), and for d|q we wrote

B∗d(q) =
q/d∑
b=1

(b,q/d)=1

A(q, n− (db)6), B̂∗(vj , dj) =
rj/dj∑
b=1

(b,rj/dj)=1

A(vj , n− (sjdjb)6).
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The triangle inequality gives |B∗(vj , dj)| ≤ B(vj , dj), and we may apply (7.13) to confirm

|M′′n(P )| � P (logN)ε
∑
v1∈V1

|A(v1, n)|
s(v1)

∑
u,v2,v3,v4,w
u>K,(7.1)

Cω(v2v3)

r

∑
d | r

|B∗d′(uv4w)|. (8.4)

The sum over d | r factors as d = d′d2d3 with d′ |uv4w, dj | rj . The sums over d2 and d3,
which are independent of the sum over d′, contribute 24ω(v2v3), as we saw in a similar
discussion preceding (7.14). Now recalling (7.4) and the analogue of (7.10), this leaves us
with ∑

d′ | uv4w

|B∗d′(uv4w)| =
∑
δ1|u

|B∗δ1
(u)|

∑
δ2|v4

|B∗δ2
(v4)|

∑
δ3|w

|B∗δ3
(w)|.

Here the second and the last factor on the right may be bounded trivially, by using the
bounds w ≤ L, v4 ≤ L4 implied by (7.1), so that now∑

d′ | uv4w

|B∗d′(uv4w)| � L10
∑
δ1|u

|B∗δ1
(u)|. (8.5)

Once again by the analogue of (7.10), the sum on the right factors further, according to
the decomposition into prime powers. When t ≥ 1 and 0 ≤ l ≤ t, we have

B∗pl(p
t) =

pt−l∑
b=1
p-b

A(pt, n− (plb)6). (8.6)

If p ‖u then (8.6) gives B∗p(p) = A(pt, n) and

B∗1(p) =
p−1∑
b=1

A(p, n− b6) =
p∑
b=1

A(p, n− b6)−A(p, n).

From (2.1) and (4.6) we see that
p∑
b=1

A(p, n− b6) = p−3
p−1∑
a=1

S2(p, a)S4(p, a)S6(p, a)S8(p, a)e
(
−an
p

)
,

and we may now imitate the proof of Lemma 7 to show that this expression is bounded
by O(p−1/2(p, n)1/2). Then, calling also on Lemma 7 itself, we infer that∑

δ1|p

|B∗δ1
(p)| � p−1/2(p, n)1/2.

If p2 ‖u, then by (8.6),

B∗p2(p2) = A(p2, n), B∗p(p2) = (p− 1)A(p2, n),

and with the aid of Lemma 8, we also have

B∗1(p2) =
p2∑
b=1
p-b

cp2(n− b6) =
p2∑
b=1

b6≡n mod p
p-b

cp2(n− b6).
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Here we have used the evaluation of the Ramanujan sum. We show that B∗1(p2) = 0 for
all p ≥ 5: If there is no solution to b6 ≡ n mod p with p - b, then this is trivial. Otherwise,
let b1, . . . , bh be the solutions of b6 ≡ n mod p with 1 ≤ b ≤ p− 1. Then, the solutions of
b ≡ n mod p with p - b and 1 ≤ b ≤ p2 are given by bj + ip (1 ≤ j ≤ h, 0 ≤ i ≤ p− 1). For
each given j, exactly one of b = bj+ip satisfies b6 ≡ n mod p2, and therefore, we use again
the explicit evaluation of Ramanujan’s sum to find that B∗1(p2) = h(ϕ(p2)−(p−1)p) = 0,
as anticipated. By Lemma 8, we now have B∗pl(p

2)� 1 for 0 ≤ l ≤ 2 where we note that
this is trivial for p ≤ 3. On collecting together, we conclude that whenever u ∈ U is
factored into u = u1u

2
2 with u1 square-free and (u1, u2) = 1 then∑

δ1 | u

B∗δ1
(u)� Cω(u)u

−1/2
1 (u1, n)1/2.

By (8.4), (8.5) and (7.4), we now have

|M′′n(P )| � PL11
∑
v1∈V1

|A(v1, n)|
s(v1)

∑
v2,v3
(7.1)

(24C)ω(v2v3)

v2v3
s(v2v3)6

∑
u1u2

2≥K

Cω(u) (u1, n)1/2

u
3/2
1 u2

2

where we may now sum over v1, the pair v2, v3, and the numbers u1, u2 independently.
The v3-part is

�
∑
v3∈V3

(24C)ω(v3)

v3
s(v3)6 �

∏
p4 | n

(
1 + 24C

p2

)
� 1,

and for the v2-part we recall that v2 is composed only of prime powers p7, p13, and p19,
and then find that this contributes

�
∑
v2∈V2

(24C)ω(v2)

v2
s(v2)6 �

∏
p4 | n

(
1 + 24C

(
p6

p7 + p12

p13 + p18

p19

))
� (logn)ε.

We estimated in (7.17) the sum over v1 as O((logN)ε). Finally, for the sum over u1
and u2, we observe that

∑
u1u2

2≥K

Cω(u1u2) (u1, n)1/2

u
3/2
1 u2

2
≤
∑
u1,u2

Cω(u1u2)
(
u1u

2
2

K

)1/4 (u1, n)1/2

u
3/2
1 u2

2

� K−1/4
∑
u1

Cω(u1) (u1, n)1/2

u
5/4
1

� K−1/4
∏
p | n

(
1 +O(p−3/4)

)
� K−1/5. (8.7)

Using these bounds within (8.4), we deduce the satisfactory bound

M′′n(P )� PL6K−1/5 � PK−1/6. (8.8)

With the contribution M′′n(P ) now known to be negligible, we return to the sum
M′n(P ) presented in (8.2). The disturbing aspect here is that the term Ψr/d depends
on d. This may be removed by appealing to a result of Fouvry and Tenenbaum [6]. Their
Théorème 1 implies that

Ψq(X,Y ) = ϕ(q)
q

Ψ(X,Y ) +O(X(log Y )ε−1)



222 J. BRÜDERN

holds uniformly for 1 ≤ logX
logY � 1 and q ≤ X, which is all we need here. Further, in the

same range for Y relative to X we have

Ψ(X,Y ) = %

(
logX
log Y

)
X +O(X(logX)−1)

where % : (0,∞)→ (0, 1] is the continuous solution of the delay equation t%′(t) = −%(t−1)
in t > 1 with %(t) = 1 for 0 < t ≤ 1 (see (1.3) and (1.4) of [4], for example). In our appli-
cation, we take q = r/d, Y = P η6 and X = P/(ds(v)), and suppose that the conditions of
summation in (8.2) are satisfied. Also, recall from (6.2) that P6/K ≤ P ≤ P6. By (7.4),
(7.1) and u ≤ K we have ds ≤ uvw ≤ K2L5 and

logX
log Y = logP

logP η6
− log ds

logP η6
= 1
η

+O((logN)−1/2).

On the one hand, this shows that the asymptotic results for Ψq and Ψ are applicable,
and on the other hand, their use when combined with the mean value theorem and the
trivial bound |%′(t)| ≤ 1 for t > 1, delivers

Ψr/d(P/(ds), P η6 ) = ϕ(r/d)
r/d

Ψ(P/(ds), P η6 ) +O(P (logN)−1/2)

= %

(
1
η

+O((logN)−1/2)
)
P
ϕ(r/d)
rs

+O(P (logN)−1/2)

= %

(
1
η

)
P
ϕ(r/d)
rs

+O(P (logN)−1/2).

We use this for substitution in (8.2) and find that

M′(P ) = %(1/η)PΣn(N) +O
(
P (logN)−1/2Hn(P )

)
(8.9)

where

Σn(N) =
∑
v1∈V1

A(v1, n)
s(v1)

∑
u,v2,v3,v4,w
u≤K,(7.1)

∑
d | r

r/d∑
b=1

(b,r/d)=1

A(uv2v3v4w, n− s6d6b6)
rs(v2v3) (8.10)

and

Hn(P ) =
∑
v1∈V1

|A(v1, n)|
s(v1)

∑
u,v2,v3,v4,w
u≤K,(7.1)

∑
d | r

∣∣∣ r/d∑
b=1

(b,r/d)=1

A(uv2v3v4w, n− s6d6b6)
rs(v2v3)

∣∣∣. (8.11)

The sum in (8.11) is very similar to the right hand side of (8.3), except that now the
constraint is u ≤ K. We therefore follow the transition from (8.3) to (8.8), but do not
apply (8.5), as the trivial bounds for the v4 and w parts would now be too rough. Instead,
we carry these contributions explicitly, from the display preceding (8.5). The u-portion
changes to a factor no larger than

�
∑

u1u2
2≤K

Cω(u1u2) (u1, n)1/2

u
3/2
1 u2

2
≤
∏
p | n

(
1 + Cp−1)

)
� (log logn)C ,
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provided that C is sufficiently large. We then have the temporary estimate

Hn(P )� (logN)ε
∑
v4∈V4
v4≤L4

1
v4

∑
d4 | v4

|B∗d4
(v4)|

∑
w∈W
w≤L

1
w

∑
d |w

|B∗d(w)|. (8.12)

We already observed that the divisor sums over d and d4 are multiplicative with
respect to v4 and w. We therefore consider a prime power pt with pt ‖w. Then t ≥ 3
and p - n. If d = pl with 0 ≤ l ≤ t, then (8.6) is applicable. If 6l ≥ t we find via
Lemma 9 that

B∗pl(p
t) = ϕ(pt−l)A(pt, n) = 0, (8.13)

while for 6l < t we have

B∗pl(p
t) = p−3t

pt∑
a=1
p-a

S2(pt, a)S4(pt, a)S8(pt, a)e
(
−an
pt

) pt−l∑
b=1
p-b

e

(
ap6lb6

pt

)
, (8.14)

as one confirms from (4.6). Here the sum over b is
pt−l∑
b=1
p-b

e

(
ab6

pt−6l

)
= p5lS∗(pt−6l, a)

where

S∗(q, a) =
q∑

x=1
(x,q)=1

e(ax6/q).

It follows from Hua [9] that S∗(ph, a) = 0 whenever p - a and h ≥ 2 (p > 3), and for
h ≥ 3 when p = 3, and h ≥ 4 when p = 2. By (8.14), it follows that B∗pl(p

t) = 0 also
holds for t ≥ 6l+ 2 and p > 3. This leaves the case t = 6l+ 1, which implies t ≡ 1 mod 6,
and here (8.14) reduces to

B∗pl(p
6l+1) = p−13l−3

p6l+1∑
a=1
p-a

S2(p6l+1, a)S4(p6l+1, a)S8(p6l+1, a)e
(
− an

p6l+1

)
S∗(p, a).

We use (4.11) and the estimate of Hua [9], showing that S∗(p, a) � p1/2. Then
B∗pl(p

6l+1) � p3l−3/8 for all p > 3. The prime p = 3 is readily handled in the same
way, now taking care of the cases t = 6l+ j with 1 ≤ j ≤ 2, and similarly for p = 2, with
t = 6l + j, 1 ≤ j ≤ 2. In this way we infer that∑

w∈W
w≤L

1
w

∑
d |w

|B∗d(w)| �
∏
p≤L

(
1 +

∞∑
l=0

p−1−6lp3l−3/8
)
� 1. (8.15)

The sum over v4 in (8.14) can be handled in much the same way. Here pt ‖ v4 implies
p4 |n. Recalling the definition of class 4, we either have t ≥ 25, or pν ‖n with ν = 6, 12
or 18. We begin with t ≥ 25. For t > 6l we still have (8.14), and so B∗pl(p

t) = 0 for
t ≥ 6l + 2 and p ≥ 5, as before. For t = 6l + 1 we can still argue as in the preced-
ing paragraph, providing again the bound B∗pl(p

6l+1) � p3l−3/8. For 6l ≥ t we have
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B∗pl(p
t) = ϕ(pt−l)A(pt, n) � pt−l+[t/8] � pt−2 because t ≥ 25. By an argument similar

to the one in (8.15) we now see that the total contribution from primes of class 4 with
t ≥ 25 is a bounded factor.

This leaves prime powers pt with pν ‖n, ν = 6, 12 or 18, and pt ‖ q(6)
9 q

(12)
13 q

(18)
19 . First

consider the case pt ‖ q(6)
9 . Then t ≥ 9, and Lemma 9 shows that in this situation (8.13)

holds for 6l ≥ t. Also, via (8.14), we get B∗pl(p
t) = 0 for t ≥ 6l + 2 except when p = 2

or 3. This then leaves the case where t = 6l + 1, and t ≥ 9 now enforces l ≥ 2. We may
then work crudely, as in the discussion of the w-part above, to see that the primes p with
pt ‖ q(6)

9 again contribute a bounded factor. The primes dividing q(12)
13 q

(18)
19 can be dealt

with in the same way, showing that an estimate analogous to (8.15) also holds for the
v4-sum in (8.12), and this establishes the estimate

Hn(P )� (logN)ε. (8.16)

We are left with the sum Σn(N), as defined in (8.10). This is a strangely truncated
version of the singular series (1.4). To realise this, we define

T (q, n) = 1
q4

q∑
a=1

(a,q)=1

S2(q, a)S4(q, a)S6(q, a)S8(q, a)e
(
−an
q

)
= 1
q

q∑
b=1

A(q, n− b6). (8.17)

The proof of [14, Lemma 2.11] shows that T (q, n) is multiplicative in q. We carry out the
summation over d in (8.10) and then have

Σn(N) =
∑
v1∈V1

A(v1, n)
s(v1)

∑
u,v2,v3,v4,w
u≤K,(7.1)

r∑
b=1

A(uv2v3v4w, n− s6b6)
rs(v2v3) . (8.18)

Here we consider the inner sum over b, and recall (7.4) and the definition of a significant
divisor. First, according to the remark preceding (7.4), we can use the multiplicative
properties of A to sum over b up to rs5 instead, obtaining s5 copies of the same sum.
Hence

r∑
b=1

A(uv2v3v4w, n− s6b6)
rs(v2v3) =

rs5∑
b=1

A(uv2v3v4w, n− s6b6)
rs(v2v3)6 ,

and then, since s = s(v2v3) = s(uv2v3v4w), we find that
r∑
b=1

A(uv2v3v4w, n− s6b6)
rs(v2v3) =

rs6∑
y=1

A(uv2v3v4w, n− y6)
rs(v2v3)6 .

because A(uv2v3v4w, n − y6) vanishes unless s | y. By (7.4) and (8.17), the above sum
equals T (uv2v3v4w, n).

We now turn to the sum over v1 in (8.18). By (8.17) the definition of a significant
divisor, and (7.3),

T (v1, n) = 1
v1

v1∑
y=1

s(v1) | y

A(v1, n− y6) = 1
v1

v1/s(v1)∑
b=1

A(v1, n− (s(v1)b)6) = A(v1, n)
s(v1) .
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Combining the last two observations, we now conclude from (8.18) that

Σn(N) =
∑

u,v1,v2,v3,v4,w
u≤K,(7.1)

T (uv1v2v3v4w, n). (8.19)

Next, we remove the truncations in (8.19). This needs a little care, and we require
some upper bounds for T (q, n) which we collect in the following lemma.

Lemma 16. Let p denote a prime, and let t ∈ N. Then T (pt, n)� p−t/24 holds uniformly
in n. Further, we have A(p, n)� p−3/2(p, n)1/2 and A(p2, n)� p−2. If t ≥ 3 and p4 - n,
then A(pt, n)� p−3/2 while in the case p4 |n the weaker bound A(pt, n)� p−1 holds.

Proof. By (2.6), we have

T (q, n)� q−1/2κ4(q)κ6(q)κ8(q), (8.20)

and if we use this with q = pt for t ≥ 25, then (2.5) yields the first claim in the lemma.
For the estimate of A(p, n) one copies the proof of Lemma 7. Now let t ≥ 2 and suppose
that 6 - t− 1. Then, assuming temporarily that p > 3, we conclude from (5.2), (5.3) and
(2.5) that p−tS6(pt, a) = κ6(pt) holds whenever p - a, and then we infer from (8.17) that
T (pt, n) = κ6(pt)A(pt, n). The estimates that we claimed for T (pt, n) are now readily
confirmed by referring to Lemmata 6, 8 and 9. This leaves the case where t ≥ 2 and
t ≡ 1 mod 6. Then by (8.20) and (2.5), we have T (pt, n) � p−3/2 for all t ≥ 13. This
leaves the case t = 7 where (8.20) and (2.5) yield T (p7, n) � p−1. This is satisfactory
when p4 |n. If p4 - n and p > 3, then A(p7, n) = 0. This can be shown by copying the
treatment of A(p7,m) in the proof of Lemma 9. Since A(27, n) is bounded, this case is
trivial.

With this lemma in hand, the condition u > K in (8.19) is swiftly removed. Indeed,
writing again v = v1v2v3v4 as on earlier occasions, we have∑

u,v1,v2,v3,v4,w
u>K,(7.1)

|T (uvw, n)| ≤ K−1/4
∑

u,v1,v2,v3,v4,w
(7.1)

u1/4|T (u, n)T (v, n)T (w, n)|. (8.21)

Here, we may sum independently over u ∈ U , v ∈ V and w ∈ W. By Lemma 16 and
multiplicativity, we have∑

v∈V
|T (v, n)| ≤

∏
p4 | n

(
1 +

∞∑
t=3
|T (pt, n)|

)
≤
∏
p4 | n

(
1 +O(1/p)

)
� (logn)ε

and ∑
w∈W

|T (w, n)| ≤
∏
p4-n

(
1 +

∞∑
t=3
|T (pt, n)|

)
≤
∏
p

(
1 +O(p−3/2)

)
� 1. (8.22)

For the sum over u, we first use Lemma 16 to see that |T (u, n)| ≤ Cω(u)(u1, n)1/2u
−3/2
1 u−2

2
where C is sufficiently large and u = u1u

2
2 with u1 squarefree and (u1, u2) = 1. Then we

may carry out the summation over u via (8.7) and find that (8.21) is bounded by K−1/5.
Consequently, we now have

Σn(N) =
∑

u,v1,v2,v3,v4,w
(7.1)

T (uv1v2v3v4w, n) +O(K−1/5). (8.23)
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The conditions summarised in (7.1) involve size constraint on vj and w, and these are
easily removed by modifications of the preceding argument. By way of example, if one
wishes to include terms with w > L (ruled out in (7.1)) in the sum on the right hand
side of (8.23), then one starts from∑

u,v,w
w>L

|T (uvw, n)| ≤ L−1/96
∑
w∈W

w1/96|T (w, n)|
∑
v∈V
|T (v, n)|

∑
u∈U
|T (u, n)|.

A simple modification of the estimation in (8.22) shows that the sum over w is still
bounded while the sum over v is the same as before. For the sum over u we now find∑

u∈U
|T (u, n)| ≤

∑
u∈U

Cω(u)(u1, n)1/2u
−3/2
1 u−2

2 �
∏
p | n

(
1 +O(1/p)

)
� (logn)ε,

and on collecting together, we see that we can remove the condition that w ≤ L from (7.1)
at the cost of an error not exceeding O((logN)−1). Note the similarity of this argument
with the derivation of (6.8). All other size conditions in (7.1) can be removed in the same
way, and at the same price (recall in particular the method used in (6.11)), and we then
have

Σn(N) =
∑
q≤Q

T (q, n) +O((logN)−1)

where the sum over q runs through all values that uvw will take. However, uvw runs
through all q for which A(q, n − y6) does not vanish identically as a function of y ∈ N.
But if A(q, n− y6) vanishes identically, then T (q, n) = 0 follows from (8.17), and we may
include these q in the above expression for Σn(N). Finally, once again using Lemma 16
and converting into an Euler product in the now familiar way, one readily confirms the
estimates ∑

q

q1/96|T (q, n)| �
∏
p4 | n

(
1 +O(p−3/4)

) ∏
p4-n

(
1 +O(p−33/32)

)
� nε

and ∑
q

|T (q, n)| �
∏
p4 | n

(
1 +O(p−1)

) ∏
p4-n

(
1 +O(p−33/32)

)
� (log logn)C ,

provided that C is sufficiently large. Both bounds show that the singular series (1.4)
converges absolutely, and the first of these bounds now yields

Σn(N) = S(n) +O((logN)−1) (8.24)
while the second delivers the upper bound

S(n)� (log logn)C . (8.25)
The desired asymptotic formula for Υn(P ) is now available. We successively approx-

imate Υn(P ) via (6.13), (7.7), (8.1), (8.9) and (8.24) while estimating the error terms
through (7.18), (8.8) and (8.16). This yields

Υn(P ) = %(1/η)PS(n) +O(P (logN)ε−1/2) (8.26)
whenever P and n are in the range (6.2). The weakest error term in this process comes
from (8.9) and (8.16). Note that this implies the slightly weaker estimate

Υn(P ) = %(1/η)PS(n) +O(N1/6(logN)ε−1/2) (8.27)
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that is valid uniformly for 1 ≤ P ≤ 1
2P6. Indeed, this certainly follows from (8.26)

whenever P is in the range (6.2) while for P ≤ P6 exp(−
√

logN) we apply (6.5) and find
that in this case Υn(P ) � N1/6(logN)−1, at least when N is large. Hence, in this case
(8.27) also holds.

We now turn the asymptotic relation (8.27) for Υn(P ) into one for σ(n,N). The result
is as follows.
Lemma 17. There is a positive number C such that whenever 1

2N < n ≤ N , 8 - n and N
is sufficiently large, then

σ(n,N) ≥ CS(n)n1/24.

Proof. We apply partial summation in (4.14) to remove fn(y) = (n− y6)−1/8. Note that
fn is smooth, and whenever 1 ≤ y ≤ 1

2P6 and 1
2N < n ≤ N then 0 < fn(y) < ( 3

8N)−1/8

and 0 < f ′n(y)� N−9/8y5. Hence, by (4.14), (8.25), (8.27) and mundane computations,

σ(n,N) = fn(P6/2)Υn( 1
2P6)−

∫ 1
2P6

1
f ′n(t)Υn(t) dt

= %

(
1
η

)
S(n)

(
1
2P6fn( 1

2P6)−
∫ P6/2

1
tf ′n(t) dt

)
+O(N1/24(logN)ε−1/2)

= %

(
1
η

)
S(n)

∫ P6/2

1
fn(t) dt+O(N1/24(logN)ε−1/2).

We substitute t6 = nτ to see that whenever n ≥ 128 (as we may assume), then∫ P6/2

1
fn(t) dt = 1

6n
1/24

∫ 2−6N/n

1/n
(1−τ)−1/8τ−5/6 dτ ≥ 1

6n
1/24

∫ 2−6

2−7
(1−τ)−1/8τ−5/6 dτ,

and the lemma is immediate.

9. Checkmate. The only missing piece to complete the proof of our main theorem is a
lower bound for the singular series.
Lemma 18. For all n with 8 - n, one has S(n)� (log log 9n)−C .
Proof. Since T (q, n) is multiplicative in q and the series S is already known to be abso-
lutely convergent, we have

S(n) =
∏
p

sp(n)

where

sp(n) = 1 +
∞∑
t=1

T (pt, n).

The proof of Lemma 2.12 of Vaughan [14] provides us with the alternative formula
sp(n) = lim

h→∞
p−3tγn(ph)

where γn(q) is the number of incongruent solutions of x2
1 +x4

2 +x6
3 +x8

4 ≡ n mod q. Now,
for an odd prime p, a straightforward application of the Cauchy–Davenport Theorem,
similar to the proof of Lemma 2.15 of Vaughan [14], shows that there is a solution of
x2

1 +x4
2 +x6

3 +x8
4 ≡ n mod p with p - x1, and then an obvious variant of [14, Lemma 2.13]

yields γn(pt) ≥ p3(t−1), so that sp(n) ≥ p−3. For p = 2 we can argue similarly: since 8 - n,
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there is a solution of x2
1 +x4

2 +x6
3 +x8

4 ≡ n mod 8 with at least one of x1 and x3 odd, and
then the variant of [14, Lemma 2.13] gives γn(2t) ≥ 23(t−3) for t ≥ 4 so that s2(n) ≥ 2−9.
By Lemma 16, we also have sp = 1 + O(p−3/2(p, n)1/2). Hence, for sufficiently large C,
we get |sp − 1| ≤ Cp−3/2(p, n)1/2. We use this for p > C2, and the explicit lower bound
for the smaller primes. Then

S(n)�
∏
p | n
p>C2

(
1− C

p

)
,

and the lemma follows.

It is time to derive a lower bound for r(n). We assume that 1
2N < n ≤ N , and that

|%(n,N)− Γσ(n,N)| ≤ N1/24(logN)−1/2. (9.1)

Then, by (3.3), Lemma 17 and Lemma 18,

r(n) ≥ %(n,N) ≥ ΓCS(n)n1/24 −N1/24(logN)−1/2 ≥ 1
2ΓCS(n)n1/24

provided only that N is sufficiently large. However, by Lemma 4, the number of n with
1
2N < n ≤ N where (9.1) is false does not exceed O(N1−θ). By a dyadic dissection
argument, we have now shown the following.

Theorem. There is a positive number c with the property that r(n) ≥ cn1/24S(n) holds
for all but at most O(N1−θ) exceptions among the numbers n 6≡ 0 mod 8 with n ≤ N .

Because θ > 2/93, the version of this result that we stated initially is available through
Lemma 18.
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