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Reáltanoda u. 13-15, H-1053 Budapest, Hungary

E-mail: pintz.janos@renyi.mta.hu

Dedicated to Jerzy Kaczorowski
on his 60 th birthday

Abstract. We prove some new log-free density theorems for zeros of Dirichlet L-functions (which
accordingly are more sharp than earlier ones near to the boundary line of the critical strip). The
results can be applied in several problems of prime number theory.

1. It is well known that the maximum of the error term of the Prime Number Theorem
(or its analogue for primes in an arithmetic progression) depends on the zero-free region
of the Riemann’s zeta-function (or the Dirichlet’s L-functions, respectively) or, in other
words, on the zeros lying nearest to the boundary line Re s = σ = 1.

On the other hand, many other arithmetic problems depend not only on the situation
of the extreme right-hand zeros but also on the number of such zeros. The first theorem
of such type was proved nearly 100 years ago by F. Carlson [1] in 1920. These results were
later called density theorems. They proved to be very useful in bounding from above the
gaps between consecutive primes (or between consecutive primes in an arithmetic pro-
gression) or in Linnik’s problem of bounding the first prime in an arithmetic progression.

In some applications the distribution of all zeros % = β + iγ with 1/2 ≤ β ≤ 1 is
important (like in the case of bounding from above gaps between consecutive primes). In
other questions only those lying near to the line σ = 1, i.e. with β ≥ 1−ε (ε small) play a
significant role (like in the case of Linnik’s constant). In the second type of problems it is
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also important to prove so-called “log-free” density theorems, where the upper bound for
the zeros does not contain any power of the logarithm of the modulus of the relevant
arithmetic progression or the logarithm of the height of the relevant zeros.

2. In Section 3 we will prove density theorems in the half-planes σ > 3/4 (Theorem 1)
and σ > 1 − ε (Theorems 2 and 3), respectively. In the following introduction we will
focus on density theorems near the line σ = 1. Let N(α, T, χ) denote the number of zeros
of L(s, χ) in the rectangle

R(α, T ) = {σ + it; α ≤ σ ≤ 1, |t| ≤ T} (2.1)
and let

N(α, T, q) =
∑

χ (mod q)

N(α, T, χ), (2.2)

N∗(α, T,Q) =
∑
q≤Q

∑∗

χ (mod q)

N(α, T, χ), (2.3)

where the asterisk indicates summation over primitive characters. Fogels [3] and Gal-
lagher [5] proved the first general “log-free” density theorems of the form

N(α, T, q)� T c(1−α) for fixed q ≤ T [5] (2.4)
and

N∗(α, T, T )� T c
′(1−α) [3] (2.5)

with large values of c and c′.
Selberg invented a new method — the use of the so-called pseudocharacters (cf. (3.1))

— which yielded the estimates [14]:
N(α, T, q)�ε (qc1T c2)(1+ε)(1−α), (2.6)

N∗(α, T,Q)�ε (Qc3T c4)(1+ε)(1−α), (2.7)
with c1 = c2 = 3, c3 = 5, c4 = 3. This was improved later by Motohashi [15] (for
4/5 ≤ α ≤ 1) to c1 = 2, c2 = 3, c3 = 4, c4 = 3 and Jutila [12] to c1 = c2 = 2, c3 = 4,
c4 = 2 (for 4/5 ≤ α ≤ 1). Jutila mentioned that, according to a remark of Huxley, the
value of c3 can be improved to 3 if α is near to 1

(
1− c(ε) ≤ α ≤ 1

)
. This will be denoted

by c′3 = 3. Wang [17] showed with this notation c′1 = c′2 = 3/2, c′3 = 3, c′4 = 3/2.
In what follows we will use a method of S. W. Graham [7] and Heath-Brown [10] to

improve this to c′3 = 9/4 and to obtain many new results. Our method will give estimates
for N(α, T, χ) with individual characters χmod q as, for example,

N(α, T, χq)�ε (qT )(3/4+ε)(1−α) (1− ε3 ≤ α ≤ 1). (2.8)
In particular, in case of q = 1, we obtain results for the number of zeros N(α, T ) of ζ(s).

In later applications we will often need density theorems for a given subset of all
primitive characters with moduli ≤ Q instead of (2.7). Since the method applied in
Section 3 yields much better results for these subsets, we will formulate our results in
this more general setting. We will then obtain estimates of type (2.6)–(2.8) as immediate
consequences of the general theorem. In the following, let condχ denote the conductor
of χ.
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Theorem 1. Let H be a set of primitive characters χ with moduli ≤ M such that
condχiχj ≤ K for any pair χi, χj belonging to H. Let S be a set of distinct pairs (χj , %j)
with L(%jχj) = 0, where χj ∈ H, %j ∈ R(α, T ). (The same character might naturally
appear in S several times with different zeros.) Let J denote the cardinality of S and let
ε be an arbitrary, sufficiently small positive number (0 < ε < c0). Then for α > 4/5,
T ≥ 3, we have

J �ε

(
M1/(2α−1)K1/((2α−1)(4α−3))T 2/(4α−3))(3/4+ε)(1−α)

. (2.9)

Corollary 1. The following estimates hold for α > 4/5, T ≥ 3:

N∗(α, T,Q)�ε

(
Q(3+ε)(4α−1)/(4(4α−3)(2α−1))T 3+ε/(2(4α−3)))(1−α)

,

N(α, T, q)�ε (qT )(3+ε)(1−α)/(2(4α−3)),

N(α, T, χq)�ε

(
q1/(2α−1)T 2/(4α−3))(3/4+ε)(1−α)

,

N(α, T )�ε T
(3+ε)(1−α)/(2(4α−3)).

(2.10)

We remark that while the above estimate for N∗(α, T,Q) is distinctly sharper than
that of Wang [17], the one for N(α, T, q) is just slightly better and for α→ 1 asymptot-
ically equal. Further, (2.10) is sharper than the density estimate in the q and T aspect
for α > 15

16 , and sharper in the Q aspect for α > 0.9020456 . . . . (The estimates of Wang
[17] are better than the density theorem in case of α > 23/24 in all aspects.)

If at least one of K and M is small, the following result (Theorem 2) will be of interest.

Theorem 2. Under the conditions of Theorem 1 for α > 1− ε3, T ≥ 3 we have

J �ε (K2(MT )3/4)(1+ε)(1−α), (2.11)

J �ε (M2(KT )3/4)(1+ε)(1−α), (2.12)

J �ε (M2K2T 2ε)(1+ε)(1−α). (2.13)

Corollary 2. For α > 1− ε3, T ≥ 3 we have

N(α, T, χq)�ε (qT )(3/4+ε)(1−α), (2.14)

N(α, T, χq)�ε (q2T 2ε)(1+ε)(1−α), (2.15)

N(α, T, q)�ε (q4T 2ε)(1+ε)(1−α), (2.16)

N∗(α, T,Q)�ε (Q6T 2ε)(1+ε)(1−α), (2.17)

N(α, T )�ε T
ε(1−α). (2.18)

On the other hand, if T is much smaller than q or Q (or it is bounded, for example,
as in the proof of Linnik’s theorem), then the following generalization of Heath-Brown’s
Lemma 11.1 [10] leads to improvements over Theorem 1.

Theorem 3. Suppose the conditions of Theorem 1 and let ϕ = 1/4 if all characters
in H have cube-free moduli (or order at most logM), otherwise let ϕ = 1/3. Then for
α > 1− ε2, T ≥ 3 we have

J �ε

(
(KM)2ϕ+εT 10/ε)(1−α)

. (2.19)
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Corollary 3. With the notation of Theorem 3 we have for α > 1− ε2, T ≥ 3

N∗(α, T,Q)�ε (Q2+εT 10/ε)1−α,

N(α, T, q)�ε

{
(q1+εT 10/ε)(1−α) if q is cube-free,
(q4/3+εT 10/ε)(1−α) otherwise.

(2.20)

If K and M are both significantly smaller than T , then the results (2.13), (2.15)–(2.18)
are much better than (2.10), (2.11) and (2.12). The first results having an expression of
the type T o(1−α) for α→ 1 were proved by Halász and Turán [8].

Finally, K. Ford [4] showed, as a consequence of his explicit estimate for the zeta-
function (cf. (3.4) in our next section) the inequality

N(α, T )� T 58.05(1−α)3/2
log15 T. (2.21)

In Section 4 we will deal with the other main ingredient of Linnik’s theorem, the
famous Deuring–Heilbronn phenomenon. This asserts that if an L-function has a Siegel-
zero, then other L-functions are free of zeros in some region.

Suppose that χ1 is a real primitive character mod q1 such that L(1− δ1, χ1) = 0 with
a real δ1. Let χ2 be an arbitrary primitive character mod q2 such that L(1−δ+it, χ2) = 0,
δ1 < δ < 1/6. (The character χ2 may be equal to χ1.) Suppose ε > 0 arbitrary, let [q1, q2]
denote the least common multiple of q1 and q2, and

D = [q1, q2](|t|+ 1) ≥ D0(ε). (2.22)

Jutila proved essentially the following version [12]:

δ1 ≥ (1− 6δ)D−(2+ε)δ/(1−6δ) / 8 logD. (2.23)

Using Burgess’ estimate, Graham [7] improved the exponent 2 to 3/2 for bounded t.
Later, using Heath-Brown’s estimate (cf. (3.2) in the next section), Wang [17] showed
essentially

δ1 ≥
2
3(1− 6δ)D−(3/2+ε)δ/(1−6δ) / logD. (2.24)

As in the case of the density theorems, we need a more flexible form of this phenomenon
in our application, where apart from the replacement of 2 by 3/2, [q1, q2] will be replaced
by the quantity

q
1/2
1 q

1/4
2 (condχ1χ2)1/4 ≤ [q1, q2]. (2.25)

(This has no effect in Linnik’s theorem, where all quantities can be equal to the same q.)
Our version is as follows.

Theorem 4. Let χ1 and χ2 be primitive characters mod q1 and q2, respectively, with
L(1 − δ1, χ1) = L(1 − δ + iγ, χ2) = 0, χ1, δ1 real, δ1 < δ < 1/7. Let k be the conductor
of χ1χ2. Let ε > 0 arbitrary,

Y =
(
q2

1q2k(|γ|+ 2)2)3/8 ≥ Y0(ε) (2.26)

sufficiently large. Then we have

δ1 ≥ (1− ε)(1− 6δ)(log 2) · Y −(1+ε)δ/(1−6δ) / log Y. (2.27)
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3. In the course of our proof we will use four different estimates for the L-functions
associated to characters mod q. Let us define ϕ = ϕ(χ) = 1/4 if q is cube-free, and let
ϕ = 1/3 otherwise. Let k be any integer ≥ 3, η > 0 be a sufficiently small number. The
first three estimates, to be used in Theorems 1, 2 and 3, respectively, are due to Heath-
Brown and make crucial use of Burgess’ estimates for character sums. Let s = σ + it,
τ = |t|+ 2. Then

L
( 1

2 + it, χ
)
�η (qτ)3/16+η, (3.1)

L(s, χ)�η (qτ)3/8(1−σ)+η if 1/2 ≤ σ ≤ 1, (3.2)

L(s, χ)�η,k q
(1−σ)(1+1/k)+ητ if 1− 1/k ≤ σ ≤ 1; (3.3)

(3.1) is contained in [9], (3.2) is a simple consequence of it by convexity, whereas (3.3) is
Lemma 2.5 in [10].

The last estimate relies on the bound of Korobov–Vinogradov for which a sharper
form is due to K. Ford [4]:∣∣ζ(σ + it, u)− u−s

∣∣ ≤ 76.2 t4.45(1−σ)3/2
log2/3 t, (3.4)

for 0 < u ≤ 1, t ≥ 3, 1/2 ≤ σ ≤ 1, where ζ(s, u) is Hurwitz’ zeta-function. Since

L(s, χ) =
q∑
`=1

χ(`)
qσ+it ζ

(
σ + it,

`

q

)
, (3.5)

the estimate (3.4) implies that for t ≥ 3, 1/2 ≤ σ ≤ 1,

L(s, χ)� q1−σ(t4.45(1−σ)3/2
log2/3 t+ log(q + 1)

)
. (3.6)

Sometimes, e.g., in Theorem 2, we will apply a consequence of this, namely
L(s, χ)� (qτη)1−σ log((q + 1)τ) for σ ≥ 1− η2/20. (3.7)

We will later make use of the fact that in view of (3.6) the following region is zero-free.
Let q ≤M , χ primitive mod q. Then

L(s, χ) 6= 0 for σ ≥ 1− c1

max(logM, log2/3 τ log1/3
2 τ)

(3.8)

with the exception of at most one real zero belonging to a real primitive χmod q ≤ M .
This follows from the note after Satz 6.2 in Chapter VIII of Prachar’s book [16], combined
with Landau’s theorem, in the form given in [2], §14.

In the proof of Theorems 1–3 we will make use of Linnik’s density lemma (see [16],
p. 331).

Lemma 1. The number of zeros of the function L(s, χ) (χ (mod q)) in the square
α ≤ σ ≤ 1, |t− T | ≤ (1− α)/2 (3.9)

is
� (1− α) log

(
q(|T |+ 2)

)
+ 1. (3.10)

In the proof of Theorem 4, we will use the following sharper form of Lemma 1,
a consequence of (3.6).

Lemma 2. The number of zeros of L(s, χ) in (3.9) is
� (1− α) log q + (1− α)3/2 log T + log2(qT ). (3.11)
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Finally, Halász’s inequality will play a central role in the proof.

Lemma 3. Let f(s, χ) =
∑N
n=1 anχ(n)n−s. Then( J∑

j=1

∣∣f(sjχj)
∣∣)2
≤

N∑
n=1

|an|2

bn

J∑
j,k=1

ηjηkB(sj + sk, χjχk) (3.12)

where the ηj are certain complex numbers of modulus 1, and

B(s, χ) =
∞∑
n=1

bnχ(n)n−s, (3.13)

where the bn are arbitrary non-negative numbers such that bn > 0 if an 6= 0, and B(s, χ)
is absolutely convergent for all pairs (sj + sk, χjχk).

This is a modified form of Halász’s inequality given in [13], Lemma 1.7. For this form
see Jutila [12], Lemma 7.

Clearly, we can suppose that K ≤ M2 in our proofs. Since there is at most one
exception, the so-called Siegel zero to (3.8), we may suppose that the Siegel zero does not
appear among our zeros. (The upper estimates for J are at least a positive constant in
Theorems 1–3.) Further, it is enough to show our theorems for non-principal characters
and then, additionally, for just the zeta-function. Thus, we will first show Theorems 1–3
for non-principal characters, and we will then mention the slight modifications which
prove them for the zeta-function.

Instead of using pseudocharacters, we will use Graham’s approach [7], in the way
Heath-Brown did in [10], Lemma 11.1.

In the proof, ε will denote a sufficiently small positive constant, not necessarily the
same as in the formulation of the theorems.

We will use parameters
W = ew, U = eL, V = UW = eL+w = ev, X = ex (3.14)

to be specified later, with the property
L �ε w < L < x�ε L. (3.15)

Following [10], let us define Graham’s weights

ψd =


µ(d) for 1 ≤ d ≤ U,
µ(d) log(V/d)

log(V/U) for U ≤ d ≤ V,
0 for d ≥ V,

(3.16)

and a special case of this (U = 1), namely

θd =
{
µ(d) log(W/d)

logW for 1 ≤ d ≤W,
0 for d ≥W.

(3.17)

We set
Ψ(n) =

∑
d | n

ψd, ϑ(n) =
∑
d | n

θd, (3.18)

α = 1− δ, (3.19)
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and we will choose our parameters in such a way that

x� logM + log2/3 T log1/3
2 T (3.20)

should be satisfied. In this way, by (3.8), we will have, with the exception of the Siegel
zero, for any relevant %ν = βν + iγν

δ ≥ 1− βν = δν � x−1. (3.21)

We take χ = χk 6= χ0 with conductor q = qk 6= 1, and with a zero %k = βk + iγk = % =
β + iγ of L(s, χ) and

S(X) =
∞∑
n=1

Ψ(n)ϑ(n)χ(n)n−%e−n/X = 1
2πi

∫
(1)
L(s+ %, χ)Γ(s)XsF (s+ %) ds, (3.22)

where
F (s) =

∑
i≤V, j≤W

ψiθjχ([i, j])[i, j]−s. (3.23)

([i, j] always denotes the least common multiple of i and j.)
We move the line of integration to σ = 1 − β − h, where h will be chosen later with

h < 1 − β. (The integrand is regular between σ = 1 and σ = 1 − β − h.) Using the
estimates Γ(s)� e−|t| and

F (s+ %)�
∑

i≤V, j≤W

[i, j]−1+h �
∑

n≤VW

d2(n)n−1+h � (VW )hL3, (3.24)

by (3.1)–(3.2) we obtain

S(X) =
∫

(1−β−h)
L(s+ %, χ)F (s+ %)Γ(s)Xs ds

�ε

(
(MT )3/8VWX−1)h(UMT )ε

2
X1−β .

(3.25)

If
X �ε

(
(MT )3/8VW

)1/(1−δ/h)(UMT )2ε2/(h(1−δ/h)), (3.26)

then
S(X) = O(L−1), (3.27)

where (here and later) the constants implied by the O symbols may depend on ε.
Taking into account Ψ(n) = 0 for 2 ≤ n ≤ U , we have

S(U/L2) = e−L
2/U +O

(∑
n>U

d(n)e−nL
2/U
)

= 1 +O(1/L). (3.28)

Thus (3.27) implies, under the condition (3.26) for X,
∞∑
n=1

Ψ(n)ϑ(n)χ(n)n−%
(
e−n/X − e−nL

2/U
)

= 1 +O(L−1). (3.29)

Now we will use Halász’s inequality in the form (3.12) with

an = Ψ(n)ϑ(n)n−1/2(e−n/X − e−nL2/U
)
,

bn = ϑ2(n)
(
e−n/X − e−nL

2/U
)
, sj = %j − 1/2.

(3.30)
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Using the estimate of Graham [6, p. 84] that

∑
1<n≤N

Ψ2(n) =



0 for 1 ≤ N ≤ U,
N log(N/U)
log2(V/U)

+O

(
N

log2(V/U)

)
for U ≤ N ≤ V,

N

log(V/U) +O

(
N

log2(V/U)

)
for N ≥ V,

(3.31)

by partial summation we obtain (cf. [10], (11.14)) for x > v

∞∑
n=1

|an|2

bn
=
∞∑
n=1

Ψ2(n)
n

(
e−n/X − enL

2/U
)

=
(
1 +O(L−1)

)2x− L− v
2(v − L) . (3.32)

Any term with χjχk 6= χ0 on the right-hand side of (3.12) will be, similarly to (3.25)–
(3.27),

B(sj + sk, χjχk) =
∞∑
n=1

ϑ2(n)χjχk(n) = n−(%j+%k−1)(e−n/x − e−nL2/U
)

�ε

(
(KT )3/8W 2U−1)h · (KT )ε

2
L3 · U2δ � L−1

(3.33)

if
U �ε

(
(KT )3/8W 2)1/(1−2δ/h) · (WKT )2ε2/(h(1−2δ/h)). (3.34)

Let us consider the case χjχk = χ0,q = χ0 now. Then, in the case of (3.34), we have,
similarly,

B(sj + sk, χ0) =
∞∑
n=1

ϑ2(n)χ0(n)n1−%j−%k
(
e−n/X − e−nL

2/U
)

= 1
2πi

∫
(1)
L(s+ %j + %k − 1, χ0)Gq(s+ %j + %k − 1)Γ(s)

(
Xs −

(
U
L2

)s)
ds

= ϕ(q)
q

Gq(1)Γ(2− %j − %k)
(
X2−%j−%k −

(
U
L2

)2−%j−%k)+O(L−1),
(3.35)

where
Gq(s) =

∑
j≤W, k≤W

(j,q)=(k,q)=1

θjθk[j, k]−s. (3.36)

The following proposition can easily be proved.

Proposition. We have
ϕ(q)
q

Gq(1) ≤ 1 + C/w

w
(w = logW ).

Proof. We will investigate the finite Dirichlet polynomial Gq(s) for real s > 1, s → 1.
We have

E(s) = Gq(s)L(s, χ0) =
∞∑
n=1

(n,q)=1

ϑ2(n)
ns

≤
∞∑
n=1

ϑ2(n)
ns

≤
(

1 + C

w

)
w−1ζ(s) (3.37)
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since, applying (3.31) in the special case of Ψ = ϑ (that is U = 1, V = W ), we have for
all y ≥ 1 ∑

1<n≤y
ϑ2(n) ≤ y(1 + C/w)

w
− 1. (3.38)

Taking the limit s→ 1+ in (3.37), we obtain the Proposition.

Fix a pair (χj , %j) (1 ≤ j ≤ J), and consider all zeros %kν (1 ≤ ν ≤ J ′) belonging to
the same L(s, χj) (including %j itself). Let %j = βj + iγj = 1− δj + iγj , %k = βk + iγk =
1− δk + iγk. According to (3.35) and the Proposition, we have (by χj = χk)

B(sj + sk, χjχk)� Xδj+δk

w|δj + δk + i(γj − γk)|

�


X2δ

w · δ
if |γj − γk| ≤ δ,

X2δ

w · nδ
if nδ ≤ |γj − γk| ≤ (n+ 1)δ,

(3.39)

using (3.21) and the fact that y−1ey is increasing for y ≥ 1. Using Lemma 1 we see that
the number of possible zeros %k of L(s, χ) with nδ ≤ |γj − γk| ≤ (n+ 1)δ and δk ≤ δ is

� δ log(M(T + n)) + 1. (3.40)
Now, these imply for any fixed j

J′∑
ν=1

∣∣B(sj + skν , χ0)
∣∣� X2δδ log(M(T + J ′)) + 1

wδ
log J ′ (3.41)

and so we have in Halász’s Lemma (Lemma 3), by (3.8), (3.32) and (3.41)

J2 � x

v − L

(
J
X2δ log(MT )

w
log2 J + J2L−1

)
. (3.42)

Hence by (3.14)–(3.15)
J �ε X

2δ(1+ε) (3.43)
if

w �ε logMT. (3.44)
In order to prove Theorem 1, we may choose

h = 1/2, W = (MT )ε, U = (KT )(3/8+ε)/(1−4δ)(MT )10ε, (3.45)

X = (MT )(3/8+50ε)/(1−2δ)(KT )(3/8+50ε)/((1−2δ)(1−4δ)).

Then all conditions (3.15), (3.20), (3.26), (3.34), (3.44) are satisfied, and this proves
(3.43), that is, Theorem 1.

For the proof of Theorem 2 (2.11), we choose
h = ε, W = (MT )ε, U = K(MT )10ε, X = K(MT )3/8+100ε, (3.46)

but instead of (3.2), we will use the estimate (3.7) for the L-functions in the estimate of
the B-functions. Accordingly, instead of (3.33), we have now

B(sj + sk, χjχk)� (KT εW 2U−1)hL3U2δ · (KT )ε
2
� L−1. (3.47)

Again, all conditions (3.15), (3.20), (3.26), (3.44) are satisfied and thus (2.11) is proved.
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The proof of (2.12) runs completely analogously. In this case the role of K and M is
‘interchanged’. We choose
h = ε, W = (MT )ε, U = (KT )50εM10ε, X = M1+50ε(KT )3/8+100ε (3.48)

and use the estimate (3.7) in the evaluation of S(X) in (3.23)–(3.25) while we use (3.2)
in the estimate of the B-functions as in (3.33)–(3.34).

Finally, in case of (2.13) we will use the estimate (3.7) both in the evaluation of S(X)
and in the estimation of the B-function. Accordingly, we choose in this case

h = ε, W = (MT )ε/4, U = K1+ε(MT )ε, X = (KM)1+εT 2ε. (3.49)
To prove Theorem 3 we can choose
h = ε, W = (MT )ε, U = Kϕ+εM3εT 2/ε, X = (KM)ϕ+10εT 10/ε. (3.50)

Applying the estimate (3.3) with k = [ε−1] and η = ε2/2, we obtain, instead of (3.25)
and (3.33), the estimates

S(X)�
(
M (1+2ε)ϕT 1/εVWX−1)ε(UMT )ε

2
X1−β � L−1 (3.51)

and
B(sj + sk, χjχk)�

(
K(1+2ε)ϕT 1/εW 2U−1)ε(UKT )ε

2
U2δ � L−1. (3.52)

Since the conditions (3.15), (3.20), (3.44) are again satisfied, Theorem 3 is also proved.
In the case of the Riemann zeta-function, Theorem 3 is clearly much weaker than any

of Theorems 1 and 2. Theorem 2 clearly follows from (2.21) for the zeta-function.
On the other hand, in case of the zeta-function, Theorem 1 (that is (2.9)) follows for

α ≥ 4/5 from Theorem 11.4 of Ivić [11] since
3

2α <
3

2(4α− 3) . (3.53)

4. Proof of Theorem 4. Following Jutila [12], we will use the idea of Selberg [14] to
apply pseudocharacters

fr(n) = f((r, n)) (4.1)
with multiplicative arithmetic functions f where (a, b) denotes the greatest common
divisor of a and b.

Let us use the abbreviation
frfr′(n) = fr(n)fr′(n). (4.2)

For the exceptional real non-principal character χ1 let
an =

∑
d | n

χ1(d) =
∏
pα‖n

(
1 + χ1(p) + . . .+ χα1 (p)

)
≥ 0. (4.3)

If n is square-free, then an = 0 if there exists a prime divisor p of n with χ1(p) = −1. If
n is square-free and χ1(p) = 1 for all p |n, then an = 2ω(n), where ω(n) is the number of
prime factors of the square-free number n (a1 = 1).

Both χ1(n) and χ2(n) can be considered as characters mod q = [q1, q2]. Let χ0 be
the principal character mod q, µ(n) the Möbius function. Let

∑′ denote summation over
all square-free numbers coprime to q. Let S =

∑′
r≤R arr

−1 with the parameter R to be
chosen later.
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In the course of proof we will need the following lemmas:

Lemma 4. Let χ be a Dirichlet character, f a multiplicative function, r and r′ square-free
numbers such that χ1(p) = 1 for all prime divisors of rr′, and define for σ > 1

Gr,r′(s, χ) =
∞∑
n=1

µ2(n)anχ(n)frfr′(n)n−s. (4.4)

Then
Gr,r′(s, χ) = L(s, χ)L(s, χχ1)Pr,r′(s, χ)Q(s, χ), (4.5)

where

Pr,r′(s, χ) =
∏
p | rr′
p-(r,r′)

(
1 + 2χ(p)f(p)

ps

) ∏
p | (r,r′)

(
1 + 2χ(p)f2(p)

ps

) ∏
p | rr′

(
1 + 2χ(p)

ps

)−1
,

Q(s, χ) =
∏

χ1(p)=1

(
1− χ(p)

ps

)2(
1 + 2χ(p)

ps

) ∏
χ1(p)=−1

(
1− χ2(p)

p2s

)
.

(4.6)

Proof. This is Lemma 9 of Jutila [12].

Lemma 5. In the preceding lemma, choose

f(n) = µ(n)2−ω(n)n,

and suppose also that L(χ1, β1) = 0, where β1 = 1 − δ1 is a real number satisfying
3/4 < β1 < 1. Then for the sum

T =
∞∑
n=1

′ ane−n/Y n−β1
(∑
r≤R

′ arfr(n)r−1
)2

(4.7)

we have for every R the asymptotic formula

T = ϕ(q)
q

Q(1, χ0)L(1, χ1)Γ(δ1)Y δ1S +Oε
(
Rq

3/16+ε
1 Y 1/2−β1+ε). (4.8)

Proof. This is a sharpened form of Lemma 10 of [12], with the only change that on the
line σ = 1/2 we use the estimate (3.1) of Heath-Brown for L(s, χ1). This form of Lemma 5
appears also as Lemma 12 of [17]. Therefore we can replace q1/4 of [12] by q3/16

1 .

Lemma 6. For every R0 there exists an R ∈ [R0, 2R0] such that

S = S(R) ≥ ϕ(q)
q

Q(1, χ0)L(1, χ1)δ−1
1 +Oε(R−1/2+εq

3/16+ε
1 ). (4.9)

Proof. This is also a sharpened form of Lemma 11 of [12], at least for the suitably cho-
sen R. Here we must further modify the proof. The generating function of µ2(n)anχ0(n)
is F (s) = L(s, χ1)L(s, χ0)Q(s, χ0).

Hence we have for all R

S ≥ R−δ1
∑
r≤R

′ ar
rβ1

= R−δ1

2πi

∫ a+iRq

a−iRq

F (s+ β1)Rs

s
ds+O(R−1/2), (4.10)
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where a = δ1 +1/ log(qR). Moving the line of integration to the line Re(s+β1) = 1/2+ε,
we get a pole at s = δ1 with residue

R−δ1 · R
δ1

δ1
·Q(1, χ0) ϕ(q)

q
L(1, χ1) (4.11)

and
1

2πi

∫ δ1−1/2+ε+iRq

δ1−1/2+ε−iRq

F (s+ β1)Rs−δ1

s
ds+O(R−1/2) = I(R) +O(R−1/2). (4.12)

The average of the real integral I(R) is clearly

E(R0) = 1
R0

∫ 2R0

R0

I(R) dR = 1
2πi

∫ δ1−1/2+ε+iRq

δ1−1/2+ε−iRq

F (s+ β1)Rs−δ1
0

s(s+ β1) (2s+β1 −1) ds. (4.13)

Using again the estimate (3.1) of Heath-Brown for L(s, χ1), we obtain for E(R0) the
estimate given in the error term of (4.9).

Lemma 7. Let β1 be as in the preceding lemmas, and suppose also that L(%, χ) = 0, where
χ is a character (mod q2), and % = β + iγ, 3/4 < β < β1. Put D =

(
q2k(|γ| + 2)2)3/8.

Then in the case χ 6= χ0, χ1 we have, for the quantity T defined by (4.7), the estimates

T ≥ S2(1 + Y (1+ε)(β−β1)) +Oε(RD1/2+εY 1/2−β1+ε) (4.14)

for all R. If χ = χ0 or χ1, then for every R0 there exists an R ∈ [R0, 2R0] such that
either

T ≥ S2(1 + (1− ε)Y (1+ε)(β−β1))+Oε(R0D
1/2+εY 1/2−β1+ε) (4.15)

or
δ1 ≥ εY β−1|Γ(1− %)|−1{1 +Oε(R−1/2+ε

0 q
3/16+ε
1 )

}
. (4.16)

Proof. This is again a sharpened form of Lemma 12 of [12] which can be proved using
the estimate (3.1) and our Lemma 6 in place of Lemma 11 of [12].

Another minor change in the proof is that in (5.7)–(5.8) of [12] we will replace the
factor 1/2 by 1 − ε, and, accordingly, for the θ in (5.9) of [12] we have the inequality
(2− ε)−1 < θ < ε−1 in place of 2/3 < θ < 2. This makes (4.15) slightly stronger and the
less crucial (4.16) weaker.

We remark that in the formula before (5.7) of [12] on the right side of the inequality
a factor S is missing from (ϕ(q)/q)Q(1, χ0)L(1, χ1)|Γ(1− %)|Y 1−β by a misprint (see the
corresponding formula for Tχ above it).

Proof of Theorem 4. The proof follows that of Jutila [12], with slight changes, so we will
be brief. For all R0 we can choose a fixed value of R such that Lemmas 6 and 7 should
hold with the same R. Since R ∈ [R0, 2R0] it is irrelevant whether we write R or R0 in
the error terms. We can suppose δ1 � (log Y )−1 and δ1 � (log q1)−1, otherwise (2.27)
holds. The choices of R0 and Y will imply log(R0Y ) � logD due to q1 ≤ q2k. Let us
consider first the case χ 6= χ0, χ1. Then the comparison of Lemmas 5 and 7, namely (4.8)
and (4.14), imply, with the notation

B = ϕ(q)
q

Q(1, χ0)L(1, χ1), (4.17)
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the inequality
BΓ(δ1)Y δ1S ≥ S2(1 + Y (1+ε)(β−β1))

+Oε(R0q
3/16+ε
1 Y 1/2−β1+ε) +Oε(R0D

1/2+εY 1/2−β1+ε).
(4.18)

The first error term can be neglected, since it is inferior to the second, in view of D ≥
(q2k)3/8 ≥ q3/8

1 . Cancelling this inequality and replacing S by the estimate from Lemma 6,
by S ≥ a1 = 1 we obtain

BΓ(δ1)Y δ1 ≥ Bδ−1
1 (1 + Y (1+ε)(β−β1))

+Oε(R0D
1/2+εY 1/2−β1+ε) +Oε(R−1/2+ε

0 q
3/16+ε
1 ).

(4.19)

Here Γ(δ1)δ1 = 1 + O(δ1), and from the integral representation (4.10) we obtain an
R ∈ [q1, 2q1] such that by δ1 � (log q1)−1,

1� R−δ1
∑
n≤R

′ ar
r

= Bδ−1
1 +O(q−1/2

1 ) +O(q−1/16+2ε
1 ). (4.20)

Thus we may divide by BΓ(δ1)� 1 to obtain
Y δ1 ≥ 1 + Y −(1+ε)δ +O(δ1) +Oε(R0D

1/2+εY 1/2−β1+ε)

+Oε(R−1/2+ε
0 q

3/16+ε
1 ).

(4.21)

Now we will choose R0 and Y in such a way that the last two error terms on the right
side should be of lower order of magnitude than Y −(1+ε)δ. Let

Y = (Dq3/4
1 )

1
1−6δ+ε1 , R0 = q

3/8+ε2
1 (Dq3/4

1 )
2δ

1−6δ+ε2 , (4.22)
where ε1 and ε2 are properly chosen small numbers depending on ε. (That is, ε1(ε)→ 0
and ε2(ε)→ 0 as ε→ 0.) With the above choice we obtain from (4.21) the estimate

eδ1 logY − 1 +O(δ1) ≥ (1− ε)Y −(1+ε)δ. (4.23)
Now, if u = δ1 log Y ≥ log 2, then (2.27) clearly holds. If u < log 2, then eu− 1 ≤ u/ log 2
and so (4.23) yields

δ1 log Y/ log 2 ≥ (1− 2ε)Y −(1+ε)δ, (4.24)
which proves Theorem 4 when χ 6= χ0, χ1.

If χ = χ0 or χ = χ1 and (4.15) holds, then the same argument as above applies and
we obtain (4.24) with 1− 2ε replaced by 1− 3ε.

If χ = χ0 or χ = χ1 and (4.16) holds, then (4.16) implies the estimate

δ1 > ε(1− ε)Y −δ
∣∣∣∣Γ(1− %)−1

1− %

∣∣∣∣ |1− %|, (4.25)

which clearly proves our theorem if
|1− %| > ε−1/ log Y. (4.26)

This is trivially true for χ0. If χ = χ1, then Y ≥ q9/8
1 (|t|+ 1)3/4 > q1. If

|1− %| ≤ ε−1/ log Y, (4.27)
then we can apply Lemma 8.4 of Heath-Brown [10]. This asserts, with our notation, that

1
δ1 log Y ≤

1
δ1 log q1

≤ e(2/3)δ log q1 = q
2δ/3
1 ≤ Y 2δ/3 (4.28)

if q1 > q0(ε), and therefore immediately proves (2.27).
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If q1 ≤ q0(ε), then all zeros of any L-functions mod q ≤ q0(ε) are at a distance at least
d0(ε) from 1. Therefore (4.26) will be true if

log Y > (εd0(ε))−1, (4.29)
i.e. when Y > Y0(ε) := e(εd0(ε))−1 .
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