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1. Introduction. The Euclidean norm of a polynomial g(x) =
∑r
j=0 bjx

j ∈ R[x] is

‖g‖ =
√
b2

0 + b2
1 + . . .+ b2

r .

The reciprocal, denoted f̃(x), of a polynomial f(x) ∈ C[x] with f(x) 6≡ 0 is defined to be
f̃(x) = xdeg ff(1/x). If f = ±f̃ , then f is called reciprocal. For f(x) ∈ Z[x], we refer to the
non-reciprocal part of f(x) as the polynomial f(x) removed of its irreducible reciprocal
factors in Z[x] where each such factor is chosen with a positive leading coefficient. For
example, the non-reciprocal part of 3(−x+1)x(x2+2) is −x(x2+2). Analogously, we refer
to the non-cyclotomic part of a non-zero f(x) ∈ Z[x] as f(x) removed of its cyclotomic
factors.

In 1960, generalizing a 1956 result of Selmer [10], Ljunggren [4] and Tverberg [11]
established independently that if a and b are integers with a > b > 0 and εj ∈ {1,−1}
for j ∈ {1, 2}, then the non-cyclotomic part of xa + ε1x

b + ε2 is irreducible or identi-
cally 1. Ljunggren [4] considered the analogous arguments for quadrinomials. He over-
looked certain cases in his argument, and later, in 1985, Mills [5] revised Ljunggren’s
arguments to take these cases into consideration. Thus, Mills classified those quadrino-
mials xa + ε1x

b + ε2x
c + ε3, a > b > c > 0 and εj ∈ {−1, 1} for j ∈ {1, 2, 3}, for which

the non-cyclotomic part is reducible. As we have an interest in giving classifications of
the polynomials in Z[x] with small Euclidean norm that have reducible non-cyclotomic
or non-reciprocal parts, we will elaborate on his result later in this paper, after some
terminology on variations of factorizations has been defined.

In 1999, Solan and the first author [2] showed that if a, b, c, and d are positive integers
satisfying a > b > c > d, then the non-reciprocal part of f(x) = xa + xb + xc + xd + 1 is
irreducible or identically 1. The same year, the first author [1] classified those polynomials
xa + xb + xc + xd + xe + 1, a > b > c > d > e > 0, for which the non-reciprocal part is
reducible. We elaborate on this result momentarily.

In 1970, Schinzel [7] gave more general results which showed that any theorem similar
to those referenced above can be effectively established. The following can be viewed as
a consequence of this work.

Theorem 1.1. Let r be a positive integer, and fix non-zero integers a0, . . . , ar. Let
F (x1, . . . , xr) = arxr + . . . + a1x1 + a0. Then there exist two finite computable sets R
and S of matrices satisfying:

(i) Each matrix in R or S is an r × ρ matrix with integer entries and of rank ρ,
depending on the matrix, with ρ ≤ r.

(ii) For every set of positive integers d1, . . . , dr with d1 < d2 < . . . < dr, the non-
reciprocal part of F (xd1 , . . . , xdr ) is reducible if and only if there is an r× ρ matrix
N = (vij) in R and integers v1, . . . , vρ satisfying

d1
d2
...
dr

 = N


v1
v2
...
vρ


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but there is no r×ρ′ matrixM in S with ρ′ < ρ and no integers v′1, . . . , v′ρ′ satisfying
d1
d2
...
dr

 = M


v′1
v′2
...
v′ρ′

 .

Schinzel’s work in [7] does not specifically state Theorem 1.1. We will elaborate on
the argument for Theorem 1.1 based on [7] in the last section of this paper; the authors
thank Andrzej Schinzel for providing us with the details of this argument. The argument
is similar to one given in [8] (also, see [9]), where the non-cyclotomic parts of polynomials
were considered but with the added condition that the polynomials considered are non-
reciprocal. Theorem 1.1 should also be compared to Theorem 74 of [9]. Here, one finds
a similar result, in a more general context, to Theorem 1.1. However, we were not able
to deduce from Theorem 74 of [9] the existence of the set S described in Theorem 1.1.

Schinzel’s results are quite general. They imply that for a given collection of r + 1
non-zero integers a0, a1, . . . , ar, it is possible to classify the positive integers d1, d2, . . . , dr
with d1 < d2 < . . . < dr for which the non-reciprocal part of the polynomial

a0 + a1x
d1 + a2x

d2 + . . .+ arx
dr

is reducible (or irreducible).
The work of the first author in [1] can be viewed as another demonstration of this

result. He describes a general approach for establishing whether the non-reciprocal part
of a given f(x) ∈ Z[x] is irreducible. He also describes how to extend the approach
to an algorithm for classifying polynomials with variable exponents having reducible
non-reciprocal part. The purpose of the current work is to provide some computational
results obtained through an implementation of the algorithm. In particular, noting that
for a ∈ Z+ the polynomial xa ± 2 is irreducible, the results in this paper combined with
the prior work stated give a complete characterization of the polynomials in Z[x] with
norm ≤

√
5 having reducible non-reciprocal part. In addition, our methods show that for

a and b in Z+ with a > b the non-reciprocal part of xa±xb± 2 is irreducible. Combining
the results in this paper, the prior results stated here and the computations given in [12],
there is consequently a similar classification for polynomials in Z[x] with norm ≤

√
6

having reducible non-reciprocal part.
The following definition can be found in [1]. Suppose that we have f(x) = u(x)v(x),

where u(x) and v(x) are polynomials in Z[x]. Then ±u(x)ṽ(x) is called a variation of f(x)
(or a polynomial obtained from a variation of f(x)). Observe that we allow the possibility
that u(x) = 1 or v(x) = 1; in particular, f(x) itself is a variation of f(x), albeit not much
of a variation.

With the above notion, we can easily state the results of Mills [5] and the first author
[1] alluded to earlier. Let a, b and c be integers with a > b > c > 0, and let εj ∈ {1,−1}
for j ∈ {1, 2, 3}. Mills [5] established that the non-cyclotomic part of f(x) = xa + ε1x

b +
ε2x

c + ε3 is irreducible or identically 1 unless f(x) is a variation of

x8k + x4k + x2k − 1 = (x2k + 1)(x3k − x2k + 1)(x3k + x2k − 1),
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where k ∈ Z+. Now, let a, b, c, d and e be integers with a > b > c > d > e > 0. The first
author [1] showed that the non-reciprocal part of f(x) = xa + xb + xc + xd + xe + 1 is
irreducible or identically 1 unless f(x) is a variation of

x5s+3t + x4s+2t + x2s+2t + xt + xs + 1 = (x3s+2t − xs+t + xt + 1)(x2s+t + xs + 1),
where s and t denote arbitrary distinct positive integers.

Of related interest is the following result of Schinzel [6]. Let a and b be integers
with a > b > 0. Then the non-cyclotomic part of f(x) = xa − 2xb + 1 is irreducible or
identically 1 unless f(x) is a variation of

x7k − 2x2k + 1 = (xk − 1)(x3k + x2k − 1)(x3k + xk + 1)
where k ∈ Z+. Our methods here allow us to further show that with f(x) = xa ± 2xb ± 1,
the only other cases where the non-cyclotomic part of f(x) is reducible is for f(x) a vari-
ation of one of

x7k + 2x2k − 1 = (xk + 1)(x3k − x2k + 1)(x3k + xk − 1)
x7k + 2x3k + 1 = (x3k − x2k + 1)(x4k + x3k + x2k + 1)

and

x7k + 2x3k − 1 = (x3k + x2k − 1)(x4k − x3k + x2k + 1),
where k ∈ Z+. The first of these is related to Schinzel’s result by replacing xk with −xk,
and the third is related to the second by the same replacement. In a moment we will refer
to this (in more generality) as a second type of variation.

In order to present the main results of this paper, we now describe some related ter-
minology. Suppose F (X,Y ) = U(X,Y )V (X,Y ), where U(X,Y ) and V (X,Y ) are poly-
nomials in Z[X,Y ]. Suppose also that a and b are nonnegative integers such that the
coefficient of XaY b in V (X,Y ) is non-zero and XaY bV (1/X, 1/Y ) ∈ Z[X,Y ]. Then

U(X,Y )XaY bV (1/X, 1/Y )
is called a type I variation of F (X,Y ), and we will say the polynomials

U(X,Y )XaY bV (1/X, 1/Y ) and − U(X,Y )XaY bV (1/X, 1/Y )
are polynomials obtained from a type I variation of F (X,Y ). Observe that in the case
F (X,Y ) ∈ Z[X], polynomials obtained from type I variations coincide precisely with poly-
nomials obtained from variations as described above. Now, for any polynomial F (X,Y ) ∈
Z[X,Y ], F (X,−Y ) (or F (−X,Y )) is called a type II variation of F (X,Y ), and we will say
the polynomials F (X,−Y ) and −F (X,−Y ) (as well as F (−X,Y ) and −F (−X,Y )) are
polynomials obtained from a type II variation of F (X,Y ). We then say that G(X,Y ) ∈
Z[X,Y ] is a modification of F (X,Y ) ∈ Z[X,Y ] if there exists a nonnegative integer k
and polynomials H0(X,Y ), H1(X,Y ), . . . ,Hk(X,Y ) in Z[X,Y ] such that G(X,Y ) =
Hk(X,Y ), F (X,Y ) = H0(X,Y ), and we have that for all i ∈ {1, 2, . . . , k}, either it
is the case that Hi(X,Y ) is obtained from a type I variation of Hi−1(X,Y ) or it is the
case that Hi(X,Y ) is obtained from a type II variation of Hi−1(X,Y ). Observe that if
the polynomials in question have non-zero constant terms, the property that G(X,Y ) is
a modification of F (X,Y ) is symmetric.
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As an example, consider

F (X,Y ) = (X3Y +X2Y + 1)(X2Y −XY − 1) = X5Y 2 −X3Y 2 −X3Y −XY − 1.

We obtain the polynomial

−(X3Y +X2Y + 1)(−X2Y −X + 1) = X5Y 2 +X4Y 2 +X4Y +X − 1

from a type I variation of F (X,Y ). We may then obtain the polynomial

−(−X3Y −X2Y + 1)(X2Y −X + 1) = X5Y 2 +X4Y 2 −X4Y +X − 1

from a type II variation of the previous polynomial. All three of these polynomials are
modifications of F (X,Y ).

We can now state our computational results.

Theorem 1.2. Let f(x) ∈ Z[x], with f(0) 6= 0, have Euclidean norm ‖f‖ =
√

5. Then
the non-reciprocal part of f(x) is reducible if and only if there exist positive integers t
and u such that f(x) can be obtained by making the substitutions X = xt and Y = xu in
a modification of one of the following:

• X5Y 2 −X3Y 2 −X3Y −XY − 1 = (X3Y +X2Y + 1)(X2Y −XY − 1)
• X5Y 3 −X3Y 2 −X3Y −X − 1 = (X3Y 2 +X2Y + 1)(X2Y −X − 1)
• X10 −X7 −X6 −X4 − 1 = (X3 −X − 1)(X7 +X5 +X2 −X + 1)
• X11 −X8 −X6 −X5 − 1 = (X4 −X + 1)(X7 −X3 −X2 −X − 1)
• X9 −X7 −X6 −X + 1 = (X3 +X2 − 1)(X6 −X5 −X2 +X − 1)
• X8 −X7 −X4 +X2 − 1 = (X3 −X − 1)(X5 −X4 +X3 −X + 1)
• X13 −X11 −X9 −X4 − 1 = (X3 −X − 1)(X10 +X7 −X6 +X5 +X2 −X + 1)
• X11 −X8 −X6 −X + 1 = (X3 +X2 − 1)(X8 −X7 +X6 −X5 −X2 +X − 1)
• X12 −X7 −X4 −X2 + 1 = (X3 +X2 − 1)(X9 −X8 +X7 −X5 +X4 −X3 − 1)
• X10 −X9 −X6 +X3 − 1 = (X3 −X − 1)(X7 −X6 +X5 −X3 +X2 −X + 1)
• X13 −X8 −X4 −X3 + 1 = (X5 +X4 −X2 −X − 1)(X8 −X7 +X6 +X − 1)
• X10 −X6 −X5 +X4 − 1 = (X5 +X4 −X2 −X − 1)(X5 −X4 +X3 −X + 1)
• X14−X9−X8 +X7−1 = (X7−X6 +X5−X3 +X2−X+1)(X7 +X6−X4−X−1).

We have obtained an analogous result for polynomials of Euclidean norm
√

6, but
the list, consisting of 128 cases, is not presented here. We direct the reader to the third
author’s dissertation [12] for the statement of this result.

We remark that for the previous result and for the result that follows it is in fact
possible to enumerate a finite parametrized list containing precisely those polynomials
satisfying the hypotheses with reducible non-reciprocal part. Specifically, such a complete
list of polynomials, without reference to “modifications”, can be obtained by recursively
adding every type I and type II variation of a polynomial appearing on the list to the list
until a list has been generated such that any type I or type II variation of a polynomial
on the list is already on the list. We state the theorems in terms of “substitutions”,
“variations”, and “modifications” purely for the sake of brevity.

The computations used to establish the above result provide the following simply
stated corollary.
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Corollary 1.3. Let a, b, c, and d be integers satisfying a > b > c > d > 0. Then the
non-reciprocal part of f(x) = xa − xb + xc − xd + 1 is irreducible or identically 1.

As expected, it appears to be the case that acquiring classification results for polyno-
mials of Euclidean norm

√
7 requires a great deal more time and space than for those of

norm less than or equal to
√

6. We were, however, able to establish the following.

Theorem 1.4. Let a, b, c, d, e, and f be integers with a > b > c > d > e > f > 0. Then
the non-reciprocal part of g(x) = xa + xb + xc + xd + xe + xf + 1 is reducible if and only
if one of the following holds:

(i) There exist positive integers t and u such that g(x) can be obtained by making the
substitutions X = xt and Y = xu in a modification of one of the following:
• X12+X11+X7+X5+X4+X2+1 = (X7+X6+X5+X4+X3+X2+1)(X5−X3+1)
• X17 +X12 +X9 +X7 +X6 +X2 + 1 =

(X6 −X4 + 1)(X11 +X9 +X7 +X6 +X4 +X2 + 1)
• X19 +X12 +X11 +X9 +X6 +X2 + 1 =

(X6 −X4 + 1)(X13 +X11 +X9 +X6 +X4 +X2 + 1)
• X7Y 6 +X5Y 5 +X4Y 3 +X2Y +XY +X + 1 =

(X3Y 3 −X2Y 2 + 1)(X4Y 3 +X3Y 2 +X2Y 2 +X2Y +XY +X + 1)
• X8Y 7 +X5Y 5 +X5Y 4 +X3Y 2 +X2Y +XY + 1 =

(X5Y 4 +X4Y 3 +X3Y 2 +X2Y 2 +X2Y +XY + 1)(X3Y 3 −X2Y 2 + 1)
• X11Y +X7Y +X6Y +X6 +X3 +X + 1 =

(X8Y +X7Y +X6Y +X3 +X2 +X + 1)(X3 −X2 + 1)
• X11Y 10 +X7Y 6 +X6Y 6 +X6Y 5 +X3Y 3 +XY + 1 =

(X8Y 7 +X7Y 6 +X6Y 5 +X3Y 3 +X2Y 2 +XY + 1)(X3Y 3 −X2Y 2 + 1)
• X15 +X11 +X9 +X4 +X3 +X + 1 =

(X12 +X11 +X10 −X7 +X4 +X3 +X2 + 1)(X3 −X2 + 1)
• X15 +X13 +X8 +X7 +X6 +X3 + 1 =

(X7 −X6 +X5 −X4 +X2 −X + 1)(X8 +X7 +X6 +X5 +X4 +X + 1)
• X16 +X13 +X11 +X5 +X4 +X + 1 =

(X9 −X7 +X4 −X2 + 1)(X7 +X5 +X4 +X3 +X2 +X + 1)
• X16 +X13 +X11 +X10 +X5 +X + 1 =

(X7 −X3 + 1)(X6 +X5 +X4 +X3 +X2 +X + 1)(X3 −X2 + 1)
• X17 + X12 + X11 + X7 + X4 + X2 + 1 = (X8 + X7 + X4 + X3 + X2 + X + 1)

(X9 −X8 +X7 −X6 +X4 −X3 +X2 −X + 1).
(ii) The polynomial g(x) is a variation of one of the following:
• x6t+6u + x6t+5u + x5t+5u + x5t+4u + x3t+3u + xt + 1 =

(x3t+3u− xt+u + 1)(x3t+3u + x3t+2u + x2t+2u + x2t+u + xt+u + xt + 1), u 6= t

• x6t + x5t+u + x3t + xt+u + xu + xt + 1 =
(x3t − x2t + 1)(x3t + x2t+u + x2t + xt+u + xu + xt + 1), u /∈ {t/2, 4t}

• x6t+u + x3t+u + x5t + xt+u + xu + xt + 1 =
(x3t − x2t + 1)(x3t+u + x2t+u + x2t + xt+u + xu + xt + 1), u 6= 3t

for some positive integers t and u satisfying the conditions given for the applicable
entry.
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We remark that the restrictions on u and t appearing in (ii) above correspond to the
second set of matrices S given in Theorem 1.1. As is easily checked, for the u and t that
are omitted from consideration, the second factor in the given factorization is a poly-
nomial that only has cyclotomic and, hence, reciprocal factors. Thus, the non-reciprocal
part of g(x) is the non-reciprocal part of the first factor shown, which by the result of
Ljunggren [4] and Tverberg [11] mentioned earlier, is irreducible. One can check that in
fact the factors x6t − x2t + 1 and x3t − x2t + 1 arising here have no irreducible reciprocal
factors, and hence are irreducible.

We further remark that our approach does not give us information about the non-
cyclotomic part of a polynomial, at least when the number of terms exceeds 4. Indeed,
we do not even know, for example, if the result of Solan and the first author discussed
above remains true if “non-reciprocal” is replaced by “non-cyclotomic”.

Our theorems were obtained by implementing the algorithm described in the next
section using the computer algebra system Maple. The worksheet is currently available
at http://maple.math.sc.edu/maplenet/research/ under the heading “NONRECI-
PROCAL_REDUCIBLE_PROCEDURES” (where the differences in the two linked
worksheets is insignificant). Included in this worksheet are routines capable of enumerat-
ing (in finite time and space) all parametrized polynomials corresponding to substitutions,
variations, and modifications referenced above. We further note that the factorizations
included in the statements of the above theorems were provided by the computer algebra
system Sage.

2. The algorithm. We suppose that we are given a polynomial f(x) with variable
exponents. More precisely, we consider

f(x) = arx
dr + . . .+ a1x

d1 + a0,

where we view the aj ’s as given integers and the dj ’s as unknown integers with

0 < d1 < . . . < dr−1 < dr. (2.1)

We also suppose that each aj is non-zero. We seek a description of the r-tuples (d1, . . . , dr)
for which the non-reciprocal part of f(x) is reducible. The strategy we proceed with is
a slight modification of the one in [1].

We write
w(x) = bsx

ks + . . .+ b1x
k1 + b0, (2.2)

where we view the bj ’s and kj ’s as unknown integers with

0 < k1 < . . . < ks−1 < ks = dr. (2.3)

We also suppose that each bj is non-zero.
We make use of the following theorem, which is proven in [1] and based on the prior

work of Ljunggren [4].

Theorem 2.1. Let f(x) ∈ Z[x] with f(0) 6= 0. The non-reciprocal part of f(x) is reducible
if and only if there exists w(x) different from f(x), −f(x), f̃(x), and −f̃(x) such that

f(x)f̃(x) = w(x)w̃(x). (2.4)

http://maple.math.sc.edu/maplenet/research/
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We want to determine when a polynomial w(x) exists satisfying (2.2), (2.3), and (2.4)
that is different from f(x), −f(x), f̃(x), and −f̃(x). The idea is to solve the various
systems of equations for d1, . . . , dr, k1, . . . , ks obtained by comparing exponents on both
sides of (2.4).

As noted in [1], we may restrict our attention to (b0, . . . , bs) that satisfy ‖w‖ = ‖f‖.
For each such (b0, . . . , bs), we explicitly compute both sides of equation (2.4). We then
rearrange the terms so that each side of the equation has only positive coefficients and
like terms from each side have been cancelled. This will be referred to as the simpli-
fied equation. Of significance here is that we are only interested in solution sets for
d1, . . . , dr, k1, . . . , ks for which every exponent appearing on one side of the simplified
equation also appears on the other.

We go through each possibility for the coefficients (b0, . . . , bs) appearing in w(x).
For each choice of coefficients for w(x), we solve for the unknowns d1, . . . , dr, k1, . . . , ks
appearing in f(x) and w(x) using ideas from [1]. The approach is as follows.

(A) Use the ordering on the dj and kj to determine possibilities for the least exponent on
the left and right sides of the simplified equation (this is done using Lemma 4 of [1]).
Let L denote a set of possible least exponents on the left-hand side of the simplified
equation, and let R denote a set of possible least exponents on the right-hand side.
Thus, L and R are sets of linear combinations of the dj and kj .

(B) For each exponent eL from L and eR from R, consider eL = eR and solve for
a variable in this equation. We solve for the variable in this equation which appears
first in the ordering ks, . . . , k1, dr−1, . . . , d1. If no solution exists, then we continue
with a different choice of eL from L and eR from R until all possibilities have been
considered.

(C) For a fixed equation eL = eR from (B) having a solution, we substitute the solution
from (B) into (2.4). If this substitution makes both sides of (2.4) the same, then
we record this solution to (2.4) and backtrack to continue with considering another
equation of the form eL = eR in (B) until every possibility has been considered.
If after the substitution both sides of (2.4) are not identical, then we form a new
simplified equation and repeat part (A).

We note that there are different levels of (B) that arise, and backtracking to an earlier
level is done until all cases of eL = eR in (B) have been considered. In the computations
used to establish Theorems 1.2 and 1.4, a solution set to this system corresponded to one
or two of the dj ’s being free variables that can be chosen arbitrarily (but in such a way
that the full set of dj ’s and kj ’s are integers) and the remaining dj ’s and kj ’s being linear
combinations of these free variables.

There is one more matter that we must address, namely whether a value of w(x) ob-
tained in the above procedure resulting in a solution to (2.4) satisfies w(x) ∈
{f(x),−f(x), f̃(x),−f̃(x)}. If so, then according to Theorem 2.1, we do not want to
view this solution to (2.4) as producing an f(x) with reducible non-reciprocal part. Sup-
pose then that we have a choice of f(x) and w(x) satisfying (2.4) as above and want
to check whether w(x) ∈ {f(x),−f(x), f̃(x),−f̃(x)}. At this point each of f(x) and
w(x) has fixed coefficients and also exponents that depend on some fixed free variables.
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Let V denote the set of free variables. For each h(x) ∈ {f(x),−f(x), f̃(x),−f̃(x)}, we
proceed as follows to determine whether w(x) = h(x) (or, more accurately, when). Re-
calling (2.1) and (2.3), we need only consider the case that s = r, that is that the
number of terms in w(x) equals the number of terms in h(x). We form another system
of equations by equating exponents in w(x) with exponents in h(x). If the corresponding
coefficients of w(x) and h(x) do not agree, then w(x) 6= h(x), and we proceed to a differ-
ent h(x) ∈ {f(x),−f(x), f̃(x),−f̃(x)}. If the corresponding coefficients of w(x) and h(x)
do agree, we solve the new system of equations in the free variables in V to obtain a new
solution set in which a subset of V forms new free variables and the remaining elements
of V are expressed in terms of them. Such a solution set gives a description of when the
original solution set leads to a case where w(x) = h(x). Note that the restrictions on t
and u appearing in the second possibility in Theorem 1.4 arise from such cases.

We remark that in order to enumerate all possible cases above the authors utilized
built-in functions available in Maple’s combinatorics package along with algorithms de-
scribed in [1] and [3].

3. Proof of Theorem 1.1. The statement of Theorem 1.1 first appears in [1] where
it is indicated that it follows from [7]; though no details are given. Theorem 4 in [8] is
a generalization of Theorem 1.1 where the role of non-reciprocal parts of polynomials is
replaced by non-cyclotomic parts of polynomials, except that Theorem 4 in [8] has the
added condition that the polynomial F (xd1 , . . . , xdr ) is non-reciprocal (see the definition
of “reciprocal” below). In this section, we provide a proof of Theorem 1.1 by imitating
the proof of Theorem 4 in [8].

We begin with some notation, which follows the work of Schinzel [7, 8, 9]. We will use
bold face capital Roman letters to denote integral matrices. Vectors will be denoted by
bold face small Roman or Greek letters and are treated as matrices with one row. If u
and v are vectors in Zk, then uv is the dot product of u and v. The set of all integral
matrices with l rows and k columns is denoted by Ml,k(Z). For A = (aij) ∈Ml,k(Z), we
define

h(A) = max
1≤i≤l
1≤j≤k

{|aij |}.

For x = [x1, x2, . . . , xk], y = [y1, y2, . . . , yl] and a polynomial F ∈ Q[x] \ {0}, we define

|F | = max
1≤i≤k

{degxi F} and F (yA) = F
( l∏
i=1

yai1i , . . . ,

l∏
i=1

yaiki

)
.

If n = [n1, . . . , nk] ∈ Zk, then we write F (xn) = F ([x]n) = F (xn1 , . . . , xnk). There
is a unique term axe1

1 . . . xekk of F such that for every term bxn1
1 . . . xnkk of F , with

[n1, . . . , nk] 6= [e1, . . . , ek], the left-most non-zero component of the vector [e1, . . . , ek] −
[n1, . . . , nk] is positive. We refer to the term axe1

1 · · ·x
ek
k with this property as the leading

term of F and to a as the leading coefficient of F . If a = 1, then we call F monic. We
can write a Laurent polynomial F ∈ Q[x1, x

−1
1 , x2, x

−1
2 , . . . , xk, x

−1
k ] \ {0} in the form

F =
m∑
i=0

ai x
αi1
1 · · ·xαikk ,
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where each ai is non-zero and the αi = [αi1, . . . , αik] ∈ Zk are distinct. We define

JF =
( k∏
j=1

x
−min0≤i≤m{αij}
j

)
F,

so JF ∈ Q[x]\{0} and JF is not divisible by xi for every i ∈ {1, 2, . . . , k}. The reciprocal
of a polynomial F ∈ Q[x] is the polynomial

F̃ = JF (x−1
1 , x−1

2 , . . . , x−1
k ) ∈ Q[x].

If F ∈ Q[x] and F = UV where U and V are in Q[x], then one sees that F̃ = Ũ Ṽ .
A polynomial F ∈ Q[x] is called reciprocal if

F = ±F̃ ,

and otherwise F is said to be non-reciprocal. We define LF to be JF deprived of all its
monic irreducible reciprocal factors, where from here onward all factors refer to factors
over Q. The leading coefficient of LF is then equal to the leading coefficient of F . For a
Laurent polynomial F ∈ Q[x1, x

−1
1 , x2, x

−1
2 , . . . , xk, x

−1
k ], we have the relationship

LF = LJF.

The first lemma has been established in the case of a single variable in [2, the first
paragraph in Section 2]. We give a detailed proof for the multi-variable case following the
argument there.

Lemma 3.1. Let k ∈ Z+, and let F ∈ Z[x] where x = [x1, . . . , xk]. If LF is reducible,
then there exist non-reciprocal F1 and F2 in Q[x] such that LF = F1F2.

Proof. Since LF is reducible, there are not necessarily distinct non-reciprocal irreducible
polynomials U and V in Z[x] dividing LF . Then the polynomials Ũ and Ṽ are irreducible
factors of the reciprocal of LF . If the reciprocal of U , that is Ũ , also divides LF , we split
the irreducible factors of LF to form F1 and F2 with LF = F1F2 in such a way that
Ũ does not divide F1 and U does not divide F2. Then U divides F1 and Ũ does not
divide F1. The former implies Ũ divides F̃1 so that, by unique factorization in Q[x], we
see that F1 is non-reciprocal. Similarly, F2 is non-reciprocal since U divides F̃2 but U does
not divide F2. A similar argument applies in the case that Ṽ divides LF . We consider
now the case that both Ũ and Ṽ are not divisors of LF in Q[x]. In this case, we split
the irreducible factors of LF to form F1 and F2 with LF = F1F2 in such a way that U
divides F1 and V divides F2. In this case, Ũ is not a factor of F1 since Ũ is not a factor
of F . Since Ũ is a factor of F̃1, we deduce by unique factorization in Q[x] that F1 is
non-reciprocal. Similarly, F2 is non-reciprocal, completing the proof.

We make use of Lemma 6, Lemma 10 and Lemma 12 in [7]. We state these as
Lemma 3.2, Lemma 3.3 and Lemma 3.4, respectively, below, noting here that Lemma 3.4
is a much weakened form of Lemma 12 in [7] which suffices for our purposes.
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Lemma 3.2. If an m-dimensional sublattice of the n-dimensional integral lattice Zn con-
tains m linearly independent vectors v1, . . . ,vm, then it has a basis of the form

m∑
j=1

c1jvj , . . . ,

m∑
j=1

cmjvj ,

where
0 ≤ cij < cjj ≤ 1 for i 6= j, and cij = 0 for i < j.

Lemma 3.3. Let v = [v1, v2, . . . , vk] ∈ Zk. Let Q ∈ Q[x]\{0}, where x = [x1, x2, . . . , xk].
If JQ is non-reciprocal and LQ(xv) is a constant, then there is a non-zero β ∈ Zk
satisfying

βv = 0 and h(β) ≤ 2|Q|.

Lemma 3.4. For any polynomial F (x1, . . . , xk) and any integral vector n = [n1, . . . , nk]
such that F (xn) 6= 0, there exist computable constants c1 = c1(F ) and c2 = c2(F )
depending only on F , a matrix M = [µij ] ∈ Mk,k(Z) of rank k and an integral vector
v = [v1, v2, . . . , vk] such that

0 ≤ µij < µjj ≤ c1 for i 6= j, µij = 0 for i < j, n = vM

and one of the following holds:

(i) LF
(
[y1, . . . , yk]M

)
and LF

(
xn
)
are both reducible,

(ii) LF
(
[y1, . . . , yk]M

)
and LF

(
xn
)
are both irreducible,

(iii) LF
(
[y1, . . . , yk]M

)
and LF

(
xn
)
are both constant,

(iv) there is a non-zero γ ∈ Zk such that γn = 0 and h(γ) < c2.

Of some interest to us is the following corollary to Lemma 3.2 which is a strength-
ening of Corollary 6 of Appendix E in [9] (though this strengthening is not required for
establishing Theorem 3.6 below).

Corollary 3.5. Let r be an integer > 1, and letM ∈Mr,r(Z) having rank r. Let γ 6= 0
be a vector in Zr. Then the vectors v ∈ Zr orthogonal to γ form a lattice Λ in Zr which
has a basis that, written in the form of rows of a matrix B ∈Mr−1,r(Z), satisfies

rankB = r − 1,

and
h(B) ≤ h(γ). (3.1)

Proof. What requires some justification here is the inequality in (3.1). We write γ =
[c1, . . . , cr]. Let 1 ≤ i1 < i2 < . . . < iu ≤ r be the complete list of i for which ci 6= 0. To
prove (3.1) using Lemma 3.2, we set

I = {1, 2, . . . , r} − {iu}

and describe a set of vectors

V = {vi : i ∈ I} = {v1, . . . ,viu−1,viu+1, . . . ,vr}

that span the lattice Λ. Write

vi = [v(i)
1 , . . . , v(i)

r ] for i ∈ I.
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For i ∈ I − {i1, i2, . . . , iu−1}, set

v
(i)
j =

{
1 if j = i

0 if j 6= i.

For κ ∈ {1, 2, . . . , u− 1}, set

v
(iκ)
j =


−(|ciκ |/ciκ) |ciκ+1 | if j = iκ

(|ciκ+1 |/ciκ+1) |ciκ | if j = iκ+1

0 if j 6∈ {iκ, iκ+1}.

To clarify, v(iκ)
iκ

has the opposite sign as ciκ and has absolute value |ciκ+1 |. Similarly, v(iκ)
iκ+1

has the same sign as ciκ+1 and has absolute value |ciκ |. For κ ∈ {2, . . . , u − 1}, the iκth
component of a v ∈ V is non-zero precisely for viκ−1 and viκ and these two components
have opposite signs. For the remaining i 6∈ {i2, i3, . . . , iu−1}, the ith component is non-
zero in only one v ∈ V. In every case, the values of |v(i)

j | are bounded above by h(γ).
One checks that the r − 1 vectors v ∈ V are orthogonal to γ and that they are linearly
independent. By Lemma 3.2, we can find a basis for Λ where each basis element is a linear
combination of the v ∈ V with coefficients between 0 and 1. Our construction of the vj ’s
ensures that each component of any such linear combination has absolute value at most
the maximum of the absolute values of the components of the v ∈ V. Hence, the inequality
in (3.1) follows.

We prove now the following generalization of Theorem 1.1 to arbitrary F from
Z[x1, . . . , xk] \ {0}.

Theorem 3.6. Let F ∈ Z[x1, . . . , xk] \ {0}. There exist two finite, effectively computable
subsets R and S of

⋃k
r=1 Mr,k(Z) with the following property. If n ∈ Zk \ {0}, then

LF (xn) is reducible if and only if there is a positive integer r ≤ k such that n = vN

is soluble in v ∈ Zr and N ∈ R ∩Mr,k(Z) of rank r, but insoluble in v ∈ Zs and
N ∈ S ∩Ms,k(Z) of rank s < r.

Proof. We begin by defining subsets Si and Ri ofMk−i,k(Z), for 0 ≤ i ≤ k−1, inductively.
Let

S0 = {Ik}, (3.2)

and supposing that Si is already defined and y = [y1, . . . , yk−i], define

Ri =
{
MN : N ∈ Si, M ∈Mk−i,k−i(Z), rankM = k − i,

h(M) ≤ c1(JF (yN )), LF (yMN ) reducible
}

(3.3)

and, for i < k − 1,

Si+1 =
{
N ∈Mk−i−1,k(Z) : rankN = k − i− 1,

h(N) ≤ (k − i) max
N1∈Si

{
h(N1) max{c2(JF (yN1)),

2(k − i) max∗{h(M)|JF (yMN1)|}}
}}
, (3.4)
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where max∗ is taken over all M ∈ Mk−i,k−i(Z) with detM 6= 0 and h(M) ≤
c1(JF (yN1)). In this way Ri and Si are defined for all i < k and we put

R =
k−1⋃
i=0

Ri and S =
k−1⋃
i=1

Si.

We first prove that the condition given in the theorem is necessary. By (3.2), there
is at least one index i, namely i = k, such that there exist u ∈ Zi and U ∈ Sk−i with
n = uU . Let r be the least such index satisfying

n = vN , for some v ∈ Zr and N ∈ Sk−r. (3.5)

By Lemma 3.4, if LF (xn) = LF (xvN ) is reducible, then there is a matrix M ∈Mr,r(Z)
of rank r such that

h(M) ≤ c1(JF (yN )), where y = [y1, . . . , yr],

and
v = v1M , for some v1 ∈ Zr (3.6)

and either L(F (yMN )) is reducible, or there exists a vector γ ∈ Zr such that

γv = 0 and 0 < h(γ) ≤ c2(JF (yN )).

The second possibility can only hold for r > 1, since for r = 1 it gives v = 0 and, by (3.5),
n = 0. For r > 1, the vectors v orthogonal to γ form a lattice Λ in Zr. As a consequence
of Corollary 3.5, this lattice has a basis that written in the form of rows of a matrix
B ∈Mr−1,r(Z) satisfies

rankB = r − 1, (3.7)

and
h(B) ≤ h(γ) ≤ c2(JF (yN )). (3.8)

We see that in the case that γ exists, since v ∈ Λ, we have

v = wB, for some w ∈ Zr−1.

Hence, by (3.5), we obtain

n = wBN , where BN ∈Mr−1,k. (3.9)

Since, by (3.4) and (3.5), we have rankN = r, it follows from (3.7) that

rankBN = r − 1.

Moreover, by (3.8),

h(BN) ≤ r h(B)h(N) ≤ r h(N) c2(JF (yN ))

and, by (3.4), BN ∈ Sk−r+1, contrary, in view of (3.9), to the definition of r. The
contradiction obtained proves that LF (yMN ) is reducible. SinceM and N have rank r,
so does MN . Hence, MN ∈ Rk−r by (3.3). By (3.5) and (3.6) we have

n = v1MN ,

while by the definition of r the equation n = uU is insoluble in u ∈ Zi and U ∈ Sk−i
for i < r. Thus, the condition given in the theorem is necessary.
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Now we shall prove that it is sufficient. Suppose that for a certain matrix N ∈ Rk−r,
with 1 ≤ r ≤ k, we have

n = vN , for some v ∈ Zr,

but
n 6= uU for all s < r, u ∈ Zs and U ∈ Sk−s. (3.10)

Then, by (3.3), we see that there are N1 ∈ Sk−r and M ∈ Mr,r(Z) of rank r with
N = MN1 satisfying

n = vMN1, h(M) ≤ c1(JF (yN1)), where y = [y1, . . . , yr] (3.11)
and

LF (yMN1) is reducible.
From Lemma 3.1, we obtain

LF (yMN1) = F1F2, (3.12)
for some non-reciprocal F1 and F2 in Q[y] \Q.

It follows from (3.11) and (3.12) that
LF (xn) = LF1(xv)LF2(xv). (3.13)

Assume that for some i ∈ {1, 2}, we have LFi(xv) ∈ Q. By Lemma 3.3, there is a vector
β ∈ Zr for which

βv = 0 and 0 < h(β) ≤ 2|Fi| ≤ 2
∣∣JF (yMN1)

∣∣.
Again, this case occurs only for r > 1, and from Corollary 3.5 we find a matrix B ∈
Mr−1,r(Z) and a vector w ∈ Zr−1 such that

rankB = r − 1, h(B) ≤ h(β) ≤ 2
∣∣JF (yMN1)

∣∣, v = wB,

and
h(BMN1) ≤ r2h(B)h(M)h(N1) ≤ 2r2h(M)h(N1)

∣∣JF (yMN1)
∣∣.

Hence, by (3.4) and (3.11), we have
BMN1 ∈ Sk−r+1, where n = wBMN1,

which contradicts (3.10). The contradiction implies that LFi(xv) /∈ Q for both i ∈ {1, 2}.
Hence by (3.13), we deduce that LF (xn) is reducible.
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