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Abstract. The Banach space structure of the discrete Morrey spaces follows from the fact
that they are closed subspaces of the classical Morrey spaces. In this paper, we present the
complete proof of this statement. Some inclusion properties of the discrete Morrey spaces are
also discussed.

1. Introduction. The discrete Morrey spaces are introduced in [1]. The paper [1] was
presented as a contributed talk at the conference Function Spaces XII in Kraków, July
2018. In an answer to a question posed by Professor Y. Sawano, it was noted that the
Banach space structure of the discrete Morrey spaces (cf. [1, Proposition 2.2]) follows from
the fact that they are closed subspaces of the classical Morrey spaces (cf. [1, Remark,
p. 1285]). This fact is not trivial to prove, and such a proof was not presented in the
original paper [1]. In this paper, we present the complete proof of this statement; this
is presented in Section 2. We also provide a similar result for the weak discrete Morrey
spaces, which were also introduced in [1].
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We remark that sequences in the discrete Morrey spaces introduced in [1] are de-
fined on the set of integers. An extension to Zd are given in the paper [2]. Haroske and
Skrzypczak also considered such an extension in their paper [3], with a different definition,
and a different name—Morrey sequence space. The paper [3] is presented as a plenary
lecture by Professor D. Haroske at Function Spaces XII. There are some inclusion prop-
erties that were considered in [3], which (nontrivially) coincide with a few results in [1].
We present this observation in Section 3.

2. Main results. Given 1 ≤ p ≤ q < ∞, the classical Morrey space on the real line,
which we denote byMp

q =Mp
q(R), is a Banach space with respect to the norm

‖f‖Mp
q

:= sup
a∈R,r>0

(2r)1/q−1/p
(∫ a+r

a−r
|f(t)|p dt

)1/p
(f ∈Mp

q).

We remark that if p = q thenMp
p = Lp.

We denote by ω the set N ∪ {0}. For any m ∈ Z and N ∈ ω, we define

Sm,N := {m−N, . . . ,m, . . . ,m+N}.

Note that the cardinality of Sm,N , which we denote by |Sm,N |, is 2N+1. Let K be R or C
and fix 1 ≤ p ≤ q < ∞. The discrete Morrey space `pq = `pq(Z) is the space of sequences
x = (xk)k∈Z taking values in K such that

‖x‖`pq := sup
m∈Z, N∈ω

|Sm,N |1/q−1/p
( ∑
k∈Sm,N

|xk|p
)1/p

<∞.

We remark that if p = q then `pp = `p.
Any sequence x defined on Z can be naturally identified with a function x̄ : R → R

defined by

x̄(t) =
(∑
k∈Z
|xk|pχ[k,k+1)(t)

)1/p
(t ∈ R),

and we use this notation throughout the paper.
We next prove that x̄ ∈ Mp

q whenever x ∈ `pq , showing that `pq can be considered as
a subspace of Mp

q . The following notation is used in the proof: Let a, b ∈ R, we denote
by bac, the greatest integer less than or equal to x; we denote by dae, the least integer
greater than or equal to a; and we denote by a ∨ b, the least upper bound of a and b.

Theorem 2.1. Let 1 ≤ p ≤ q < ∞. Then `pq can be considered as a closed subspace
ofMp

q . Moreover, there exist constants B,C > 0 such that for every x ∈ `pq ,

B‖x‖`pq ≤ ‖x̄‖Mp
q
≤ C‖x‖`pq .

Proof. Let x ∈ `pq . We wish to show that

‖x̄‖Mp
q

:= sup
a∈R,r>0

(2r)1/q−1/p
(∫ a+r

a−r
|x̄(t)|p dt

)1/p
<∞.

To this end, let a ∈ R, and put r ∈ (0, 1). We consider five mutually disjoint cases.
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Case 1: a ∈ Z. Then

(2r)1/q−1/p
(∫ a+r

a−r
|x̄(t)|p dt

)1/p
= (2r)1/q−1/p

(
|xa−1|pr + |xa|pr

)1/p

≤ (2r)1/q
(
|xa−1|p + |xa|p

)1/p
≤ 21/p(2 · 1)1/q−1/p

(
|xa−1|p + |xa|p

)1/p

= 21/p(2 · 1)1/q−1/p
(∫ a+1

a−1
|x̄(t)|p dt

)1/p
.

Case 2: a /∈ Z and r > a−bac and r > dae−a. Then r > 1
2 , and thus (2r)1/q−1/p ≤ 1.

Moreover, we also have ba− rc = ba− 1c and ba+ rc = ba+ 1c. Thus, since x̄ is a step
function, we have

(2r)1/q−1/p
(∫ a+r

a−r
|x̄(t)|p dt

)1/p

= (2r)1/q−1/p(|xba−rc|p(bac − (a− r)) + |xbac|p + |xba+rc|p(a+ r − dae)
)1/p

≤
(
|xba−rc|p(bac − (a− 1)) + |xbac|p + |xba+rc|p(a+ 1− dae)

)1/p

=
(
|xba−1c|p(bac − (a− 1)) + |xbac|p + |xba+1c|p(a+ 1− dae)

)1/p

= 21/p−1/q(2 · 1)1/q−1/p
(∫ a+1

a−1
|x̄(t)|p dt

)1/p
.

Case 3: a /∈ Z and r ≤ a− bac and r ≤ dae − a. Then

(2r)1/q−1/p
(∫ a+r

a−r
|x̄(t)|p dt

)1/p
= (2r)1/q−1/p|xbac|(2r)1/p

= (2r)1/q|xbac|

≤ 21/q|xbac|

= 21/p(2 · 1)1/q−1/p|xbac|

≤ 21/p(2 · 1)1/q−1/p(|xba−1c|p(bac − (a− 1)) + |xbac|p + |xba+1c|p(a+ 1− dae)
)1/p

= 21/p(2 · 1)1/q−1/p
(∫ a+1

a−1
|x̄(t)|p dt

)1/p
.

Case 4: a /∈ Z and a− bac < r ≤ dae − a. We note that ba− rc = ba− 1c. Then

(2r)1/q−1/p
(∫ a+r

a−r
|x̄(t)|p dt

)1/p

= (2r)1/q−1/p(|xba−rc|p(bac − (a− r)
)

+ |xbac|p(a+ r − bac)
)1/p

= (2r)1/q−1/p(|xba−1c|p
(
bac − (a− r)

)
+ |xbac|p(a+ r − bac)

)1/p

≤ (2r)1/q−1/p(2rmax{|xba−1c|p, |xbac|p}
)1/p

= (2r)1/q(max{|xba−1c|p, |xbac|p}
)1/p

≤ 21/p(2 · 1)1/q−1/p max{|xba−1c|, |xbac|}.
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If max{|xba−1c|, |xbac|} = |xbac| then

21/p(2 · 1)1/q−1/p max{|xba−1c|, |xbac|} = 21/p(2 · 1)1/q−1/p|xbac|

≤ 21/p(2 · 1)1/q−1/p(|xba−1c|p(bac − (a− 1)) + |xbac|p + |xba+1c|p(a+ 1− dae)
)1/p

= 21/p(2 · 1)1/q−1/p
(∫ a+1

a−1
|x̄(t)|p dt

)1/p
.

On the other hand, if max{|xba−1c|, |xbac|} = |xba−1c| then

21/p(2 · 1)1/q−1/p max{|xba−1c|, |xbac|} = 21/p(2 · 1)1/q−1/p|xba−1c|

≤ 21/p(2 · 1)1/q−1/p(|xba−2c|p(ba− 1c − (a− 2)) + |xba−1c|p + |xbac|p(a− da− 1e)
)1/p

= 21/p(2 · 1)1/q−1/p
(∫ (a−1)+1

(a−1)−1
|x̄(t)|p dt

)1/p
.

Treating Case 5, which is a /∈ Z and dae − a < r ≤ a − bac, similarly to Case 4, we
see from these five cases that

‖x̄‖Mp
q
≤ C sup

a∈R,r≥1
(2r)1/q−1/p

(∫ a+r

a−r
|x̄(t)|p dt

)1/p
.

Furthermore, if u ≥ 1 then

(2u)1/q−1/p ≤ 21/p−1/q(2(u+ 1)
)1/q−1/p

, (1)

so for a ∈ R and r ≥ 1 we have

(2r)1/q−1/p
(∫ a+r

a−r
|x̄(t)|p dt

)1/p
≤ (2brc)1/q−1/p

(∫ a+dre

a−dre
|x̄(t)|p dt

)1/p

≤ 21/p−1/q(2dre)1/q−1/p(∫ a+dre

a−dre
|x̄(t)|p dt

)1/p
.

Hence

‖x̄‖Mp
q
≤ C sup

a∈R,r∈N
(2r)1/q−1/p

(∫ a+r

a−r
|x̄(t)|p dt

)1/p
.

Next let a /∈ Z, and fix r ∈ N. Then ba± rc = bac ± r and da± re = dae ± r. Thus

(2r)1/q−1/p
(∫ a+r

a−r
|x̄(t)|p dt

)1/p

= (2r)1/q−1/p
(ba+r−1c∑
i=da−re

|xi|p + |xba−rc|p
(
da− re − (a− r)

)
+ |xba+rc|p

(
a+ r − ba+ rc

))1/p

= (2r)1/q−1/p
(bac+r−1∑
i=dae−r

|xi|p + |xbac−r|p
(
dae − a

)
+ |xbac+r|p

(
a− bac

))1/p
.
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Define the continuous function g : [bac, dae]→ R by

g(u) = (2r)Q
(bac+r−1∑
i=dae−r

|xi|p + |xbac−r|p
(
dae − u

)
+ |xbac+r|p

(
u− bac

))1/p
,

where Q = 1/q − 1/p. Observe that g is monotone on [bac, dae]. It follows that

(2r)Q
(∫ a+r

a−r
|x̄(t)|p dt

)1/p

≤ max
{

(2r)Q
(∫ bac+r
bac−r

|x̄(t)|p dt
)1/p

, (2r)Q
(∫ dae+r
dae−r

|x̄(t)|p dt
)1/p

}
.

Therefore,

‖x̄‖Mp
q
≤ C sup

a∈Z,r∈N
(2r)Q

(∫ a+r

a−r
|x̄(t)|p dt

)1/p
.

It follows that

‖x̄‖Mp
q
≤ C sup

a∈Z,r∈N
(2r)Q

(∫ a+r

a−r
|x̄(t)|p dt

)1/p
= C sup

a∈Z,r∈N
(2r)Q

( ∑
k∈Sa,r\{a+r}

|xk|p
)1/p

≤ 2−QC
[

sup
a∈Z,r∈ω

(2r + 2)Q
( ∑
k∈Sa,r

|xk|p
)1/p]

≤ 2−QC
[

sup
a∈Z,r∈ω

(2r + 1)Q
( ∑
k∈Sa,r

|xk|p
)1/p]

<∞.

Note the use of (1) in the second to last step. Hence, `pq can be considered as a subset
ofMp

q .
For the last statement of the proof, set Rm,N = Sm,N \ {m+N} and observe that

‖x‖`pq = sup
m∈Z,N∈ω

(2N + 1)Q
( ∑
k∈Sm,N

|xk|p
)1/p

= |xm| ∨ sup
m∈Z,N∈N

(2N + 1)Q
( ∑
k∈Rm,N

|xk|p + |xm+N |p
)1/p

≤ 2−Q‖x̄‖Mp
q
∨ sup
m∈Z,N∈N

(2N)Q
(( ∑

k∈Rm,N

|xk|p
)1/p

+ |xm+N |
)

≤ 2−Q‖x̄‖Mp
q
∨ 2 sup

m∈Z,N∈N
(2N)Q max

{( ∑
k∈Rm,N

|xk|p
)1/p

, |xm+N |
}
.

Furthermore,

sup
m∈Z,N∈N

(2N)Q max
{( ∑

k∈Rm,N

|xk|p
)1/p

, |xm+N |
}

≤ 2−Q sup
m∈Z,N∈N

max
{

(2N)Q
( ∑
k∈Rm,N

|xk|p
)1/p

, (4N)Q
( ∑
k∈Rm,2N

|xk|p
)1/p}

,
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and

sup
m∈Z,N∈N

max
{

(2N)Q
( ∑
k∈Rm,N

|xk|p
)1/p

, (4N)Q
( ∑
k∈Rm,2N

|xk|p
)1/p}

≤ max
{

sup
m∈Z,N∈N

(2N)Q
( ∑
k∈Rm,N

|xk|p
)1/p

, sup
m∈Z,N∈N

(4N)Q
( ∑
k∈Rm,2N

|xk|p
)1/p}

= sup
m∈Z,N∈N

(2N)Q
( ∑
k∈Rm,N

|xk|p
)1/p

= sup
m∈Z,N∈N

(2N)Q
(∫ m+N

m−N
|x̄(t)|p dt

)1/p

≤ sup
a∈R,r>0

(2r)Q
(∫ a+r

a−r
|x̄(t)|p dt

)1/p
= ‖x̄‖Mp

q
.

That `pq can be considered as a closed subspace of Mp
q now follows from [1, Proposi-

tion 2.2].

As a consequence of Theorem 2.1, we obtain the following well-known results, for
p = q.

Remark 2.2. Let 1 ≤ p < ∞. Then `p can be considered as a closed subspace of Lp.
Moreover, there exist constants B,C > 0 such that for every x ∈ `p,

B‖x‖`p ≤ ‖x̄‖Lp ≤ C‖x‖`p .

A similar result holds for the weak discrete Morrey spaces. Given 1 ≤ p ≤ q < ∞,
the classical weak Morrey space on the real line, which will be denoted here by wMp

q =
wMp

q(R), is a quasi-Banach space with respect to the quasi-norm

‖f‖wMp
q

:= sup
a∈R,r>0,γ>0

(2r)Qγ
(
m{t ∈ (a− r, a+ r) : |f(t)| > γ}

)1/p
,

where m denotes the Lebesgue measure on R and Q = 1/q − 1/p. For 1 ≤ p ≤ q < ∞,
the weak type discrete Morrey space w`pq = w`pq(Z) is the space of sequences x = (xk)k∈Z
taking values in K such that

‖x‖w`pq := sup
m∈Z,N∈ω,γ>0

|Sm,N |Qγ
∣∣{k ∈ Sm,N : |xk| > γ}

∣∣1/p <∞.
Theorem 2.3. Let 1 ≤ p ≤ q <∞. Then w`pq can be considered as a closed subspace of
wMp

q . Furthermore, there exist constants B,C > 0 such that for every x ∈ w`pq ,

B‖x‖w`pq ≤ ‖x̄‖wMp
q
≤ C‖x‖w`pq .

Proof. Let x ∈ w`pq . We have

‖x̄‖wMp
q

= sup
a∈R,r>0,γ>0

(2r)Qγ
(
m{t ∈ (a− r, a+ r) : |x̄(t)| > γ}

)1/p

≤ sup
a∈R,r>0,γ>0

(2r)Qγ
(
m{t ∈ (bac − dre, bac+ dre+ 1) : |x̄(t)| > γ}

)1/p

= sup
a∈Z,r∈N,γ>0

(2r)Qγ
(
m{t ∈ (a− r, a+ r + 1) : |x̄(t)| > γ}

)1/p
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= sup
a∈Z,r∈N,γ>0

(2r)Qγ|{k ∈ Sa,r : |xk| > γ}|1/p

≤ C sup
a∈Z,r∈N,γ>0

(2r + 2)Qγ|{k ∈ Sa,r : |xk| > γ}|1/p

≤ C sup
a∈Z,r∈ω,γ>0

(2r + 1)Qγ|{k ∈ Sa,r : |xk| > γ}|1/p = C‖x‖w`pq <∞.

It now follows from [1, Proposition 3.4] that w`pq can be considered as a closed subspace
of wMp

q .
Moreover, using the fact that (2x+ 1)Q ≤ 2−Q(2x+ 2)Q for x > 0, we have

‖x‖w`pq = sup
a∈Z,r∈ω,γ>0

(2r + 1)Qγ|{k ∈ Sa,r : |xk| > γ}|1/p

= sup
a∈Z,r∈ω,γ>0

(2r + 1)Qγ
(
m{t ∈ (a− r, a+ r + 1) : |x̄(t)| > γ}

)1/p

≤ sup
a∈Z,r∈ω,γ>0

(2r + 1)Qγ
(
m{t ∈ (a− (r + 1), a+ r + 1) : |x̄(t)| > γ}

)1/p

≤ 2−Q sup
a∈Z,r∈ω,γ>0

(
2(r + 1)

)Q
γ
(
m{t ∈ (a− (r + 1), a+ r + 1) : |x̄(t)| > γ}

)1/p

= 2−Q sup
a∈Z,r∈N,γ>0

(
2r
)Q
γ
(
m{t ∈ (a− r, a+ r) : |x̄(t)| > γ}

)1/p

≤ 2−Q sup
a∈R,r>0,γ>0

(
2r
)Q
γ
(
m{t ∈ (a− r, a+ r) : |x̄(t)| > γ}

)1/p

= 2−Q‖x̄‖wMp
q
.

3. Remarks on some inclusion properties of the discrete Morrey spaces. We
start the section by recalling the following result from [1]: for any 1 ≤ p1 ≤ p2 ≤ q <∞,
we have `p2

q ⊆ `p1
q (see also Proposition 1.3 part (ii) of [3]). We may also fix the parameter

p and vary q, and therefore obtain the following result:

Proposition 3.1. Let 1 ≤ p ≤ q1 ≤ q2 <∞. Then `pq1
⊆ `pq2

.

Proof. Let x ∈ `pq1
. For all m ∈ Z and N ∈ ω, since q1 ≤ q2, we have

|Sm,N |1/q2 = (2N + 1)1/q2 ≤ (2N + 1)1/q1 = |Sm,N |1/q1

and therefore

|Sm,N |1/q2
( ∑
k∈Sm,N

|xk|p
)1/p

≤ |Sm,N |1/q1
( ∑
k∈Sm,N

|xk|p
)1/p

Taking supremum over all m ∈ Z and N ∈ ω gives us

‖x‖`pq2
≤ ‖x‖`pq1

,

and this completes the proof.

Furthermore, we have the result that every sequence in the discrete Morrey spaces
is bounded (see also Proposition 1.3 part (iii) of [3]), which illustrates a fundamental
difference between `pq andMp

q .
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Proposition 3.2. Let 1 ≤ p ≤ q <∞. Then `pq ⊆ `∞(Z).

Proof. Let x ∈ `pq . For all m ∈ Z and N ∈ ω, we have

|xm| = |Sm,0|1/q−1/p
( ∑
k∈Sm,0

|xk|p
)1/p

≤ |Sm,N |1/q−1/p
( ∑
k∈Sm,N

|xk|p
)1/p

.

Taking supremum over all m ∈ Z and N ∈ ω gives us

‖x‖`∞ = sup
m∈Z
|xm| ≤ sup

m∈Z, N∈ω
|Sm,N |1/q−1/p

( ∑
k∈Sm,N

|xk|p
)1/p

= ‖x‖`pq ,

and this completes the proof.

We may also vary both parameters (in the manner stated below), and obtain the
following inclusion property:

Proposition 3.3. Let 1 ≤ p1 ≤ p2 ≤ q2 ≤ q1 <∞. Then `p2
q2
⊆ `p1

q1
.

Proof. Let x ∈ `p2
q2
. Note that since q2 ≤ q1, we have (2N + 1)

1
q1
− 1
q2 ≤ 1. We also have

(by an application of Hölder’s inequality), that for all m ∈ Z and N ∈ ω,( 1
|Sm,N |

∑
k∈Sm,N

|xk|p1
)1/p1

≤
( 1
|Sm,N |

∑
k∈Sm,N

|xk|p2
)1/p2

and so

(2N + 1)1/q1−1/q2
( 1
|Sm,N |

∑
k∈Sm,N

|xk|p1
)1/p1

≤
( 1
|Sm,N |

∑
k∈Sm,N

|xk|p2
)1/p2

and finally

(2N + 1)1/q1
( 1
|Sm,N |

∑
k∈Sm,N

|xk|p1
)1/p1

≤ (2N + 1)1/q2
( 1
|Sm,N |

∑
k∈Sm,N

|xk|p2
)1/p2

.

Taking supremum over m ∈ Z and N ∈ ω completes the proof.

In what follows, we discuss how Proposition 3.3 is a special case of [1, Theorem 4.3]
and also in [3, Theorem 2.1].

We recall a result by Haroske and Skrzypczak [3]. We remark that the definition of
the Morrey sequence space (or, discrete Morrey space, in our terminology) from [3] is
omitted, and we rewrite the theorem from [3] in our notation below, for discrete Morrey
space as defined in Section 2 (i.e. on Z). We also replace p1, p2, q1, q2 in the theorem by
p2, p1, q2, q1, respectively.

Theorem 3.4 (Haroske and Skrzypczak [3, Theorem 2.1]). Let 0 < p1 ≤ q1 < ∞ and
0 < p2 ≤ q2 < ∞. Then, the embedding `p2

q2
↪→ `p1

q1
is continuous if and only if the

following conditions hold: q2 ≤ q1 and p1
q1
≤ p2

q2
.

Remark 3.5. The condition in Proposition 3.3 that 1 ≤ p1 ≤ p2 ≤ q2 ≤ q1 < ∞
immediately provides the first condition in Theorem 3.4 that q2 ≤ q1. Furthermore, we
also have

p1

q1
≤ p1

q2
≤ p2

q2
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which satisfies the second condition in Theorem 3.4, and therefore `p2
q2
⊆ `p1

q1
, as stated in

Proposition 3.3.
We remark that we obtained a more generalised version of Proposition 3.3 in [1],

for generalised discrete Morrey spaces, which are defined as follows: Gp is the set of all
functions φ : 2ω+ 1→ (0,∞) such that φ is almost decreasing (that is there exists C > 0
such that φ(2M + 1) ≥ Cφ(2N + 1), for M,N ∈ ω with M ≤ N), and the mapping
(2N + 1) 7→ (2N + 1)1/pφ((2N + 1)) is almost increasing (that is, there exists C > 0 such
that (2M + 1)1/pφ(2M + 1) ≤ C(2N + 1)1/pφ(2N + 1), for M,N ∈ ω with M ≤ N). For
1 ≤ p < ∞ and φ ∈ Gp, the generalised discrete Morrey space `pφ = `pφ(Z) is defined as
the set of all real (or complex) sequences x = (xk)k∈Z such that

‖x‖`p
φ

= sup
m∈Z,N∈ω

1
φ(2N + 1)

(
1

|Sm,N |
∑

k∈Sm,N

|xk|p
)1/p

<∞.

Theorem 3.6 (Gunawan, Kikianty, Schwanke [1, Theorem 4.3]). Let 1 ≤ p1 ≤ p2 <∞,
φ1 ∈ Gp1 , and φ2 ∈ Gp2 . Then the following statements are equivalent:
(i) φ2 . φ1 (on 2ω + 1).
(ii) ‖ · ‖`p1

φ1
. ‖ · ‖`p2

φ2
(on `p2

φ2
).

(iii) `p2
φ2
⊆ `p1

φ1
.

We note that for two functions f, g : X → R (here X 6= ∅), we have f . g if there
exists a constant C > 0 such that f(x) ≤ Cg(x) for every x ∈ X.
Remark 3.7.
1. With the following choice of functions: φi(2N + 1) = (2N + 1)−

1
qi , N ∈ ω, i = {1, 2}

in Theorem 3.6, we obtain Proposition 3.3.
2. In the proof of the theorem in [1], it is shown that the inclusion in Theorem 3.6 part

(iii) is continuous, which is consistent with Theorem 3.4 (of Haroske and Skrzypczak).
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