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Abstract. We study spaces CVk(Ω, E) of k-times continuously partially differentiable functions
on an open set Ω ⊂ Rd with values in a locally convex Hausdorff space E. The space CVk(Ω, E)
is given a weighted topology generated by a family of weights Vk. For the space CVk(Ω, E) and
its subspace CVk

0(Ω, E) of functions that vanish at infinity in the weighted topology we try to
answer the question whether their elements can be approximated by functions with values in
a finite dimensional subspace. We derive sufficient conditions for an affirmative answer to this
question using the theory of tensor products.

1. Introduction. This paper is dedicated to the following problem:Which vector-valued
k-times continuously partially differentiable functions can be approximated in a weighted
topology by functions with values in a finite dimensional subspace? The answer to this
question is closely related to the theory of tensor products and the so-called approximation
property. A locally convex Hausdorff space X is said to have (Schwartz’) approximation
property if the identity IX on X is contained in the closure of F(X) in Lκ(X) where
Lκ(X) denotes the space of continuous linear operators from X to X equipped with the
topology of uniform convergence on the absolutely convex compact subsets of X and
F(X) its subspace of operators with finite rank.

The case k = 0 is well-studied. In [1], [2] and [3] Bierstedt considered the space
CV(Ω, E) of all continuous functions f : Ω → E from a completely regular Hausdorff
space Ω to a locally convex Hausdorff space (E, (pα)α∈A) over a field K with a topology
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induced by a Nachbin-family V := (νj)j∈J of weights, i.e. the space

CV(Ω, E) := {f ∈ C(Ω, E) | ∀ j ∈ J, α ∈ A : |f |j,α <∞}

where C(Ω, E) := C0(Ω, E) is the space of continuous functions from Ω to E and

|f |j,α := sup
x∈Ω

pα(f(x))νj(x).

Recall that a family V := (νj)j∈J of non-negative functions νj : Ω → [0,∞) is called
a Nachbin-family of weights if the functions νj are upper semi-continuous and the family
is directed, i.e. for every j, i ∈ J there are k ∈ J and C > 0 such that max(νi, νj) ≤ Cνk.
The notion U ≤ V for two Nachbin-families means that for every µ ∈ U there is ν ∈ V
such that µ ≤ ν.

From the perspective of our problem the space CV(Ω, E) has an interesting topological
subspace, namely, the space CV0(Ω, E) consisting of the functions that vanish at infinity
when weighted which is given by

CV0(Ω, E) := {f ∈ CV(Ω, E) | ∀ ε > 0, j ∈ J, α ∈ A ∃ K ⊂ Ω compact : |f |Ω\K,j,α < ε}

where
|f |Ω\K,j,α := sup

x∈Ω\K
pα(f(x))νj(x).

One of the main results from [2] solves our problem for k = 0, Nachbin-families of weights
and involves kR-spaces. A completely regular space Ω is a kR-space if for any completely
regular space Y and any map f : Ω → Y whose restriction to each compact K ⊂ Ω
is continuous the map is already continuous on Ω (see [5, (2.3.7) Proposition, p. 22]).
Obviously, every locally compact Hausdorff space is a kR-space. Further examples of
kR-spaces are metrisable spaces by [13, Proposition 11.5, p. 181] and [8, 3.3.20, 3.3.21
Theorem, p. 152] as well as strong duals of Fréchet–Montel spaces by [9, Proposition 3.27,
p. 95] and [16, 4.11 Theorem, p. 39].

Theorem 1.1 ([2, 5.5 Theorem, p. 205–206]). Let E be a locally convex Hausdorff space,
Ω a completely regular Hausdorff space and V a Nachbin-family on Ω such that one of
the following conditions is satisfied.

(i) Z :=
{
v : Ω→ R | v constant, v ≥ 0

}
≤ V.

(ii) W :=
{
µχK | µ > 0, K ⊂ Ω compact

}
≤ V, where χK : Ω → R is the characteristic

function of K, and Ω is a kR-space.

Then the following holds.

a) CV0(Ω)⊗ E is dense in CV0(Ω, E).
b) If E is complete, then

CV0(Ω, E) ∼= CV0(Ω)εE ∼= CV0(Ω)⊗̂εE.

c) CV0(Ω) has the approximation property.

Here CV0(Ω)⊗E stands for the tensor product, CV0(Ω)⊗̂εE for the completion of the
injective tensor product and CV0(Ω)εE := Le(CV0(Ω)′κ, E) for the ε-product of Schwartz
of the spaces CV0(Ω) := CV0(Ω,K) and E. Part a) gives an affirmative answer to our
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question for the space CV0(Ω, E) since it implies that for every ε > 0, α ∈ A, j ∈ J and
f ∈ CV0(Ω, E) there are m ∈ N, fn ∈ CV0(Ω) and en ∈ E, 1 ≤ n ≤ m, such that∣∣∣f − m∑

n=1
fnen

∣∣∣
j,α

< ε.

Concerning CV(Ω, E), the answer to our question is not that satisfying but still affirmative
if we make some restrictions on E. If E has the approximation property, then E⊗εCV(Ω)
is dense in EεCV(Ω). Due to the symmetries CV(Ω)⊗εE ∼= E⊗ε CV(Ω) and CV(Ω)εE ∼=
EεCV(Ω), we infer that CV(Ω)⊗εE is dense in CV(Ω)εE ∼= CV(Ω, E) if E is a semi-Montel
space with approximation property and Z ≤ V or Ω is a kR-space by [3, 2.12 Satz (1),
p. 141]. A second condition for an affirmative answer without supposing that E has the
approximation property but putting more restrictions on CV(Ω) can be found in [3, 2.12
Satz (2), p. 141].

We aim to prove a version of Bierstedt’s theorem for spaces of weighted continuously
partially differentiable functions. To the best of our knowledge the approximation problem
was not considered in a general setting for k > 0 and open Ω ⊂ Rd, i.e. to derive sufficient
conditions on the weights and the spaces such that the answer is positive. For special
cases with Ω = Rd like the Schwartz space an affirmative answer was already given in
e.g. [21, Proposition 9, p. 108] and [21, Théorème 1, p. 111]. For the space of k-times
continuously partially differentiable functions on open Ω ⊂ Rd with the topology of
uniform convergence of all partial derivatives up to order k on compact sets a positive
answer can be found in e.g. [23, Proposition 44.2, p. 448] and [23, Theorem 44.1, p. 449].
Let us consider for a moment the latter space and the corresponding proof given by Trèves
in [23]. The space Ck(Ω, E) of k-times continuously partially differentiable functions on
a locally compact Hausdorff space Ω if k = 0, resp. open Ω ⊂ Rd if k ∈ N ∪ {∞}, is
equipped with the system of seminorms given by

qK,l,α(f) := sup
x∈K

β∈Nd0 ,|β|≤l

pα
(
∂βf(x)

)
, f ∈ Ck(Ω, E), (1)

for K ⊂ Ω compact, l ∈ N0, 0 ≤ l ≤ k if k < ∞, and α ∈ A. For E = K we fix the
notion Ck(Ω) := Ck(Ω,K) and denote by Ckc (Ω) the space of all functions in Ck(Ω) having
compact support. Trèves’ affirmative answer to our question has the following form.

Theorem 1.2 ([23, Proposition 44.2, p. 448] and [23, Theorem 44.1, p. 449]). Let E be
a locally convex Hausdorff space, k ∈ N0 ∪ {∞} and Ω a locally compact Hausdorff space
if k = 0, resp. an open subset of Rd if k > 0. Then the following is true.

a) C0
c (Ω)⊗ E is dense in C0(Ω, E).

b) C∞c (Ω)⊗ E is dense in Ck(Ω, E).
c) If E is complete, then

Ck(Ω, E) ∼= Ck(Ω)⊗̂εE.

We observe that CW(Ω, E) = CW0(Ω, E) = C0(Ω, E) equipped with the usual topol-
ogy of uniform convergence on compact subsets of Ω which means that Theorem 1.1
contains the case k = 0 of the preceding theorem since locally compact Hausdorff spaces
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are kR-spaces. The proofs of Theorem 1.1 a) and Theorem 1.2 a) are done by using dif-
ferent partitions of unity, the first uses the partition of unity from [20, 23, Lemma 2,
p. 71] and the second the one from [4, Chap. IX, §4.3, Corollary, p. 186]. The key idea
for the proof of Theorem 1.2 b) is an approximation in three steps relying on part a) and
convolution. First, for every f ∈ Ck(Ω, E) there is an approximation f̃ ∈ Ckc (Ω, E) of f
by multiplication of f with a suitable cut-off function. Second, for every f̃ ∈ Ckc (Ω, E)
the convolution f̃ ∗ ρn of f̃ with a sequence (ρn) of mollifiers in C∞c (Ω) converges to f̃ in
Ck(Ω, Ê) where Ê denotes the completion of E (approximation by regularisation). Third,
for every f̃ ∈ Ckc (Ω, E) there is an approximation g ∈ C0

c (Ω)⊗E in the topology of C0(Ω, E)
by part a). Using the properties of the convolution, one gets that g ∗ ρn ∈ C∞c (Ω) ⊗ E
and approximates f̃ ∗ ρn for n large enough in Ck(Ω, Ê) which itself is identical to the
completion of Ck(Ω, E).

The outline of our paper is along the lines of Trèves’ proof. After introducing some
notation and preliminaries in Section 2, we define the weighted spaces CVk(Ω, E) and
CVk0(Ω, E) in Section 3 and show that they are complete if the family of weights Vk is
locally bounded away from zero (see Definition 3.6). Then we treat their relation to the
space Ckc (Ω, E) of functions in Ck(Ω, E) with compact support where the condition of local
boundedness of a family of weights comes into play (see Definition 3.8). We formulate
a cut-off criterion (see Definition 3.10) which is a sufficient condition for the density
of Ckc (Ω, E) in CVk0(Ω, E) for locally bounded Vk. We close the third section with the
relation between tensor products and our problem on finite dimensional approximation.
In Section 4 we define the convolution f ∗ g of f ∈ Ck(Rd, E) and g ∈ Cn(Rd) when one
of them is compactly supported and prove an approximation by regularisation result. In
the last section we verify the corresponding part a) of Theorem 1.2 for CV0

0(Ω, E) with
locally compact Ω where we adapt the proof of Theorem 1.1 a) in a way that we can use
the partition of unity from [4, Chap. IX, §4.3, Corollary, p. 186] instead and weaken the
condition of upper semi-continuity of the weights to being locally bounded and locally
bounded away from zero. Then we mix all ingredients to get our main Theorem 5.2
which is a version of Theorem 1.1 and 1.2 for barrelled CVk0(Ω) with a family of weights
Vk being locally bounded and locally bounded away from zero if CVk0(Ω, E) fulfils the
cut-off criterion.

2. Notation and preliminaries. We set N∞ := N ∪ {∞} and N0,∞ := N0 ∪ {∞}. For
k ∈ N0,∞ we use the notation 〈k〉 := {n ∈ N0 | 0 ≤ n ≤ k} if k 6= ∞ and 〈k〉 := N0 if
k =∞. We equip the spaces Rd, d ∈ N, and C with the usual Euclidean norm | · |, write
M for the closure of a subset M ⊂ Rd and denote by Br(x) := {w ∈ Rd | |w − x| < r}
the ball around x ∈ Rd with radius r > 0.

By E we always denote a non-trivial locally convex Hausdorff space, in short lcHs,
over the field K = R or C equipped with a directed fundamental system of seminorms
(pα)α∈A. If E = K, then we set (pα)α∈A := {|·|}. Further, we denote by Ê the completion
of a locally convex Hausdorff space E. For details on the theory of locally convex spaces
see [10], [14] or [18].
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A function f : Ω → E on an open set Ω ⊂ Rd to a locally convex Hausdorff space E
is called continuously partially differentiable (f is C1) if for the n-th unit vector en ∈ Rd
the limit

(∂en)f(x) := (∂en)Ef(x) := (∂xn)Ef(x) := lim
h→0

h∈R,h6=0

f(x+ hen)− f(x)
h

exists in E for every x ∈ Ω and ∂enf is continuous on Ω (∂enf is C0) for every 1 ≤ n ≤ d.
For k ∈ N a function f is said to be k-times continuously partially differentiable (f is Ck)
if f is C1 and all its first partial derivatives are Ck−1. A function f is called infinitely
continuously partially differentiable (f is C∞) if f is Ck for every k ∈ N. For k ∈ N∞ the
linear space of all functions f : Ω→ E which are Ck is denoted by Ck(Ω, E). Its subspace
of functions with compact support is written as Ckc (Ω, E) where we denote the support
of f ∈ Ck(Ω, E) by supp f .

Let f ∈ Ck(Ω, E). For β ∈ Nd0 with |β| :=
∑d
n=1 βn ≤ k we set ∂βnf := (∂βn)Ef := f

if βn = 0, and
∂βnf := (∂βn)Ef := (∂en)E · · · (∂en)E︸ ︷︷ ︸

βn-times

f

if βn 6= 0 as well as
∂βf := (∂β)Ef := ∂β1 · · · ∂βdf.

Due to the vector-valued version of Schwarz’ theorem ∂βf is independent of the order of
the partial derivatives on the right-hand side and we call |β| the order of differentiation.
Further, we observe that e′ ◦ f ∈ Ck(Ω) and (∂β)K(e′ ◦ f) = e′ ◦ (∂β)Ef for every e′ ∈ E′,
f ∈ Ck(Ω, E) and |β| ≤ k.

By L(F,E) we denote the space of continuous linear operators from F to E where
F and E are locally convex Hausdorff spaces. If E = K, we just write F ′ := L(F,K) for
the dual space. If F and E are (linearly topologically) isomorphic, we write F ∼= E. The
so-called ε-product of Schwartz is defined by

FεE := Le(F ′κ, E) (2)

where F ′ is equipped with the topology of uniform convergence on absolutely convex
compact subsets of F and L(F ′κ, E) is equipped with the topology of uniform convergence
on equicontinuous subsets of F ′ (see [22, Chap. I, §1, Définition, p. 18]). It is symmetric
which means that FεE ∼= EεF and in the literature the definition of the ε-product is
sometimes done the other way around, i.e. EεF is defined by the right-hand side of (2).
We write F ⊗̂εE for the completion of the injective tensor product F ⊗ε E and denote
by F(E) the space of linear operators from E to E with finite rank. We recall from
the introduction that a locally convex Hausdorff space E is said to have (Schwartz’)
approximation property if the identity IE on E is contained in the closure of F(E) in
Lκ(E) := Lκ(E,E) which is equipped with the topology of uniform convergence on the
absolutely convex compact subsets of E. The space E has the approximation property if
and only if E⊗F is dense in EεF for every locally convex Hausdorff space (every Banach
space) F by [15, Satz 10.17, p. 250]. For more information on the theory of ε-products
and tensor products see [6], [14] and [15].
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3. Weighted vector-valued differentiable functions and the ε-product. In this
section we introduce the spaces CVk(Ω, E) and CVk0(Ω, E) we want to consider. Then we
turn to the question of completeness of CVk(Ω, E) and CVk0(Ω, E) and when Ckc (Ω, E)
is dense in the latter space. At the end of this section we describe their connection to
the ε-product and the (completion of the) injective tensor product and derive sufficient
conditions such that they coincide.

Definition 3.1 (weight). Let k ∈ N0,∞. We say that Vk := (νj,l)j∈J,l∈〈k〉 is a (directed)
family of weights on a locally compact Hausdorff space Ω if νj,l : Ω → [0,∞) for every
j ∈ J , l ∈ 〈k〉 and

∀ j1, j2 ∈ J, l1, l2 ∈ 〈k〉 ∃ j3 ∈ J, l3 ∈ 〈k〉, C > 0 ∀ i ∈ {1, 2} : νji,li ≤ Cνj3,l3
as well as

∀ l ∈ 〈k〉, x ∈ Ω ∃ j ∈ J : 0 < νj,l(x).

Definition 3.2. For k ∈ N0,∞ and a (directed) family Vk := (νj,l)j∈J,l∈〈k〉 of weights
on a locally compact Hausdorff space Ω if k = 0 or an open set Ω ⊂ Rd if k ∈ N∞ we
define the space of weighted continuous, resp. k-times continuously partially differentiable,
functions with values in an lcHs E as

CVk(Ω, E) := {f ∈ Ck(Ω, E) | ∀ j ∈ J, l ∈ 〈k〉, α ∈ A : |f |j,l,α <∞}

where
|f |j,l,α := sup

x∈Ω
β∈Nd0 ,|β|≤l

pα
(
(∂β)Ef(x)

)
νj,l(x).

We define the topological subspace of CVk(Ω, E) consisting of the functions that vanish
with all their derivatives when weighted at infinity by

CVk0(Ω, E) := {f ∈ CVk(Ω, E) | ∀ j ∈ J, l ∈ 〈k〉, α ∈ A, ε > 0
∃ K ⊂ Ω compact : |f |Ω\K,j,l,α < ε}

where
|f |Ω\K,j,l,α := sup

x∈Ω\K
β∈Nd0 ,|β|≤l

pα
(
(∂β)Ef(x)

)
νj,l(x).

It is easily seen that these spaces are locally convex Hausdorff spaces with a directed
system of seminorms due to our assumptions on the family Vk of weights.

Remark 3.3. Suppose that in the definition of the space CVk(Ω, E) the weights also
depend on β ∈ Nd0, i.e. the seminorms used to define CVk(Ω, E) are of the form

|f |∼j,l,α := sup
x∈Ω

β∈Nd0 ,|β|≤l

pα
(
(∂β)Ef(x)

)
νj,l,β(x).

Without loss of generality we may always use weights which are independent of β. Namely,
by setting νj,l := maxβ∈Nd0 ,|β|≤l νj,l,β for j ∈ J and l ∈ 〈k〉, we can switch to the usual
system of seminorms (|f |j,l,α) induced by the weights (νj,l) which is equivalent to (|f |∼j,l,α).

The standard structure of a directed family Vk of weights on a locally compact Haus-
dorff space Ω is given by the following. Let (Ωj)j∈J be a family of sets such that Ωj ⊂ Ωj+1
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for all j ∈ J with Ω =
⋃
j∈J Ωj . Let ν̃j,l : Ω → (0,∞) be continuous for all j ∈ J and

l ∈ 〈k〉, increasing in j ∈ J , i.e. ν̃j,l ≤ ν̃j+1,l, and in l ∈ 〈k〉, i.e. ν̃j,l ≤ ν̃j,l+1 if l+ 1 ∈ 〈k〉,
such that

νj,l(x) = χΩj (x)ν̃j,l(x), x ∈ Ω,
for every j ∈ J and l ∈ 〈k〉 where χΩj is the indicator function of Ωj . Further, we remark
that the spaces CVk(Ω, E) and CVk0(Ω, E) might coincide which is already mentioned in
[2, 1.3 Bemerkung, p. 189] for k = 0.
Remark 3.4. If for every j ∈ J and l ∈ 〈k〉 there are i ∈ J and m ∈ 〈k〉 such that for
all ε > 0 there is a compact set K ⊂ Ω with νj,l(x) ≤ ενi,m(x) for all x ∈ Ω \K, then
CVk(Ω, E) = CVk0(Ω, E).

Examples of spaces where this happens are Ck(Ω, E) with the topology of uniform
convergence of all partial derivatives up to order k on compact subsets of Ω and the
Schwartz space S(Rd, E).
Example 3.5. Let E be an lcHs, k ∈ N0,∞ and Ω ⊂ Rd open. Then
a) Ck(Ω, E) = CWk(Ω, E) = CWk

0(Ω, E) with Wk := {νj,l := χΩj | j ∈ N, l ∈ 〈k〉}
where (Ωj)j∈N is a compact exhaustion of Ω,

b) S(Rd, E) = CV∞(Rd, E) = CV∞0 (Rd, E) with V∞ := {νj,l | j ∈ N, l ∈ N0} where
νj,l(x) := (1 + |x|2)l/2 for x ∈ Rd.

Proof.
a) (Ωj)j∈N being a compact exhaustion of Ω means that Ω =

⋃
j∈N Ωj , Ωj is compact

and Ωj ⊂ Ω̊j+1 for all j ∈ N where Ω̊j+1 is the set of inner points of Ωj+1. For compact
Ωj ⊂ Ω and l ∈ 〈k〉 our claim follows from Remark 3.4 with the choice i := j, m := l and
K := Ωj .

b) We recall that the Schwartz space is defined by
S(Rd, E) :=

{
f ∈ C∞(Rd, E) | ∀ l ∈ N0, α ∈ A : ‖f‖l,α <∞

}
where

‖f‖l,α := sup
x∈Rd

β∈Nd0 ,|β|≤l

pα
(
(∂β)Ef(x)

)
(1 + |x|2)l/2.

Thus S(Rd, E) = CV∞(Rd, E). We note that for every j ∈ N, l ∈ N0 and ε > 0 there is
r > 0 such that

νj,l(x)
νj,2(l+1)(x) = (1 + |x|2)l/2

(1 + |x|2)l+1 = (1 + |x|2)−(l/2)−1 < ε

for all x /∈ Br(0) =: K yielding S(Rd, E) = CV∞0 (Rd, E) by Remark 3.4.
The question of finite dimensional approximation from the introduction is closely

connected to the property of a family of weights being locally bounded away from zero.
Definition 3.6 (locally bounded away from zero). Let Ω be a locally compact Hausdorff
space and k ∈ N0,∞. A family of weights Vk is called locally bounded away from zero
on Ω if

∀ K ⊂ Ω compact, l ∈ 〈k〉 ∃ j ∈ J : inf
x∈K

νj,l(x) > 0.
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For k = 0 (and locally compact Hausdorff Ω) this coincides with condition (ii) of
Theorem 1.1. It even guarantees that the spaces CVk(Ω, E) and CVk0(Ω, E) are complete
for complete E.

Proposition 3.7. Let E be a complete lcHs, k ∈ N0,∞ and Vk be a family of weights
which is locally bounded away from zero on a locally compact Hausdorff space Ω (k = 0)
or an open set Ω ⊂ Rd (k > 0). Then CVk(Ω, E) and CVk0(Ω, E) are complete locally
convex Hausdorff spaces. In particular, they are Fréchet spaces if E is a Fréchet space
and J countable.

Proof. Let (fτ )τ∈T be a Cauchy net in CVk(Ω, E). The space Ck(Ω, E) equipped with
the usual system of seminorms (qK,l,α) given in (1) is complete by [23, Proposition 44.1,
p. 446]. Let K ⊂ Ω compact, l ∈ 〈k〉 and α ∈ A. Since Vk is locally bounded away from
zero, there is j ∈ J such that

qK,l,α(f) ≤ sup
x∈K

νj,l(x)−1|f |j,l,α =
(

inf
x∈K

νj,l(x)
)−1|f |j,l,α, f ∈ CVk(Ω, E),

implying that the inclusion CVk(Ω, E) ↪→ Ck(Ω, E) is continuous. Thus (fτ ) is a Cauchy
net in Ck(Ω, E) as well and has a limit f in this space due to the completeness. Let j ∈ J ,
l ∈ 〈k〉, α ∈ A and ε > 0. As this convergence implies pointwise convergence, we have
that for all x ∈ Ω and β ∈ Nd0, |β| ≤ l, there exists τj,l,β,x ∈ T such that for all τ ≥ τj,l,β,x

pα
(
(∂β)Efτ (x)− (∂β)Ef(x)

)
<

ε

2νj,l(x) (3)

if νj,l(x) > 0. Furthermore, there exists τ0 ∈ T such that for all τ, µ ≥ τ0

|fτ − fµ|j,l,α <
ε

2 (4)

by assumption. Hence we get for all τ ≥ τ0 by choosing µ ≥ τj,l,β,x, τ0

pα
(
(∂β)Ef(x)

)
νj,l(x)− pα

(
(∂β)Efτ (x)

)
νj,l(x)

≤ pα
(
(∂β)Efτ (x)− (∂β)Ef(x)

)
νj,l(x)

≤ pα
(
(∂β)Efτ (x)− (∂β)Efµ(x)

)
νj,l(x) + pα

(
(∂β)Efµ(x)− (∂β)Ef(x)

)
νj,l(x)

<
(3)

sup
z∈Ω

pα
(
(∂β)Efτ (z)− (∂β)Efµ(z)

)
νj,l(z) + ε

2

≤ sup
z∈Ω

γ∈Nd0 , |γ|≤l

pα
(
(∂γ)Efτ (z)− (∂γ)Efµ(z)

)
νj,l(z) + ε

2 = |fτ − fµ|j,l,α + ε

2 <(4)
ε

if νj,l(x) > 0. We deduce that for all τ ≥ τ0

pα
(
(∂β)Ef(x)

)
νj,l(x)− pα

(
(∂β)Efτ (x)

)
νj,l(x)

≤ pα
(
(∂β)Efτ (x)− (∂β)Ef(x)

)
νj,l(x) < ε

if νj,l(x) > 0. If νj,l(x) = 0, then this estimate is also fulfilled and so |fτ − f |j,l,α ≤ ε

as well as |f |j,l,α ≤ ε + |fτ |j,l,α for all τ ≥ τ0. This means that f ∈ CVk(Ω, E) and that
(fτ ) converges to f in CVk(Ω, E). Therefore CVk(Ω, E) is complete and CVk0(Ω, E) as well
because it is a closed subspace of the complete space CVk(Ω, E).
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For k ∈ N0,∞ and locally compact Hausdorff Ω (k = 0) or open Ω ⊂ Rd (k > 0) we
define CVkc (Ω, E) to be the subspace of CVk(Ω, E) of functions with compact support.
Obviously we have CVkc (Ω, E) ⊂ CVk0(Ω, E) and CVkc (Ω, E) ⊂ Ckc (Ω, E). On the other
hand, the space Ckc (Ω, E) is a linear subspace of CVkc (Ω, E) if the family of weights Vk
fulfils the definition of local boundedness.

Definition 3.8 (locally bounded). Let Ω be a locally compact Hausdorff space and
k ∈ N0,∞. A family of weights Vk is called locally bounded on Ω if

∀ K ⊂ Ω compact, j ∈ J, l ∈ 〈k〉 : sup
x∈K

νj,l(x) <∞.

Indeed, if f ∈ Ckc (Ω, E), then we have for K := supp f

|f |j,l,α = sup
x∈K

β∈Nd0 ,|β|≤l

pα
(
(∂β)Ef(x)

)
νj,l(x) ≤

(
sup
z∈K

β∈Nd0 ,|β|≤l

pα
(
(∂β)Ef(z)

))
sup
x∈K

νj,l(x)

for all j ∈ J , l ∈ 〈k〉 and α ∈ A. Hence we have:

Remark 3.9. Let E be an lcHs and k ∈ N0,∞. If Vk is a family of locally bounded
weights, then Ckc (Ω, E) = CVkc (Ω, E) algebraically.

Next, we phrase a sufficient criterion for the density of Ckc (Ω, E) in CVk0(Ω, E) for
k ∈ N0,∞, Ω ⊂ Rd open and locally bounded Vk.

Definition 3.10 (cut-off criterion). Let E be an lcHs, k ∈ N0,∞, Ω ⊂ Rd open and Vk
be a family of weights on Ω. We say that CVk0(Ω, E) satisfies the cut-off criterion if

∀ f ∈ CVk0(Ω, E), j ∈ J, l ∈ 〈k〉, α ∈ A ∃ δ > 0 ∀ ε > 0 ∃ K ⊂ Ω compact :(
K + Bδ(0)

)
⊂ Ω and |f |Ω\K,j,l,α < ε.

Remark 3.11. If Ω = Rd, then the cut-off criterion is satisfied for any δ > 0.

Example 3.12. Let E be an lcHs, k ∈ N0,∞ and Ω ⊂ Rd open. The space Ck(Ω, E)
with the usual topology of uniform convergence of all partial derivatives up to order k on
compact subsets of Ω and the Schwartz space S(Rd, E) fulfil the cut-off criterion.

Proof. For the Schwartz space this follows directly from Example 3.5 b) and Remark
3.11. By Example 3.5 a) we have Ck(Ω, E) = CWk

0(Ω, E) withWk := {νj,l := χΩj | j ∈ N,
l ∈ 〈k〉} where (Ωj)j∈N is a compact exhaustion of Ω. Choosing K := Ωj and δ :=
inf{|z − x| | z ∈ ∂Ωj , x ∈ ∂Ωj+1} > 0 for j ∈ N, we note that the cut-off criterion is
fulfilled.

The proof of the density given below uses cut-off functions and the additional δ > 0
independent of ε > 0 allows us to choose a suitable cut-off function whose derivatives
can be estimated independently of ε. But first we recall the following definitions since we
need the product rule. Let γ, β ∈ Nd0. We write γ ≤ β if γn ≤ βn for all 1 ≤ n ≤ d, and
define (

β

γ

)
:=

d∏
n=1

(
βn
γn

)
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if γ ≤ β where the right-hand side is defined by ordinary binomial coefficients. Now, we
can phrase the product rule whose proof follows by induction (just adapt the proof for
scalar-valued functions).

Proposition 3.13 (product rule). Let E be an lcHs, k ∈ N0,∞, Ω ⊂ Rd open, f ∈
Ck(Ω, E) and g ∈ Ck(Ω). Then gf ∈ Ck(Ω, E) and

(∂β)E(gf)(x) =
∑
γ≤β

(
β

γ

)
(∂β−γ)Kg(x)(∂γ)Ef(x), x ∈ Ω, β ∈ Nd0, |β| ≤ k.

Lemma 3.14. Let E be an lcHs, k ∈ N0,∞ and Vk be a family of locally bounded weights on
an open set Ω ⊂ Rd. If CVk0(Ω, E) satisfies the cut-off criterion, then the space Ckc (Ω, E)
is dense in CVk0(Ω, E).

Proof. The local boundedness of Vk yields that Ckc (Ω, E) is a linear subspace of CVk0(Ω, E)
by Remark 3.9 which we equip with the induced topology. Let f ∈ CVk0(Ω, E), j ∈ J ,
l ∈ 〈k〉 and α ∈ A. Due to the cut-off criterion there is δ > 0 such that for ε > 0 there is
K ⊂ Ω compact with (K+Bδ(0)

)
⊂ Ω and |f |Ω\K,j,l,α < ε. We choose a cut-off function

ψ ∈ C∞c (Ω) with 0 ≤ ψ ≤ 1 so that ψ = 1 in a neighbourhood of K and∣∣(∂β)Kψ
∣∣ ≤ Cβδ−|β|

on Ω for all β ∈ Nd0 where Cβ > 0 only depends on β (see [12, Theorem 1.4.1, p. 25]). We
set K0 := suppψ, note that ψf ∈ Ckc (Ω, E) by the product rule and

|f − ψf |j,l,α = sup
x∈Ω\K

β∈Nd0 ,|β|≤l

pα
(
(∂β)E(f − ψf)(x)

)
νj,l(x)

≤ sup
x∈Ω\K

β∈Nd0 ,|β|≤l

pα
(
(∂β)Ef(x)

)
νj,l(x) + sup

x∈Ω\K
β∈Nd0 ,|β|≤l

pα
(
(∂β)E(ψf)(x)

)
νj,l(x)

= |f |Ω\K,j,l,α + sup
x∈(Ω\K)∩K0
β∈Nd0 ,|β|≤l

pα

(∑
γ≤β

(
β

γ

)
(∂β−γ)Kψ(x)(∂γ)Ef(x)

)
νj,l(x)

≤ |f |Ω\K,j,l,α + sup
z∈K0

β∈Nd0 ,|β|≤l

∑
γ≤β

(
β

γ

)∣∣(∂β−γ)Kψ(z)
∣∣( sup

x∈Ω\K
τ∈Nd0 ,|τ |≤l

pα
(
(∂τ )Ef(x)

)
νj,l(x)

)

≤ |f |Ω\K,j,l,α + sup
β∈Nd0 ,|β|≤l

∑
γ≤β

(
β

γ

)
Cβ−γδ

−|β−γ|

︸ ︷︷ ︸
=:Cl,δ<∞

|f |Ω\K,j,l,α

= (1 + Cl,δ)|f |Ω\K,j,l,α < (1 + Cl,δ)ε.

The independence of Cl,δ from ε implies the statement.

We complete this section by pointing out the link between our question on finite di-
mensional approximation and the tensor product. If Vk is locally bounded away from zero,
there is a nice relation between our spaces of vector-valued functions and the ε-product
which uses that the point-evaluation functionals δx : f 7→ f(x) are continuous on CVk(Ω)
by our definition of a weight.
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Proposition 3.15. Let E be an lcHs, k ∈ N0,∞, Vk be a family of weights which is
locally bounded away from zero on a locally compact Hausdorff space Ω (k = 0) or an
open set Ω ⊂ Rd (k > 0).

a) In addition, let CVk0(Ω) be barrelled if k > 0. Then

SCVk0 (Ω) : CVk0(Ω)εE → CVk0(Ω, E), u 7−→ [x 7→ u(δx)],

is an isomorphism into, i.e. an isomorphism to its range.
b) In addition, let CVk(Ω) be barrelled if k > 0. Then

SCVk(Ω) : CVk(Ω)εE → CVk(Ω, E), u 7−→ [x 7→ u(δx)],

is an isomorphism into.

Proof. Let u ∈ CVk0(Ω)εE, resp. CVk(Ω)εE, and as a simplification we omit the index
of S. The continuity of S(u) is a consequence of [17, 4.1 Proposition, p. 18] and [17,
4.2 Lemma (i), p. 19] since Vk is locally bounded away from zero. If k > 0, then the
continuous partial differentiability of S(u) up to order k follows from [17, 4.12 Proposition,
p. 22] as CVk0(Ω), resp. CVk(Ω), is barrelled and Vk locally bounded away from zero. If
u ∈ CVk0(Ω)εE, then S(u) vanishes together with all its derivatives when weighted at
infinity by [17, 4.13 Proposition, p. 23]. Thanks to these observations [17, 3.9 Theorem,
p. 9] proves our statement.

In particular, if J is countable and Vk locally bounded away from zero, then the
Fréchet spaces CVk(Ω) and CVk0(Ω) are barrelled. This result allows us to identify the
injective tensor product of CVk(Ω), resp. CVk0(Ω), and E with a subspace of CVk(Ω, E),
resp. CVk0(Ω, E). Let us use the symbol F for CVk or CVk0 . We consider F(Ω)⊗ E as an
algebraic subspace of F(Ω)εE by means of the linear injection

ΘF(Ω) : F(Ω)⊗ E → F(Ω)εE,
m∑
n=1

fn ⊗ en 7−→
[
y 7→

m∑
n=1

y(fn)en
]
.

Via ΘF(Ω) the topology of F(Ω)εE induces a locally convex topology on F(Ω)⊗ E and
F(Ω)⊗εE denotes F(Ω)⊗E equipped with this topology. From the preceding proposition
and the composition SF(Ω) ◦ΘF(Ω) we obtain:

Corollary 3.16. Let E be an lcHs, k ∈ N0,∞, Vk be a family of weights which is locally
bounded away from zero on a locally compact Hausdorff space Ω (k = 0) or an open set
Ω ⊂ Rd (k > 0). Fix the notation F = CVk or CVk0 and let F(Ω) be barrelled if k > 0.

a) We get by identification of isomorphic subspaces

F(Ω)⊗ε E ⊂ F(Ω)εE ⊂ F(Ω, E)

and the embedding F(Ω)⊗ E ↪→ F(Ω, E) is given by f ⊗ e 7→ [x 7→ f(x)e].
b) Let F(Ω) and E be complete. If F(Ω)⊗ E is dense in F(Ω, E), then

F(Ω, E) ∼= F(Ω)εE ∼= F(Ω)⊗̂εE.

In particular, F(Ω) has the approximation property if F(Ω)⊗E is dense in F(Ω, E)
for every complete E.
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Proof.
a) The inclusions hold by Proposition 3.15 and F(Ω)εE and F(Ω, E) induce the same

topology on F(Ω)⊗ E. Further, we have

f ⊗ e
ΘF(Ω)7−→ [y 7→ y(f)e]

SF(Ω)7−→ [x 7−→ [y 7→ y(f)e](δx)] = [x 7→ f(x)e].

b) If F(Ω) and E are complete, then we obtain that F(Ω)εE is complete by [15, Satz
10.3, p. 234]. In addition, we get the completion of F(Ω)⊗ε E as its closure in F(Ω)εE
which coincides with the closure in F(Ω, E). The rest follows directly from a).

Looking at part a), we derive

(SF(Ω) ◦ΘF(Ω))
( m∑
n=1

fn ⊗ en
)

=
m∑
n=1

fnen

for m ∈ N, fn ∈ F(Ω) and en ∈ E, 1 ≤ n ≤ m. Hence we see that the answer to our
question is affirmative if F(Ω)⊗E is dense in F(Ω, E). For the sake of completeness we
remark the following.

Proposition 3.17. Let E be an lcHs, k ∈ N0,∞, Vk be a family of weights which is
locally bounded away from zero on a locally compact Hausdorff space Ω (k = 0) or an
open set Ω ⊂ Rd (k > 0).

a) In addition, let CVk0(Ω) be barrelled if k > 0. If E is quasi-complete and Vk locally
bounded on Ω, then

CVk0(Ω)εE ∼= CVk0(Ω, E) via SCVk0 (Ω).

b) In addition, let CVk(Ω) be barrelled if k > 0. If E is a semi-Montel space, then

CVk(Ω)εE ∼= CVk(Ω, E) via SCVk(Ω).

Proof. For k > 0 this is [17, 5.10 Example a), p. 28], resp. [17, 3.21 Example a), p. 14].
Statement a) for k = 0 is a consequence of [17, 3.20 Corollary, p. 13] in combination with
[17, 4.1 Proposition, p. 18], [17, 4.2 Lemma (i), p. 19] and [17, 4.13 Proposition, p. 23].
For k = 0 statement b) follows from [17, 3.19 Corollary, p. 13] in combination with [17,
4.1 Proposition, p. 18] and [17, 4.2 Lemma (i), p. 19].

The corresponding results for k = 0 and a Nachbin-family V0 of weights are given
in [3, 2.4 Theorem, p. 138–139] and [3, 2.12 Satz, p. 141]. In combination with our
preceding observation, we deduce that every element of CVk0(Ω, E) can be approximated
in CVk0(Ω, E) by functions with values in a finite dimensional subspace if E is a quasi-
complete space with approximation property and the assumptions of the proposition
above are fulfilled. The same is true for CVk(Ω, E) if E is a semi-Montel space with
approximation property. Due to the strong conditions on E this is not really satisfying
but actually the best we get for general CVk(Ω, E). For CVk0(Ω, E) there is a better result
available, whose proof we prepare on the next pages.

4. Convolution via the Pettis-integral. In this section we review the notion of the
Pettis-integral. Trèves uses the Riemann-integral to define the convolution f ∗ g of a
function f ∈ Ckc (Ω, E) and a function g ∈ C∞c (Rd) in the proof of Theorem 1.2 and states
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(without a proof) that the convolution defined in this way is a function in C∞c (Rd, Ê) and
has all the properties known from the convolution of two scalar-valued functions. We use
the Pettis-integral instead to define the convolution. The reason is that we can use the
dominated convergence theorem for the Pettis-integral [19, Theorem 2, p. 162–163] to
get the Leibniz’ rule for differentiation under the integral sign which enables us to prove
that the convolution has some of the key properties known from the scalar-valued case.

Let us fix some notation first. For a measure space (X,Σ, µ) let

L1(X,µ) :=
{
f : X → K measurable | q1(f) :=

∫
X

|f(x)|dµ(x) <∞
}

and define the quotient space of integrable functions with respect to the measure µ by
L1(X,µ) := L1(X,µ)/{f ∈ L1(X,µ) | q1(f) = 0}. From now on we do not distinguish
between equivalence classes and their representatives anymore. We say that f : X → K
is integrable on Λ ∈ Σ and write f ∈ L1(Λ, µ) if χΛf ∈ L1(X,µ) where χΛ is the
characteristic function of Λ. Then we set∫

Λ
f(x) dµ(x) :=

∫
X

χΛ(x)f(x) dµ(x).

Definition 4.1 (Pettis-integral). Let (X,Σ, µ) be a measure space and E an lcHs.
A function f : X → E is called weakly (scalarly) measurable if the function e′◦f : X → K,
(e′ ◦ f)(x) := 〈e′, f(x)〉 := e′(f(x)), is measurable for all e′ ∈ E′. A weakly measurable
function is said to be weakly (scalarly) integrable if e′◦f ∈ L1(X,µ). A function f : X → E

is called Pettis-integrable on Λ ∈ Σ if it is weakly integrable on Λ and

∃ eΛ ∈ E ∀ e′ ∈ E′ : 〈e′, eΛ〉 =
∫

Λ
〈e′, f(x)〉dµ(x).

In this case eΛ is unique due to E being Hausdorff and we set∫
Λ
f(x) dµ(x) := eΛ.

A function f is called Pettis-integrable on Σ if it is Pettis-integrable on all Λ ∈ Σ.

We write Nµ for the set of µ-null sets of a measure space (X,Σ, µ) and for Λ ∈ Σ we
use the notion (Λ,Σ | Λ, µ | Λ) for the restricted measure space given by Σ | Λ := {ω ∈ Σ |
ω ⊂ Λ} and µ | Λ := µ | Σ | Λ . If we consider the measure space (Rd,L (Rd), λ) of Lebesgue
measurable sets, we just write dx := dλ(x).

Remark 4.2. Let (X,Σ, µ) be a measure space, E an lcHs and f Pettis-integrable on
Λ ∈ Σ. If ω ∈ Σ such that ω ⊂ Λ and (Λ \ ω) ⊂ {x ∈ X | f(x) = 0}, then f is
Pettis-integrable on ω and ∫

ω

f(x) dµ(x) =
∫

Λ
f(x) dµ(x). (5)

This follows directly from〈
e′,

∫
Λ
f(x) dµ(x)

〉
=
∫

Λ
〈e′, f(x)〉dµ(x) =

∫
ω

〈e′, f(x)〉dµ(x), e′ ∈ E′.
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Lemma 4.3. Let E be a quasi-complete lcHs, (X,Σ, µ) a measure space, T a metric space
and suppose that f : X × T → E fulfils the following conditions.

a) f(·, t) is Pettis-integrable on Σ for all t ∈ T ,
b) f(x, ·) : T → E is continuous in a point t0 ∈ T for µ-almost all x ∈ X,
c) there is a neighbourhood U ⊂ T of t0 and a Pettis-integrable function ψ on Σ such

that

∀ t ∈ U, e′ ∈ E′ ∃ N ∈ Nµ ∀ x ∈ X \N : |〈e′, f(x, t)〉
∣∣ ≤ |〈e′, ψ(x)〉|.

Then gΛ : T → E, gΛ(t) :=
∫

Λ f(x, t) dµ(x), is well-defined and continuous in t0 for every
Λ ∈ Σ.

Proof. Let Λ ∈ Σ and (tn) be a sequence in U converging to t0. From the continuous
dependency of a scalar integral on a parameter (see [7, 5.6 Satz, p. 147]) we derive

lim
n→∞

∫
Λ
〈e′, f(x, tn)︸ ︷︷ ︸

=:fn(x)

〉dµ(x) =
∫

Λ
〈e′, f(x, t0)︸ ︷︷ ︸

=:f̃(x)

〉dµ(x). (6)

For n ∈ N and e′ ∈ E′ there is N ∈ Nµ such that

|〈e′, fn(x)〉| = |〈e′, f(x, tn)〉| ≤ |〈e′, ψ(x)〉| (7)

for every x ∈ X \ N . Due to (6) for every Λ ∈ Σ and e′ ∈ E′, (7) and the quasi-
completeness of E we can apply the dominated convergence theorem for the Pettis-
integral [19, Theorem 2, p. 162–163] and deduce

lim
n→∞

gΛ(tn) = lim
n→∞

∫
Λ
fn(x) dµ(x) =

∫
Λ
f̃(x) dµ(x) = gΛ(t0).

The next lemma is the Leibniz’ rule for differentiation under the integral sign for the
Pettis-integral.

Lemma 4.4 (Leibniz’ rule). Let E be a quasi-complete lcHs, (X,Σ, µ) a measure space,
T ⊂ Rd open and suppose that f : X × T → E fulfils the following conditions.

a) f(·, t) is Pettis-integrable on Σ for all t ∈ T ,
b) there is a µ-null set N0 ∈ Nµ with f(x, ·) ∈ C1(T,E) for all x ∈ X \N0,
c) for every j ∈ N, 1 ≤ j ≤ d, there is a Pettis-integrable function ψj on Σ such that

∀ e′ ∈ E′ ∃ N ∈ Nµ ∀ x ∈ X \ (N ∪N0) :
∣∣(∂tj )K〈e′, f(x, ·)〉

∣∣ ≤ |〈e′, ψj(x)〉|.

Then gΛ : T → E, gΛ(t) :=
∫

Λ f(x, t) dµ(x), is well-defined for every Λ ∈ Σ, gΛ ∈
C1(T,E) and

(∂tj )EgΛ(t) =
∫

Λ
(∂tj )Ef(x, t) dµ(x), t ∈ T.

Proof. First, we consider the case K = R. Let Λ ∈ Σ, j ∈ N, 1 ≤ j ≤ d, t ∈ T and (hn)
be a real sequence converging to 0 such that hn 6= 0 and t+ hnej ∈ T for all n where ej
is the j-th unit vector in Rd. Then

gΛ(t+ hnej)− gΛ(t)
hn

=
∫

Λ

f(x, t+ hnej)− f(x, t)
hn︸ ︷︷ ︸

=:fn(x)

dµ(x).
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We define the function f̃ : X → E given by f̃(x) := (∂tj )Ef(x, t) for x ∈ X \ N0 and
f̃(x) := 0 for x ∈ N0. We observe that

lim
n→∞

∫
Λ
〈e′, fn(x)〉dµ(x) =

∫
Λ

(∂tj )K〈e′, f(x, t)〉dµ(x)

=
∫

Λ
〈e′, ∂Etjf(x, t)〉dµ(x) =

∫
Λ
〈e′, f̃(x)〉dµ(x) (8)

holds for every e′ ∈ E′ where we used the scalar Leibniz’ rule for differentiation under the
integral sign for the first equation which can be applied due to our assumptions (see [7,
5.7 Satz, p. 147–148]). For e′ ∈ E′ there is N ∈ Nµ such that for every x ∈ X \ (N ∪N0)
and n ∈ N there is θ ∈ [0, 1] with

〈e′, fn(x)〉 = 〈e
′, f(x, t+ hnej)〉 − 〈e′, f(x, t)〉

hn
= (∂tj )K〈e′, f(x, t+ θhnej)〉

by the mean value theorem (K = R) implying

|〈e′, fn(x)〉| = |(∂tj )K〈e′, f(x, t+ θhnej)〉| ≤ |〈e′, ψj(x)〉|. (9)

Due to (8) for every Λ ∈ Σ and e′ ∈ E′, (9) and the quasi-completeness of E we can apply
the dominated convergence theorem for the Pettis-integral [19, Theorem 2, p. 162–163]
again and obtain that f̃ is Pettis-integrable on Σ plus

(∂tj )EgΛ(t) = lim
n→∞

gΛ(t+ hnej)− gΛ(t)
hn

= lim
n→∞

∫
Λ
fn(x) dµ(x)

=
∫

Λ
f̃(x) dµ(x) =

∫
Λ

(∂tj )Ef(x, t) dµ(x).

The continuity of (∂tj )EgΛ follows from Lemma 4.3 by replacing f with (∂tj )Ef . For
K = C we just have to substitute 〈e′, ·〉 by Re〈e′, ·〉 (real part) and Im〈e′, ·〉 (imaginary
part) in the considerations above.

Now, we are able to define the convolution of a vector-valued and a scalar-valued
continuous function via the Pettis-integral, if one of them has compact support, and to
show some of its basic properties which are known from the convolution of scalar-valued
functions (scalar convolution). For the properties of the scalar convolution see e.g. [23,
Chap. 26, p. 278–283].

Lemma 4.5. Let E be a quasi-complete lcHs, k, n ∈ N0,∞, f ∈ Ck(Rd, E) and g ∈ Cn(Rd),
either one having compact support. The convolution

f ∗ g : Rd → E, (f ∗ g)(x) :=
∫
Rd
f(y)g(x− y) dy,

is well-defined, supp(f ∗ g) ⊂ supp f + supp g, f ∗ g = g ∗ f , where

g ∗ f : Rd → E, (g ∗ f)(x) :=
∫
Rd
g(y)f(x− y) dy,

and f ∗ g ∈ Cn(Rd, E) plus

(∂β)E(f ∗ g) = f ∗
(
(∂β)Kg

)
, |β| ≤ n, (10)

(∂β)E(f ∗ g) =
(
(∂β)Ef

)
∗ g, |β| ≤ min(k, n). (11)
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Proof. Let h : Rd × Rd → E, h(y, x) := f(y)g(x − y). First, we show that h(·, x) is
Pettis-integrable on L (Rd) for every x ∈ Rd implying that f ∗ g is well-defined. We note
that 〈e′, h(·, x)〉 ∈ L1(Rd, λ) for every e′ ∈ E′ and x ∈ Rd. Let x ∈ Rd and Λ ∈ L (Rd).
We define the linear map

IΛ,x : E′ → K, IΛ,x(e′) :=
∫

Λ
〈e′, h(y, x)〉dy.

Setting Kf := supp f and Kg := supp g, we observe that

IΛ,x(e′) =
∫

Λ∩Kf
〈e′, f(y)g(x− y)〉dy =

∫
Λ∩(x−Kg)

〈e′, f(y)g(x− y)〉dy.

If Kf = supp f is compact, we get

|IΛ,x(e′)| ≤ λ(Kf ) sup
{
|e′(z)| | z ∈ f(Kf )g(x−Kf )

}
.

The set f(Kf )g(x −Kf ) is compact in E and thus the closure of its absolutely convex
hull is compact in E as well by [24, 9-2-10 Example, p. 134] because E is quasi-complete.
Hence it follows that IΛ,x ∈ (E′κ)′ ∼= E by the theorem of Mackey–Arens meaning that
there is eΛ(x) ∈ E such that

〈e′, eΛ(x)〉 = IΛ,x(e′) =
∫

Λ
〈e′, h(y, x)〉dy

for all e′ ∈ E′. Thus h(·, x) is Pettis-integrable on L (Rd) and

(f ∗ g)(x) = eRd(x) =
(5)
eKf (x) = ex−Kg (x)

for every x ∈ Rd if Kf = supp f is compact. If Kg = supp g is compact, then the estimate

|IΛ,x(e′)| ≤ λ(x−Kg) sup
{
|e′(z)| | z ∈ f(x−Kg)g(Kg)

}
yields to the Pettis-integrability in the same manner.

Let x /∈ supp f + supp g. If y /∈ supp f , then h(y, x) = 0. If y ∈ supp f , then x − y /∈
supp g and thus h(y, x) = 0. Hence we have h(·, x) = 0 implying supp(f ∗ g) ⊂ supp f +
supp g. From

〈e′, (f ∗ g)(x)〉 =
∫
Rd
〈e′, f(y)g(x− y)〉dy =

∫
Rd
〈e′, f(y)〉g(x− y) dy

=
(
(e′ ◦ f) ∗ g

)
(x) =

(
g ∗ (e′ ◦ f)

)
(x) =

∫
Rd
〈e′, g(y)f(x− y)〉dy

for every x ∈ Rd and e′ ∈ E′, where we used the commutativity of scalar convolution for
the fourth equation, it follows that

(f ∗ g)(x) = eRd(x) = (g ∗ f)(x)

for every x ∈ Rd.
Next, we show that f ∗ g ∈ Cn(Rd, E) and (10) holds by applying Lemma 4.3 and

4.4. So we have to check that the conditions a)–c) of these lemmas are fulfilled. First,
fix x0 ∈ Rd, let ε > 0 and β ∈ Nd0, |β| ≤ n. If Kf = supp f is compact, we set hf,β :=
(∂βx )Eh |Kf×Bε(x0) and observe that h |Kf×Bε(x0)(y, ·) ∈ Cn(Bε(x0), E) for every y ∈ Kf
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(condition b)). It follows from the theorem of Mackey–Arens and∣∣∣∫
ω

〈e′, hf,β(y, x)〉dY
∣∣∣ ≤ λ(Kf ) sup

{
|e′(z)| | z ∈ f(Kf )(∂β)Kg(Bε(x0)−Kf )

}
for every e′ ∈ E′, ω ∈ L (Rd) |Kf and x ∈ Bε(x0) that hf,β(·, x) is Pettis-integrable
on L (Rd) |Kf for every x ∈ Bε(x0) (condition a)). Now, we check that condition c) is
satisfied. We observe that the estimate∣∣∣∫

ω

〈e′, f(y)〉dy
∣∣∣ ≤ λ(Kf ) sup

{
|e′(z)| | z ∈ f(Kf )

}
for every e′ ∈ E′ and ω ∈ L (Rd) |Kf implies that f |Kf is Pettis-integrable on L (Rd) |Kf
due to the theorem of Mackey–Arens again. The inequality

|〈e′, hf,β(y, x)〉| =
∣∣〈e′, f(y)(∂βx )K[x 7→ g(x− y)]〉

∣∣
≤ |〈e′, f(y)〉| sup

{
|(∂β)Kg(z)| | z ∈ Bε(x0)−Kf

}
≤
∣∣〈e′, qBε(x0)−Kf ,n

(g) · f(y)〉
∣∣

for every e′ ∈ E′ and (y, x) ∈ Kf×Bε(x0) with the seminorm qBε(x0)−Kf ,n
from (1) yields

to condition c) being satisfied. Hence f ∗ g ∈ Cn(Bε(x0), E) by Lemma 4.3 if n = 0 and
by Lemma 4.4 if n = 1 as well as

∂Exj (f ∗ g)(x) = ∂Exj

[
x 7→

∫
Rd
f(y)g(x− y) dy

]
=
(5)
∂Exj

[
x 7→

∫
Kf

f(y)g(x− y) dy
]

=
∫
Kf

f(y)(∂xj )K[x 7→ g(x− y)] dy =
(5)

∫
Rd
f(y)(∂ej )Kg(x− y) dy

=
(
f ∗
(
(∂ej )Kg

))
(x)

for every x ∈ Bε(x0). Letting ε → ∞, we obtain the result for n = 0 and n = 1
if Kf = supp f is compact. For n ≥ 2 it follows from induction on the order |β|. If
Kg = supp g is compact, the same approach with hg,β := (∂βx )Eh |Kg×Bε(x0) instead of
hf,β proves the statement. Furthermore, for |β| ≤ min(k, n) we get

〈e′, (∂β)E(f ∗ g)(x)〉

=
∫
Rd
〈e′, f(y)(∂β)Kg(x− y)〉dy =

∫
Rd

(e′ ◦ f)(y)(∂β)Kg(x− y) dy

=
(
(e′ ◦ f) ∗

(
(∂β)Kg

))
(x) =

(
(∂β)K(e′ ◦ f) ∗ g

)
(x)

=
(
(e′ ◦ (∂β)Ef) ∗ g

)
(x) =

∫
Rd
〈e′, (∂β)Ef(y)g(x− y)〉dy

for every e′ ∈ E′ and x ∈ Rd, where we used the corresponding result for the scalar
convolution for the fourth equation, implying (∂β)E(f ∗ g) =

(
(∂β)Ef

)
∗ g.

Looking at the lemma above, we see that it differs a bit from the properties known from
the convolution of two scalar-valued functions. It is an open problem whether we actually
have f ∗ g ∈ Cmax(k,n)(Rd, E) and (11) for |β| ≤ k under the assumptions of the lemma.
But since we only apply the lemma above in the case n =∞, this does not affect us.
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We recall the construction of a mollifier from [23, p. 155–156]. Let

ρ : Rd → R, ρ(x) :=
{
C exp(−1/(1− |x|2)), |x| < 1,
0, |x| ≥ 1,

where C :=
(∫

B1(0) exp(− 1
1−|x|2 ) dx

)−1. For n ∈ N we define the mollifier ρn given by
ρn(x) := ndρ(nx), x ∈ Rd. Then we have ρn ∈ C∞c (Rd), ρn ≥ 0, supp ρn = B1/n(0) and∫
Rd ρn(x) dx = 1.

We can extend a function f ∈ Ckc (Ω, E), k ∈ N0,∞ and Ω ⊂ Rd, to a function
fex ∈ Ckc (Rd, E) by setting fex := f on Ω and fex := 0 on Rd \ Ω. In this way the
convolution f ∗ g := (fex ∗ g) | Ω with a function g ∈ C(Rd) is a well-defined function on
Ω if E is quasi-complete, and we have the following approximation by regularisation in
analogy to the scalar-valued case (see e.g. [23, Chap. 15, Corollary 1, p. 158]).
Lemma 4.6. Let E be a quasi-complete lcHs, k ∈ N0,∞, Vk be a family of locally bounded
weights on an open set Ω ⊂ Rd and f ∈ Ckc (Ω, E). Then (f ∗ ρn) converges to f in
CVk0(Ω, E) as n→∞.
Proof. Due to Lemma 4.5 we obtain that fex ∗ ρn ∈ C∞c (Rd, E) for every n ∈ N. Since
Vk is locally bounded on Ω, we derive f ∗ ρn ∈ CVk0(Ω, E). Let ε > 0, j ∈ J , l ∈ 〈k〉 and
α ∈ A. For β ∈ Nd0, |β| ≤ l, there is δβ > 0 such that for all x ∈ Ω and y ∈ Rd with
|y| = |(x− y)− x| ≤ δβ we have

pα
(
(∂β)Efex(x− y)− (∂β)Ef(x)

)
< ε (12)

because the function (∂β)Efex is uniformly continuous on whole Rd as it is continuous with
compact support. Therefore we deduce for all n > 1/δβ that supp ρn = B1/n(0) ⊂ Bδβ (0)
and hence

pα
(
(∂β)E(f ∗ ρn − f)(x)

)
=

(11)
pα
((

(∂β)Ef
)
∗ ρn(x)− (∂β)Ef(x)

)
= pα

(
ρn ∗

(
(∂β)Ef

)
(x)− (∂β)Ef(x)

)
= pα

(∫
Rd

(∂β)Efex(x− y)ρn(y) dy − (∂β)Ef(x)
)

= pα

(∫
Rd

(∂β)Efex(x− y)ρn(y)− (∂β)Ef(x)ρn(y) dy
)

=
(5)
pα

(∫
B1/n(0)

(∂β)Efex(x− y)ρn(y)− (∂β)Ef(x)ρn(y) dy
)

≤
(12)

ε

∫
Rd
ρn(y) dy = ε

by Lemma 4.5 for every x ∈ Ω. As 0 ∈ supp ρn, we get
supp(∂β)E(f ∗ ρn − f) ⊂ (supp f + supp ρn) =

(
supp f + B1/n(0)

)
for every |β| ≤ l and n ∈ N by virtue of Lemma 4.5. Since supp f ⊂ Ω is compact and
Ω open, there is r > 0 such that

(
supp f + Br(0)

)
⊂ Ω yielding

supp(∂β)E(f ∗ ρn − f) ⊂
(
supp f + Br(0)

)
=: K
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for all n ≥ 1/r. Choosing δ := min{δβ | β ∈ Nd0, |β| ≤ l} > 0, we obtain for all
n > max{1/δ, 1/r} that∣∣f ∗ ρn − f ∣∣j,l,α = sup

x∈K
β∈Nd0 ,|β|≤l

pα
(
(∂β)E(f ∗ ρn − f)(x)

)
νj,l(x) ≤ ε sup

x∈K
νj,l(x)

which implies our statement since Vk is locally bounded on Ω and K ⊂ Ω is compact.

5. Approximation property. Finally, we dedicate our last section to our main theo-
rem. We start with the case k = 0.

Proposition 5.1. Let E be an lcHs and V0 a family of locally bounded weights which
is locally bounded away from zero on a locally compact Hausdorff space Ω. Then the
following statements hold.

a) C0
c (Ω)⊗ E is dense in CV0

0(Ω, E).
b) For any f ∈ C0

c (Ω, E) and any open neighbourhood V of supp f , for every ε > 0,
j ∈ J and α ∈ A, there is g ∈ C0

c (Ω)⊗ E such that supp g ⊂ V and |f − g|j,0,α ≤ ε.
c) If E is complete, then

CV0
0(Ω, E) ∼= CV0

0(Ω)εE ∼= CV0
0(Ω)⊗̂εE.

d) CV0
0(Ω) has the approximation property.

Proof. First, we consider part a). Due to Corollary 3.16 a) and Remark 3.9 C0
c (Ω) ⊗ E

can be identified with a subspace of CV0
0(Ω, E) equipped with the induced topology since

V0 is locally bounded and locally bounded away from zero.
Let f ∈ CV0

0(Ω, E), ε > 0, j ∈ J and α ∈ A and fix the notation νj := νj,0. Then
there is a compact set K̃ ⊂ Ω such that

|f |Ω\K̃,j,0,α = sup
x∈Ω\K̃

pα(f(x))νj(x) < ε.

Let K := K̃. Since Ω is locally compact, every w ∈ K has an open, relatively compact
neighbourhood Uw ⊂ Ω. As K is compact and K ⊂

⋃
w∈K Uw, there are m ∈ N and

wi ∈ K, 1 ≤ i ≤ m, such that

K ⊂
m⋃
i=1

Uwi =: W ⊂ Ω.

The set W is open and relatively compact because it is a finite union of open, relatively
compact sets. The local boundedness of V0 and relative compactness of W imply that

N := 1 + sup
x∈W

νj(x) <∞.

For x ∈ K we define Vx := {y ∈ Ω | pα(f(y)−f(x)) < ε
N }. Then Vx = f−1(Bα(f(x), εN )

)
,

where Bα(f(x), εN ) := {e ∈ E | pα(e − f(x)) < ε
N }, implying that Vx is open in Ω since

f is continuous. Hence we get K ⊂
⋃
x∈K Vx and conclude that there are n ∈ N and

xi ∈ K, 1 ≤ i ≤ n, such that K ⊂
⋃n
i=1 Vxi from the compactness of K. We note that

K = (K ∩W ) ⊂
n⋃
i=1

(Vxi ∩W ). (13)
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The sets Vxi∩W are open in the compact Hausdorff spaceW with respect to the topology
induced by Ω. Since the compact Hausdorff space W is normal by [4, Chap. IX, §4.1,
Proposition 1, p. 181] and K is closed in W , there is a family of non-negative real-valued
continuous functions (ϕi) with suppϕi ⊂ (Vxi ∩W ) such that

∑n
i=1 ϕi = 1 on K and∑n

i=1 ϕi ≤ 1 on W by [4, Chap. IX, §4.3, Corollary, p. 186]. By trivially extending ϕi on
Ω \W , we obtain ϕi ∈ C0

c (Ω) because W is compact. We define

g :=
n∑
i=1

ϕi ⊗ f(xi) ∈ C0
c (Ω)⊗ E

and observe supp g ⊂
⋃n
i=1(Vxi ∩ W ). If x ∈ K, then ϕi(x)pα(f(x) − f(xi)) = 0 if

x /∈ Vxi ∩W , and

pα(f(x)− g(x)) = pα

( n∑
i=1

ϕi(x)(f(x)− f(xi))
)
≤

n∑
i=1

ϕi(x)pα(f(x)− f(xi))

≤
n∑
i=1

ϕi(x) ε
N

= ε

N

yielding to

sup
x∈K

pα((f − g)(x))νj(x) ≤ sup
x∈K

ε

N
νj(x) ≤ sup

x∈W

ε

N
νj(x) = ε

N
· (N − 1) < ε.

If x /∈ K, then ϕi(x)f(xi) = 0 if x /∈ (Vxi ∩W ) \K. If x ∈ (Vxi ∩W ) \K, then

pα(ϕi(x)f(xi)) ≤ ϕi(x)
(
pα(f(xi)− f(x)) + pα(f(x))

)
≤ ϕi(x)

( ε
N

+ pα(f(x))
)

yielding to

|f − g|Ω\K,j,0,α
= sup
x∈Ω\K

pα((f − g)(x))νj(x) ≤ sup
x∈Ω\K

(
pα(f(x)) + pα(g(x))

)
νj(x)

≤ ε+ sup
x∈Ω\K

n∑
i=1

pα(ϕi(x)f(xi))νj(x) ≤ ε+ sup
x∈Ω\K

n∑
i=1

ϕi(x)
(
ε

N
+ pα(f(x))

)
νj(x)

≤ 2ε+ ε

N
sup

x∈Ω\K

n∑
i=1

ϕi(x)νj(x) ≤ 2ε+ ε

N
sup
x∈W

n∑
i=1

ϕi(x)νj(x)

≤ 2ε+ ε

N
· (N − 1) < 3ε

implying
|f − g|j,0,α < 4ε

which proves part a).
Part c) follows from a) and Corollary 3.16 b) because CV0

0(Ω) is complete by Propo-
sition 3.7. Part d) is implied by part c). Let us turn to part b). Let f ∈ C0

c (Ω, E) and V
be an open neighbourhood of K̃ := supp f . Then we can replace (13) by

K = (K ∩ V ∩W ) ⊂
n⋃
i=1

(Vxi ∩ V ∩W )
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and then the open sets Vxi by the open sets Vxi ∩ V in what follows (13). This gives

supp g ⊂
( n⋃
i=1

(Vxi ∩ V ∩W )
)
⊂ V

proving b).

If Ω is an open subset of Rd, we can choose a smooth partition of unity (see e.g. [12,
Theorem 1.4.5, p. 28]) and even deduce that C∞c (Ω)⊗E is dense in CV0

0(Ω, E) under the
assumptions of the proposition above.

The proof of part a) is a modification of the proof of [2, 5.1 Satz, p. 204] by Bierstedt.
Since Ω is locally compact and not just a completely regular Hausdorff space, we can use
the partition of unity from [4, Chap. IX, §4.1, Proposition 1, p. 181]. Bierstedt has to use
the partition of unity from [20, 23, Lemma 2, p. 71] and due to the assumptions of this
lemma he cannot choose K = K̃ but has to use

K ′ := {x ∈ Ω | pα(f(x))νj(x) ≥ ε} ⊂ K̃.

Bierstedt’s assumption that νj is upper semi-continuous guarantees that K ′ is closed and
thus compact as a closed subset of the compact set K̃. Choosing K := K ′, the proof
above works as well where the existence of the open set W ⊂ Ω is a consequence of the
upper semi-continuity of νj again. Comparing Theorem 1.1 and Proposition 5.1, we see
that Theorem 1.1 is far more general concerning the spaces Ω involved but the condition
of V0 being a locally bounded family in Proposition 5.1 is weaker than the condition of
being a family of upper semi-continuous weights in Theorem 1.1. Let us phrase our main
theorem.

Theorem 5.2. Let E be an lcHs, k ∈ N∞ and Vk be a family of locally bounded weights
which is locally bounded away from zero on an open set Ω ⊂ Rd. Let CVk0(Ω) be barrelled
and Ckc (Ω, E) dense in CVk0(Ω, E). Then the following statements hold.

a) C∞c (Ω)⊗ E is dense in CVk0(Ω, E).
b) If E is complete, then

CVk0(Ω, E) ∼= CVk0(Ω)εE ∼= CVk0(Ω)⊗̂εE.

c) CVk0(Ω) has the approximation property.

Proof. It suffices to prove part a) because part b) follows from a) and Corollary 3.16 b)
since CVk0(Ω) is complete by Proposition 3.7. Then part c) is a consequence of b). Let
us turn to part a). Since CVk0(Ω) is barrelled, Vk locally bounded and locally bounded
away from zero, the space C∞c (Ω) ⊗ E can be considered as a topological subspace of
CVk0(Ω) ⊗ε E by Corollary 3.16 a) and Remark 3.9 when equipped with the induced
topology.

Let f ∈ CVk0(Ω, E), ε > 0, j ∈ J , l ∈ 〈k〉 and α ∈ Â where (pα)
α∈Â is the system

of seminorms describing the locally convex topology of the completion Ê of E. In the
following we consider functions with values in E also as functions with values in Ê

and note that CVk0(Ω, Ê) is the completion of CVk0(Ω, E) by Proposition 3.7. Thus the
topologies of CVk0(Ω, E) and CVk0(Ω, Ê) coincide on CVk0(Ω, E). The density of Ckc (Ω, E)
in CVk0(Ω, E) yields that there is f̃ ∈ Ckc (Ω, E) such that |f − f̃ |j,l,α < ε/3. Further, there
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is N0 ∈ N with |f̃ − f̃ ∗ ρn|j,l,α < ε/3 for all n ≥ N0 by Lemma 4.6 as Ê is complete.
Let K1 := supp f̃ and choose an open neighbourhood V of K1 such that V is relatively
compact in Ω which is possible since K1 is compact and Ω ⊂ Rd open. Since Vk is locally
bounded away from zero, there is i ∈ J such that

C1 := sup
x∈V

νi,0(x)−1 =
(

inf
x∈V

νi,0(x)
)−1

<∞.

From the relative compactness of V in Ω it follows that there is N1 ∈ N such that

V + B1/n(0) ⊂ Ω

for all n ≥ N1. Choosing N2 := max{N0, N1} and defining the compact set K2 :=
V + B1/N2(0) ⊂ Ω, we get that

C2 := sup
x∈K2

νj,l(x) <∞

because Vk is locally bounded. Further, we estimate

C3 := sup
β∈Nd0 ,|β|≤l

∫
Rd

∣∣∂βρN2(y)
∣∣dy ≤ (N2)l sup

β∈Nd0 ,|β|≤l

∫
Rd

∣∣∂βρ(y)
∣∣ dy <∞.

By virtue of Proposition 5.1 b) there is g =
∑q
m=1 gm ⊗ em ∈ C0

c (Ω) ⊗ E such that
supp g ⊂ V and

|f̃ − g|i,0,α <
ε

3C1C2C3
.

By Lemma 4.5 we observe that g ∗ ρN2 ∈ C∞c (Ω, E) with

supp(g ∗ ρN2) ⊂ V + B1/N2(0) = K2 ⊂ Ω

and

g ∗ ρN2 =
q∑

m=1
(gm ∗ ρN2)⊗ em ∈ C∞c (Ω)⊗ E.

Thus we have by Lemma 4.5

supp(f̃ ∗ ρN2) ⊂ V + B1/N2(0) = K2

yielding
supp(f̃ ∗ ρN2 − g ∗ ρN2) ⊂ V + B1/N2(0) = K2 ⊂ Ω

and

|f̃ ∗ ρN2 − g ∗ ρN2 |j,l,α =
(10)

sup
x∈K2

β∈Nd0 ,|β|≤l

pα
(
(f̃ − g) ∗ (∂βρN2)(x)

)
νj,l(x)

= sup
x∈K2

β∈Nd0 ,|β|≤l

pα

(∫
Rd

(∂βρN2)(x− y)
(
f̃ex(y)− gex(y)

)
dy
)
νj,l(x)

≤ sup
x∈K2

β∈Nd0 ,|β|≤l

∫
Rd

∣∣(∂βρN2)(x− y)
∣∣ dy sup

z∈supp(f̃)
∪ supp(g)

pα(f̃(z)− g(z))νj,l(x)

= sup
x∈K2

β∈Nd0 ,|β|≤l

∫
Rd

∣∣(∂βρN2)(y)
∣∣ dy sup

z∈V
pα(f̃(z)− g(z))νj,l(x)
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≤ C3
(

sup
x∈K2

νj,l(x)
)(

sup
z∈V

pα(f̃(z)− g(z))
)

= C3C2 sup
z∈V

pα(f̃(z)− g(z))νi,0(z)νi,0(z)−1

≤ C3C2C1|f̃ − g|i,0,α <
ε

3 .

Therefore we deduce

|f − g ∗ρN2 |j,l,α ≤ |f − f̃ |j,l,α+ |f̃ − f̃ ∗ρN2 |j,l,α+ |f̃ ∗ρN2 − g ∗ρN2 |j,l,α <
ε

3 + ε

3 + ε

3 = ε.

If we keep in mind that f ∈ CVk0(Ω, E) and g∗ρN2 ∈ C∞c (Ω)⊗E, it follows that C∞c (Ω)⊗E
is dense in CVk0(Ω, E) with respect to the topology of CVk0(Ω, Ê). However, the latter space
is just the completion of CVk0(Ω, E) and thus the topologies of CVk0(Ω, E) and CVk0(Ω, Ê)
coincide on CVk0(Ω, E). Hence C∞c (Ω)⊗ E is dense in CVk0(Ω, E).

Ckc (Ω, E) is dense in CVk0(Ω, E) by Lemma 3.14 if the latter space fulfils the cut-off
criterion and the family Vk is locally bounded. CVk0(Ω) is a Fréchet space and thus bar-
relled by Proposition 3.7 if the J in Vk = (νj,l)j∈J,l∈〈k〉 is countable. Let us complement
what we said about the standard structure of a family of weights (see the remarks below
Definition 3.2) by our additional conditions on the weights collected so far. The standard
structure of a (countable) locally bounded family Vk which is bounded away from zero
on a locally compact Hausdorff space Ω, resp. on an open set Ω ⊂ Rd, is given by the
following. Let J := N, (Ωj)j∈J , be a family of sets such that Ωj ⊂ Ωj+1 for all j ∈ J with
Ω =

⋃
j∈J Ωj and

∀ K ⊂ Ω compact ∃ j ∈ J : K ⊂ Ωj .

Let ν̃j,l : Ω → (0,∞) be continuous for all j ∈ J , l ∈ 〈k〉 and increasing in j ∈ J and in
l ∈ 〈k〉 such that

νj,l(x) = χΩj (x)ν̃j,l(x), x ∈ Ω, (14)

for every j ∈ J and l ∈ 〈k〉 where χΩj is the indicator function of Ωj . If Ω 6= Rd, then the
cut-off criterion may add some restrictions on the structure of the sequence (Ωj), e.g. a
positive distance from the boundary ∂Ωj of Ωj to the boundary ∂Ωj+1 of Ωj+1 for all j.

Example 5.3. Let E be an lcHs, k ∈ N∞ and Ω ⊂ Rd open. Theorem 5.2 can be applied
to the following spaces:

a) Ck(Ω, E) with the topology of uniform convergence of all partial derivatives up to
order k on compact subsets of Ω,

b) the Schwartz space S(Rd, E),
c) the space OM (Rd, E) of multipliers of S(Rd),
d) let Ωj := {x = (x1, x2) ∈ R2 | 1/(j + 1) < |x2| < j + 1} for all j ∈ N and

Ckexp(R2 \ R, E) :=
{
f ∈ Ck(R2 \ R, E) | ∀ j ∈ N, l ∈ 〈k〉, α ∈ A : |f |j,l,α <∞

}
where

|f |j,l,α := sup
(x1,x2)∈Ωj
β∈N2

0,|β|≤l

pα
(
(∂β)Ef(x1, x2)

)
e−|x1|/(j+1).
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Proof. a) From Example 3.5 a) we obtain Ck(Ω, E) = CWk
0(Ω, E) with Wk := {νj,l :=

χΩj | j ∈ N, l ∈ 〈k〉} where (Ωj)j∈N is a compact exhaustion of Ω. The family of weights
Wk is locally bounded and locally bounded away from zero. The Fréchet space Ck(Ω) is
barrelled and the cut-off criterion is fulfilled by Example 3.12.

b) Due to Example 3.5 b) we have S(Rd, E) = CV∞0 (Rd, E) with V∞ := {νj,l | j ∈ N,
l ∈ N0} where νj,l(x) := (1+ |x|2)l/2 for x ∈ Rd. The family of weights is locally bounded
and bounded away from zero, the Fréchet space S(Rd) is barrelled and S(Rd, E) fulfils
the cut-off criterion by Example 3.12.

c) The space of multipliers is defined by
OM (Rd, E) := {f ∈ C∞(Rd, E) | ∀ g ∈ S(Rd), l ∈ N0, α ∈ A : ‖f‖g,l,α <∞}

where
‖f‖g,l,α := sup

x∈Rd
β∈Nd0 ,|β|≤l

pα
(
(∂β)Ef(x)

)
|g(x)|

(see [21, 30), p. 97]). The space OM (Rd) is barrelled by [11, Chap. II, §4, n◦4, Théorème
16, p. 131]. Let J := {j ⊂ S(Rd) | j finite} and define the family V∞ of weights given by
νj,l(x) := maxg∈j |g(x)|, x ∈ Rd, for j ∈ J and l ∈ N0. It is easily seen that the system of
seminorms generated by

|f |j,l,α := sup
x∈Rd

β∈Nd0 ,|β|≤l

pα
(
(∂β)Ef(x)

)
νj,l(x), f ∈ OM (Rd, E),

for j ∈ J , l ∈ N0 and α ∈ A induces the same topology on OM (Rd, E). However, the
family V∞ is directed, locally bounded and bounded away from zero. Further, for every
ε > 0 there is r > 0 such that (1 + |x|2)−1 < ε for all x /∈ Br(0) =: K which implies for
j ∈ J and l ∈ N0 that

νj,l(x) ≤ εmax
g∈j
|g(x)(1 + |x|2)| = ενi,l(x), x /∈ K,

where i := {g · (1 + | · |2) | g ∈ j} is a finite subset of S(Rd). From Remark 3.4 we
conclude that OM (Rd, E) = CV∞(Rd, E) = CV∞0 (Rd, E). Due to Remark 3.11 we note
that OM (Rd, E) satisfies the cut-off criterion.

d) The family Vk given by νj,l(x1, x2) := χΩj (x1, x2)e−|x1|/(j+1), (x1, x2) ∈ R2 \R, for
j ∈ N and l ∈ 〈k〉 is locally bounded and bounded away from zero. For j ∈ N and l ∈ N0
we set i := 2j+1,m := l, δ := 1/(2j+2) and for 0 < ε < 1 we chooseK := {x = (x1, x2) ∈
Ωj | |x1| ≤ −(ln ε)(2j+2)}. This yields Ckexp(R2\R, E) = CVk(R2\R, E) = CVk0(R2\R, E)
by Remark 3.4 and that the cut-off criterion is fulfilled. In addition, the Fréchet space
Ckexp(R2 \ R) is barrelled.

Together with Proposition 5.1 we get from example a) one of our starting points,
namely Theorem 1.2, back. Example b) and c) are covered by [21, Proposition 9, p. 108]
and [21, Théorème 1, p. 111]. The results b) and c) for the Schwartz space in example
b) can also be found in [11, Chap. II, §3, n◦3, Exemples, p. 80–81] with a different proof
using the nuclearity of S(Rd). We complete this paper with a comparison of our conditions
in Theorem 5.2 with the ones stated by Schwartz in [21] to get the same result for the
spaces in example a)–c) but only for Ω = Rd.
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Remark 5.4. Schwartz treats the case k > 0 and Ω = Rd in [21]. He assumes similar
conditions H1–H4 for the space Hk(Rd) := Hk(Rd,K) as we do (see [21, p. 97–98]).
In H1 the members of his family of weights Γ are continuous and for every compact
set K ⊂ Rd there is a weight in Γ which is non-zero on K. Hk(Rd) is the space of
functions f ∈ Ck(Rd) such that γ∂βf is bounded on Rd for every γ ∈ Γ and |β| ≤ k. This
yields to Ckc (Rd) ⊂ Hk(Rd) ⊂ Ck(Rd) algebraically. In H2 he demands that Hk(Rd) is a
locally convex Hausdorff space and that the inclusions Ckc (Rd) ↪→ Hk(Rd) ↪→ Ck(Rd) are
continuous where Ck(Rd) has its usual topology and Ckc (Rd) its inductive limit topology.
In H3 he supposes that a subset B ⊂ Hk(Rd) is bounded if and only if for every γ ∈ Γ
and |β| ≤ k the set {γ(x)∂βf(x) | x ∈ Rd, f ∈ B} is bounded in K. In H4 he assumes that
on every bounded subset of Hk(Rd) the topology of Hk(Rd) and the induced topology of
Ck(Rd) coincide.

He defines the E-valued version Hk(Rd, E) which corresponds to the space Hk(Rd)
for Hk = Ckc , Ck, S and OM and shows that the statements of Theorem 5.2 hold for all
of them but Hk = Ckc (see [21, p. 94–97], [21, Proposition 9, p. 108] and [21, Théorème 1,
p. 111]).

In comparison, our conditions of local boundedness of Vk and being locally bounded
away from zero on Ω = Rd imply H1 and H2 if the members of Vk are continuous. The
assumption that the members of Vk are continuous is not a big difference if the members of
the family Vk have a structure like in (14). Then one may replace the indicator functions
χΩj by a smoothed version, e.g. by convolution of the indicator function with a suitable
mollifier, and then one gets a family of continuous weights which generates the same
topology. The condition H3 is clearly fulfilled for the spaces CVk(Rd) and the topology on
them is called ‘topologie naturelle’ by Schwartz (see [21, p. 98]). The condition H4 implies
that Ckc (Rd, E) is dense in Hk(Rd, E) for Hk = Ck, S and OM and quasi-complete E (see
[21, p. 106] and [21, Théorème 1, p. 111]). The same follows in our case from local
boundedness and the cut-off criterion.
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