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Abstract. We study in this paper the problem of decomposition of functions in the Paley–Wiener
space into the sum of two functions, each being “large” only on some part of the complex plane.

1. Introduction. Representations of a function as a sum or a product of two functions
of simpler nature is an important and useful method of studies in the analytic function
theory. Some results in this direction were obtained by R. S. Yulmukhametov [13], [14],
Yu. I. Lyubarskii [10], I. E. Chyzhykov [4] and others.

We denote byW p
σ , σ > 0, the Paley–Wiener space, i.e., the space of entire functions f

of exponential type ≤ σ belonging to Lp(R). R. Paley and N. Wiener proved the following
fundamental theorem.
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Theorem A. The space W 2
σ coincides with the space of functions representable as

f(z) =
∫ σ

−σ
ϕ(it)eitz dt, ϕ ∈ L2(−iσ; iσ). (1)

The space W p
σ can be defined (see [9]) as the space of entire functions satisfying the

condition

sup
ϕ∈(0;2π)

{∫ +∞

0
|f(reiϕ)|pe−pσr|sinϕ| dr

}1/p
< +∞.

R. Boas [3] and G. Ber [2] obtained the representation theorems for the space W 1
σ .

Theorem B ([6]). The space W 1
σ coincides with the space of functions f represented

by (1), where

ϕ(t) = 1
2σ

+∞∑
k=−∞

cke
−ikπt/σ, (ck) ∈ l1, (2)

and
+∞∑

m=−∞

∣∣∣∣ +∞∑
k=−∞

(−1)k+mck+m
k

1 + k2

∣∣∣∣ < +∞.

Let Ep[C(α;β)], 0 < β − α < 2π, 1 ≤ p < +∞, be the space of analytic functions f
in C(α;β) = {z : α < arg z < β}, for which

sup
α<ϕ<β

{∫ +∞

0
|f(reiϕ)| dr

}
< +∞.

The functions f ∈ Ep[(α;β)] have almost everywhere on ∂C(α;β) the angular bound-
ary values [8], which we denote by f , and f ∈ Lp[C(α;β)].

2. The main result. B. Vynnytskyi and V. Dilnyi considered [12] the following problem
of decomposition for functions in the Paley–Wiener space into the sum of two functions,
each of which is “large” only in some domain. This problem has applications in the studies
of the completeness [6] and is interesting in the theory of integral operators as well as in
the invariant subspaces theory (see [1], [11]).

Problem. Which functions f ∈W p
σ , 1 ≤ p ≤ 2, admit the decomposition f = χ−µ with

entire functions χ and µ, where χ ∈ Ep[C(0;π/2)], µ ∈ Ep[C(−π/2; 0)]?

For the case p = 2 there exists the elementary solution of the Problem based on the
Paley–Wiener theorem:

χ(z) =
∫ σ

0
ϕ(it)eitz dt, µ(z) = −

∫ 0

−σ
ϕ(it)eitz dt.

The case p = 1 is more difficult and important for applications (see [6], [12]). For
some partial cases solutions of the Problem are known (see [5], [7]).

Theorem 1 ([7]). If f ∈ W 1
σ and ck = 0 for each odd k ∈ N, then for f there exists a

decomposition in the sense of above Problem.
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In [6] also the following simpler problem is studied:

Is it possible to decompose each f ∈W p
σ , 1 ≤ p ≤ 2, as f = χ− µ, where χ, µ are entire

functions and χ ∈ Ep[C(0;π)], µ ∈ Ep[C(−π; 0)]?

The answer to this question is in the negative. For example, for the function

f(z) = (1− cosσz)/z2

such a decomposition is impossible. T. I. Hishchak has obtained the following result.

Theorem 2 ([7]). Let f ∈ W 1
σ . The functions χ(z) = χ1(z) + iχ2(−iz) and µ = χ− f ,

where

χ1(z) =
∫ σ

0
ϕ(it)eitz dt, χ2(z) = −

∫ 0

−σ
ϕ(it)eitz dt

are a solution of the Problem if and only if both of the following conditions are fulfilled
+∞∑
m=1

∣∣∣∣ +∞∑
k=−∞

ck
k

(m− i/2− k)(m− i/2− ik)

∣∣∣∣ < +∞, (3)

+∞∑
m=1

∣∣∣∣ +∞∑
k=−∞

ck
k

(m+ i/2 + ik)(m+ i/2− k)

∣∣∣∣ < +∞. (4)

As a consequence of equalities (1)–(2) we have the representation

f(z) =
+∞∑

k=−∞
ck

sin σz
σz − πk

. (5)

We obtain the following result.

Theorem 3. If ck ∈ l1 and c2k = −c2k+1 for each k ∈ Z, then for the function f defined
by (1)–(2) there exists a solution of the Problem and functions χ, µ can be defined as in
the previous theorem.

We note that if a decomposition in the sense of the Problem exists, then it is not
unique.

Lemma 4. If (ck) ∈ l1 and c2k = −c2k+1 for every k ∈ Z, then the function f defined by
(1) and (2) belongs to W 1

σ .

Proof. Consider representation (5). Since c2k = −c2k+1, we obtain

f(z) = −
+∞∑

k=−∞
sin σz c2kπ

(σz − 2πk)(σz − 2πk − π) .

Hence∫ +∞

−∞
|f(x+ i)| dx ≤M1

+∞∑
k=−∞

|c2k|
∫ +∞

−∞

π dx

|σx+ σi− 2πk| |σx+ σi− 2πk − π| .
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Since the sum below converges absolutely and uniformly, we have∫ +∞

−∞
|f(x+ i)| dx ≤M1

+∞∑
k=−∞

|c2k|
(∫ −2πk−2π

−∞

π dx

|σx+ σi− 2πk| |σx+ σi− 2πk − π|

+
∫ −2πk+2π

−2πk−2π

π dx

|σx+ σi− 2πk| |σx+ σi− 2πk − π|

+
∫ +∞

−2πk+2π

π dx

|σx+ σi− 2πk| |σx+ σi− 2πk − π|

)
≤M1

+∞∑
k=−∞

|c2k|
∫ +∞

−∞

π

(σx− 2πk)2 + σ2 dx = M2

+∞∑
k=−∞

|c2k| < +∞.

Therefore f ∈W 1
σ (see, for example, [9]).

Proof of Theorem 3. Let us denote by L the left side of inequality (3). Since c2k = −c2k+1,
from (2) we obtain

L =
+∞∑
m=1

∣∣∣∣ +∞∑
k=−∞

(
ck

m− i/2− k −
ck

m− i/2− ki

)
1

1− i

∣∣∣∣
= 1√

2

+∞∑
m=1

∣∣∣∣ +∞∑
n=−∞

c2n

m− i/2− 2n −
c2n

m− i/2− 2ni

+
+∞∑

n=−∞

c2n+1

m− i/2− 2n− 1 −
c2n+1

m− i/2− 2ni− i

∣∣∣∣
= 1√

2

+∞∑
m=1

∣∣∣∣ +∞∑
n=−∞

−c2n

(m− i/2− 2n)(m− i/2− 2n− 1)

+ c2ni

(m− i/2− 2ni)(m− i/2− 2ni− i)

∣∣∣∣
≤ 1√

2

+∞∑
m=1

( +∞∑
n=−∞

|c2n|
|m− i/2− 2n||m− i/2− 2n− 1|

+
+∞∑

n=−∞

|c2n|
(m− i/2− 2ni)(m− i/2− 2ni− i)

)
.

Changing the order of summation and employing the notation l = m− 2n, we obtain

L ≤ 1√
2

+∞∑
n=−∞

|c2n|
+∞∑

m=−∞

1√
(m− 2n)2 + 1/4

√
(m− 2n− 1)2 + 1/4

+ 1√
2

+∞∑
n=−∞

|c2n|
+∞∑

m=−∞

1√
m2 + (1/2 + 2n)2

√
m2 + (1/2 + 2n+ 1)2

≤ 1√
2

+∞∑
n=−∞

|c2n|
+∞∑
l=−∞

1√
l2 + 1/4

√
(l − 1)2 + 1/4

+ 1√
2

+∞∑
n=−∞

|c2n|
+∞∑

m=−∞

1
m2 .
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The second term converges absolutely, so we need to show that the first series converges

1√
2

+∞∑
n=−∞

|c2n|
+∞∑
l=−∞

1√
l2 + 1/4

√
(l − 1)2 + 1/4

= 1√
2

+∞∑
n=−∞

|c2n|
( −1∑
l=−∞

1√
l2 + 1

4

√
(l − 1)2 + 1

4

+ 4√
5

+
+∞∑
l=1

1√
l2 + 1

4

√
(l − 1)2 + 1

4

)

≤M2

( −1∑
l=−∞

1
l2 + 1/4 + 4√

5
+

+∞∑
l=1

1
(l − 1)2 + 1/4

)
< +∞.

Therefore L < +∞, and condition (3) is proved. The proof of (4) is analogous. It remains
to apply Theorem 2.
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