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Abstract. We study spaces CV* (€, E) of k-times continuously partially differentiable functions
on an open set Q C R? with values in a locally convex Hausdorff space E. The space CV’“(Q, E)
is given a weighted topology generated by a family of weights V*. For the space CV*(Q, E) and
its subspace CVE (22, E) of functions that vanish at infinity in the weighted topology we try to
answer the question whether their elements can be approximated by functions with values in
a finite dimensional subspace. We derive sufficient conditions for an affirmative answer to this
question using the theory of tensor products.

1. Introduction. This paper is dedicated to the following problem: Which vector-valued
k-times continuously partially differentiable functions can be approximated in a weighted
topology by functions with values in a finite dimensional subspace? The answer to this
question is closely related to the theory of tensor products and the so-called approximation
property. A locally convex Hausdorff space X is said to have (Schwartz’) approximation
property if the identity Ix on X is contained in the closure of F(X) in L,(X) where
L, (X) denotes the space of continuous linear operators from X to X equipped with the
topology of uniform convergence on the absolutely convex compact subsets of X and
F(X) its subspace of operators with finite rank.

The case k = 0 is well-studied. In [I], [2] and [3] Bierstedt considered the space
CV(Q, E) of all continuous functions f: Q — E from a completely regular Hausdorff
space € to a locally convex Hausdorff space (E, (pq)aca) over a field K with a topology
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induced by a Nachbin-family V := (v;),e; of weights, i.e. the space
CVQE)={feCLE)|VjeJ acA:|flja<oo}
where C(Q, E) := C°(, E) is the space of continuous functions from Q to E and
[Flj.c 1= sup pa (f(2))v5(2)-

Recall that a family V := (v;),cs of non-negative functions v;: Q — [0,00) is called
a Nachbin-family of weights if the functions v; are upper semi-continuous and the family
is directed, i.e. for every j,i € J there are k € J and C > 0 such that max(v;,v;) < Cyy.
The notion U < V for two Nachbin-families means that for every p € U there is v € V
such that p < v.

From the perspective of our problem the space CV((2, E) has an interesting topological
subspace, namely, the space CV (€2, E') consisting of the functions that vanish at infinity
when weighted which is given by

CVo(QULE) :={f€CV(LE)|Ve>0, jeJ, acqIK CQcompact : |flo\k,ja <&}

where

P palf(@))v;(z).

|f|Q\K7j,a = su

ze€Q\K
One of the main results from [2] solves our problem for & = 0, Nachbin-families of weights
and involves kg-spaces. A completely regular space €2 is a kg-space if for any completely
regular space Y and any map f: 2 — Y whose restriction to each compact K C €
is continuous the map is already continuous on € (see [5, (2.3.7) Proposition, p. 22]).
Obviously, every locally compact Hausdorff space is a kgr-space. Further examples of
kr-spaces are metrisable spaces by [13, Proposition 11.5, p. 181] and [8] 3.3.20, 3.3.21
Theorem, p. 152] as well as strong duals of Fréchet—Montel spaces by [9, Proposition 3.27,

p. 95] and [16], 4.11 Theorem, p. 39].

THEOREM 1.1 (|2, 5.5 Theorem, p. 205-206]). Let E be a locally convex Hausdorff space,

Q a completely reqular Hausdorff space and V a Nachbin-family on Q such that one of

the following conditions is satisfied.

(i) 2:= {v: Q — R|v constant, v > 0} < V.

(i) W= {puxk |n >0, K C Q compact} <V, where xx: @ — R is the characteristic
function of K, and € is a kg-space.

Then the following holds.

a) CVo(Q) ® E is dense in CVo (), E).
b) If E is complete, then

CVo( E) = CVo(NeE = CVo(N)S.E.
c) CVo(Q) has the approzimation property.

Here CVo(Q) ® E stands for the tensor product, CVo(Q)®. E for the completion of the
injective tensor product and CVo(Q)eE := L.(CV((Q)’., E) for the e-product of Schwartz
of the spaces CVo () := CVo(©,K) and E. Part a) gives an affirmative answer to our
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question for the space CVo(2, E) since it implies that for every ¢ > 0, « € 2, j € J and
f €CVo(Q, E) there are m € N, f,, € CVo(2) and e, € E, 1 < n < m, such that

‘f - i fnen|
n=1

<eE.

J,x

Concerning CV(Q2, E), the answer to our question is not that satisfying but still affirmative
if we make some restrictions on E. If E has the approximation property, then E®.CV(Q)
is dense in EcCV(2). Due to the symmetries CV(Q) ®. F =2 E®.CV(2) and CV(Q)eE =
EeCV(Q), we infer that CV(Q)®. F is dense in CV(N)eE = CV(Q, E) if E is a semi-Montel
space with approximation property and Z <V or Q is a kg-space by [3| 2.12 Satz (1),
p. 141]. A second condition for an affirmative answer without supposing that E has the
approximation property but putting more restrictions on CV(2) can be found in [3 2.12
Satz (2), p. 141].

We aim to prove a version of Bierstedt’s theorem for spaces of weighted continuously
partially differentiable functions. To the best of our knowledge the approximation problem
was not considered in a general setting for k > 0 and open Q C R?, i.e. to derive sufficient
conditions on the weights and the spaces such that the answer is positive. For special
cases with = RY like the Schwartz space an affirmative answer was already given in
e.g. [2I, Proposition 9, p. 108] and [2I, Théoréme 1, p. 111]. For the space of k-times
continuously partially differentiable functions on open © C R? with the topology of
uniform convergence of all partial derivatives up to order k on compact sets a positive
answer can be found in e.g. [23] Proposition 44.2, p. 448] and [23] Theorem 44.1, p. 449].
Let us consider for a moment the latter space and the corresponding proof given by Treves
in [23]. The space C*((2, E) of k-times continuously partially differentiable functions on
a locally compact Hausdorff space Q if k& = 0, resp. open Q C R? if k € NU {0}, is
equipped with the system of seminorms given by

ax1alf) = Sup - pa (0°f()), fecCtQ,E), (1)
BENG,|BI<
for K C Q compact, I € Ng, 0 <[ <k if kK < o0, and a € 2. For F = K we fix the
notion C*(2) := C* (9, K) and denote by C¥(2) the space of all functions in C¥(£2) having
compact support. Treves’ affirmative answer to our question has the following form.
THEOREM 1.2 ([23, Proposition 44.2, p. 448] and [23] Theorem 44.1, p. 449]). Let E be

a locally convex Hausdorff space, k € No U {oo} and Q a locally compact Hausdorff space
if k =0, resp. an open subset of R® if k > 0. Then the following is true.

a) C2(Q) @ E is dense in CO(Q, E).
b) C®(Q) ® E is dense in CF(Q, E).
c) If E is complete, then
CH(Q, F) = CH0)®.E.
We observe that CW(Q, E) = CWy(Q, E) = C°(Q, E) equipped with the usual topol-
ogy of uniform convergence on compact subsets of ) which means that Theorem
contains the case k = 0 of the preceding theorem since locally compact Hausdorff spaces
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are kr-spaces. The proofs of Theorem a) and Theorem a) are done by using dif-
ferent partitions of unity, the first uses the partition of unity from [20, 23, Lemma 2,
p. 71] and the second the one from [4, Chap. IX, §4.3, Corollary, p. 186]. The key idea
for the proof of Theorem b) is an approximation in three steps relying on part a) and
convolution. First, for every f € C*(Q, E) there is an approximation j? € Ck(Q E)of f
by multiplication of f with a suitable cut-off function. Second, for every f € Ck(Q, E)
the convolution f % pn of f with a sequence (pn) of mollifiers in C°(€2) converges to f in
ck(Q, E) where E denotes the completion of F (approximation by regularisation). Third,
for every f € CF(Q, E) there is an approximation g € C?(Q)®FE in the topology of C°($, E)
by part a). Using the properties of the convolution, one gets that g * p, € C°(Q) @ E
and approximates f % pp, for n large enough in C*(, E) which itself is identical to the
completion of C¥(Q, F).

The outline of our paper is along the lines of Treves’ proof. After introducing some
notation and preliminaries in Section 2, we define the weighted spaces CV*(Q, E) and
CV’S (2, E) in Section 3 and show that they are complete if the family of weights V¥ is
locally bounded away from zero (see Definition . Then we treat their relation to the
space C*(Q, E) of functions in C* (2, F) with compact support where the condition of local
boundedness of a family of weights comes into play (see Definition . We formulate
a cut-off criterion (see Definition which is a sufficient condition for the density
of C¥(Q, E) in CVE(Q, E) for locally bounded V*. We close the third section with the
relation between tensor products and our problem on finite dimensional approximation.
In Section 4 we define the convolution f * g of f € C¥(R%, E) and g € C"(R?) when one
of them is compactly supported and prove an approximation by regularisation result. In
the last section we verify the corresponding part a) of Theorem for CV§(Q, E) with
locally compact €2 where we adapt the proof of Theorem a) in a way that we can use
the partition of unity from [4, Chap. IX, §4.3, Corollary, p. 186] instead and weaken the
condition of upper semi-continuity of the weights to being locally bounded and locally
bounded away from zero. Then we mix all ingredients to get our main Theorem
which is a version of Theorem and for barrelled CVE(Q) with a family of weights
V¥ being locally bounded and locally bounded away from zero if CV’S(Q, E) fulfils the
cut-off criterion.

2. Notation and preliminaries. We set N, := NU {co} and Ny o := Ng U {o0}. For
k € Ny oo we use the notation (k) := {n € Ng |0 < n < k} if k # oo and (k) := Ny if
k = co. We equip the spaces R?, d € N, and C with the usual Euclidean norm | - |, write
M for the closure of a subset M C R? and denote by B,.(z) := {w € R¢||w — x| < r}
the ball around = € R? with radius 7 > 0.

By F we always denote a non-trivial locally convex Hausdorff space, in short lcHs,
over the field K = R or C equipped with a directed fundamental system of seminorms
(Pa)aca. If E =K, then we set (pg)aca := {|-|}. Further, we denote by E the completion
of a locally convex Hausdorff space E. For details on the theory of locally convex spaces
see [10], [I4] or [1§].
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A function f: Q — E on an open set Q C R to a locally convex Hausdorff space E
is called continuously partially differentiable (f is C!) if for the n-th unit vector e, € R?
the limit

f(z + hey,) — f(z)
h

(0°)f(x) i= ()" f(x) := (8,,)Pf(x) = Jim
heR,h#0
exists in E for every €  and 9" f is continuous on (9" f is C?) for every 1 < n < d.
For k € N a function f is said to be k-times continuously partially differentiable (f is C¥)
if fis C' and all its first partial derivatives are C*¥~1. A function f is called infinitely
continuously partially differentiable (f is C°°) if f is C* for every k € N. For k € Ny, the
linear space of all functions f: Q — E which are C* is denoted by C*(Q2, E). Its subspace
of functions with compact support is written as C*(£2, E) where we denote the support
of f €CF(Q, E) by supp f.
Let f € C*(Q, E). For 8 € N¢ with |3| := 22:1 Bn < k we set 9P f 1= (0P Ef .= f
if 8, =0, and
0% = (0)Ff i= (@0)F - (0" f
—_——

Bn-times
if B, # 0 as well as
O f=(0%)Ff:=0%...0%Ff.

Due to the vector-valued version of Schwarz’ theorem 9° f is independent of the order of
the partial derivatives on the right-hand side and we call || the order of differentiation.
Further, we observe that ¢’ o f € C*(Q) and (0%)X(e/ o f) = €’ 0 (0°)F f for every ¢’ € F,
f €CkQ,E) and |8 < k.

By L(F, E) we denote the space of continuous linear operators from F to E where
F and F are locally convex Hausdorff spaces. If E =K, we just write F’ := L(F,K) for
the dual space. If F' and E are (linearly topologically) isomorphic, we write F' = E. The
so-called e-product of Schwartz is defined by

FeE = L.(F.,E) (2)

where F’ is equipped with the topology of uniform convergence on absolutely convex
compact subsets of F' and L(F., F) is equipped with the topology of uniform convergence
on equicontinuous subsets of F’ (see [22, Chap. I, §1, Définition, p. 18]). It is symmetric
which means that FeE = EcF and in the literature the definition of the e-product is
sometimes done the other way around, i.e. FeF' is defined by the right-hand side of .
We write F ®.E for the completion of the injective tensor product F' ®. F and denote
by §(E) the space of linear operators from E to F with finite rank. We recall from
the introduction that a locally convex Hausdorft space E is said to have (Schwartz’)
approximation property if the identity Ig on FE is contained in the closure of F(E) in
L.(F) := L,(F, E) which is equipped with the topology of uniform convergence on the
absolutely convex compact subsets of E. The space F has the approximation property if
and only if E® F' is dense in EcF for every locally convex Hausdorff space (every Banach
space) F by [I5] Satz 10.17, p. 250]. For more information on the theory of e-products
and tensor products see [6], [14] and [I5].
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3. Weighted vector-valued differentiable functions and the e-product. In this
section we introduce the spaces CV¥(Q, E) and CVE(Q, E) we want to consider. Then we
turn to the question of completeness of CV¥(Q, E) and CVE(Q, F) and when C*(Q, E)
is dense in the latter space. At the end of this section we describe their connection to
the e-product and the (completion of the) injective tensor product and derive sufficient
conditions such that they coincide.

DEFINITION 3.1 (weight). Let k € No o. We say that V¥ := (v;1) e s1ek) is a (directed)
family of weights on a locally compact Hausdorff space Q if v;;: Q — [0,00) for every
jedJ,lek)and

le,jg c J, 11712 S <k> 3 j3 S J, I3 € <k>7 C>0Vie {172} PVl < Cyjs,ls

as well as
Vie(k), zeQ3IjeJ:0<y(z).

DEFINITION 3.2. For k € Ny o, and a (directed) family V* := (V1) jeriew) of weights
on a locally compact Hausdorff space Q if k = 0 or an open set Q C R? if k € Ny, we
define the space of weighted continuous, resp. k-times continuously partially differentiable,
functions with values in an IcHs F as

OV E) ={feC*(LE)|VjcJ lek), acA:|fljia<oo}

where

ia=sup pa((0°)Ff(z))v;i(2).
e
BENG,|BI<I

|f

We define the topological subspace of CVk(Q, E) consisting of the functions that vanish
with all their derivatives when weighted at infinity by

CVEQLE) :={fecCVQE)|VjecJ lc(k), acd >0
3 K C Q compact : | flo\k 1,0 < €}

where

|flovk,jla = sup Pa((aB)Ef(m))Vj,l($)~
T€Q\K
BENG,|8I<I
It is easily seen that these spaces are locally convex Hausdorff spaces with a directed

system of seminorms due to our assumptions on the family V* of weights.

REMARK 3.3. Suppose that in the definition of the space CVk(Q,E) the weights also
depend on 8 € N¢, i.e. the seminorms used to define CV*(Q, E) are of the form

[flFe = sup Pa((ON)F f(2))vjp(x).

S
BENG,|BI<I

Without loss of generality we may always use weights which are independent of 5. Namely,
by setting v := maxgend 5<; ¥j,,6 for j € Jand | € (k), we can switch to the usual
system of seminorms (| f|;,o) induced by the weights (;,;) which is equivalent to (| |}, ,)-

The standard structure of a directed family V* of weights on a locally compact Haus-
dorff space Q is given by the following. Let (£2;) e be a family of sets such that Q; C Q,14



APPROXIMATION PROPERTY 239

for all j € J with Q@ = [J;c;;. Let 7j,: @ — (0,00) be continuous for all j € J and
l € (k), increasing in j € J, i.e. U;; < Vjq1,, and inl € (k), l.e. vj; < vj 41 if14+1 € (k),
such that

vii(z) = xe, (@)vj(z), =€,
for every j € J and I € (k) where xq, is the indicator function of §2;. Further, we remark
that the spaces CV*(Q, E) and CV’S (2, E) might coincide which is already mentioned in
[2, 1.3 Bemerkung, p. 189] for k = 0.

REMARK 3.4. If for every j € J and | € (k) there are i € J and m € (k) such that for
all € > 0 there is a compact set K C Q with v;;(z) < ev; () for all z € @\ K, then
CVH(Q,E) = CVE(Q, E).

Examples of spaces where this happens are C*(Q, E) with the topology of uniform

convergence of all partial derivatives up to order k£ on compact subsets of (2 and the
Schwartz space S(RY, E).

EXAMPLE 3.5. Let E be an IcHs, k£ € Ny o and §2 C R? open. Then

a) CF(Q,E) = CWHQ,E) = CW§(Q, E) with WE = {v;; == xq, |j € N, | € (k)}
where (€;);en is a compact exhaustion of €,

b) S(RLE) = CV®(RYL E) = CVP(RY E) with V*° := {v;,|j € N, | € Ng} where
vi(w) = (1 + |2[})V? for z € R%.

Proof.

a) (£2;)jen being a compact exhaustion of €2 means that Q = (J;¢ 2, €2, is compact
and §); C Qj+1 for all j € N where SDZJ-H is the set of inner points of ;4. For compact
Q; C Qand ! € (k) our claim follows from Remarkwith the choice i := j, m := [ and
}(;::Qj,

b) We recall that the Schwartz space is defined by

SRYLE) == {f€C®R",E)|VIENy, a €U | fllia < oo}
where

e = sup  pa((@7)Ff()) (1 +[af*)/2.

zeR?
BENG,|BI<I

Thus S(R?, E) = CV>°(R%, E). We note that for every j € N, I € Ny and & > 0 there is
r > 0 such that
. 1 2\1/2
i) B
Viprn) (@) (14 |2[?)

for all z ¢ B,.(0) =: K yielding S(R?, E) = CV°(RY, E) by Remark "

The question of finite dimensional approximation from the introduction is closely
connected to the property of a family of weights being locally bounded away from zero.

DEFINITION 3.6 (locally bounded away from zero). Let 2 be a locally compact Hausdorff
space and k € Ny . A family of weights V¥ is called locally bounded away from zero
on ( if

V K C Q compact, [ € (k) 3j€ J: Ilg}f( vii(x) > 0.
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For k = 0 (and locally compact Hausdorff ) this coincides with condition (ii) of
Theorem It even guarantees that the spaces CVF(Q, E) and CVIS (Q, E) are complete
for complete F.

PROPOSITION 3.7. Let E be a complete lcHs, k € Ny o and V* be a family of weights
which is locally bounded away from zero on a locally compact Hausdorff space Q (k = 0)
or an open set @ C R? (k > 0). Then CV*(Q, E) and CVE(Q, E) are complete locally
conver Hausdorff spaces. In particular, they are Fréchet spaces if E is a Fréchet space
and J countable.

Proof. Let (f.)re7 be a Cauchy net in CV*(Q, E). The space C*(Q, E) equipped with
the usual system of seminorms (¢x ;.«) given in is complete by [23, Proposition 44.1,
p. 446]. Let K C Q compact, | € (k) and o € . Since V* is locally bounded away from
zero, there is j € J such that

_ . —1
QK,l,a(f) < sup Vj,l(x) 1|f‘j,l,(¥ = (mf VJ'J(‘T)) ‘f|j7lvo‘7 VS Cvk(Qv E)’
zeK zeK

implying that the inclusion CV*(2, E) < C*(2, E) is continuous. Thus (f,) is a Cauchy
net in C¥(2, F) as well and has a limit f in this space due to the completeness. Let j € J,
l € (k), « € 2Aand € > 0. As this convergence implies pointwise convergence, we have
that for all z € Q and B € N¢, | 3| <, there exists 7j, 3. € T such that for all 7 > 75, 5.,

0PV Ef, (z) — (9°)F - 3
pal(0°)7 1) = ()71 ) < 5" 3)
if v;;(x) > 0. Furthermore, there exists 7o € 7 such that for all 7, > 7y
€
‘fr - .fu|j,l,oc <3 (4)

2
by assumption. Hence we get for all 7 > 79 by choosing p > 7 8.4, To

pa (0% £(2))vja(x) = pa((0°)7 fr (2))vja(a)

< pa((0°)F fr(z) = (07)7 f(2))vju()

< pa((07)F fr(@) = (0°)F fu(@)) () + pa ((0%)F Fulw) — (0°)F f(2))ju(w)
< suppa ((9°) f:(2) — (0°)% fu(2))via(z) + o

zEQ 2

< 7 E _(oM¥E : € _ — ) €

< swp Pa () fr(2) = () fu(2))va(2) + 5 = fr = fuljra + T
vENG, [vI<!

if vj;(z) > 0. We deduce that for all 7 > 7

Pa((ON)E f(@))vja(@) = pa ((07)F fr(2))vja(x)
< pa((0)F fr(x) = (") E f(2))vjal(a) < e
if v (x) > 0. If vj;(x) = 0, then this estimate is also fulfilled and so |fr — flji1a < €
as well as | f|j1.a < &+ |frljia for all 7 > 79. This means that f € CV*(Q, E) and that
(fr) converges to f in CV*(Q, E). Therefore CV* (€, E) is complete and CV§ (9, E) as well
because it is a closed subspace of the complete space CV’“(Q, E) u
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For k € Ny o and locally compact Hausdorff Q (k = 0) or open Q C R? (k > 0) we
define CV’;(Q, E) to be the subspace of CV*(Q, E) of functions with compact support.
Obviously we have CV¥(Q, E) C CVE(Q, E) and CV¥(Q, E) C C*(, E). On the other
hand, the space C¥(Q, E) is a linear subspace of CV*(Q, E) if the family of weights V¥
fulfils the definition of local boundedness.

DEFINITION 3.8 (locally bounded). Let 2 be a locally compact Hausdorff space and
k € Np oo- A family of weights V* is called locally bounded on € if

V K C Q compact, j € J, I € (k): sup vj,;(z) < oo.
zeEK

Indeed, if f € Ck(Q, E), then we have for K := supp f
(flita = sup  pa((0)7f(2))viu(z) < ( sup  pa((8°)7f(2))) sup vju(x)

reK zeK reK
BENG,|B|<I BENG,|BI<I

for all j € J, 1 € (k) and o € 2. Hence we have:

REMARK 3.9. Let E be an IcHs and k € Ny . If V¥ is a family of locally bounded
weights, then C*(Q, E) = CV¥(Q, E) algebraically.

Next, we phrase a sufficient criterion for the density of C*(Q, E) in CVE(Q, E) for
k € Np oo, 2 C R? open and locally bounded V¥.

DEFINITION 3.10 (cut-off criterion). Let F be an lcHs, k € Ny o, © C R? open and V*
be a family of weights on Q. We say that CVE(Q, E) satisfies the cut-off criterion if

VfECVELE), jed le(k), acAI§>0Ve>03 K CQ compact :

(K+B§(O)) c Q) and |f|Q\K,j,l,o¢ < €.
REMARK 3.11. If Q = R? then the cut-off criterion is satisfied for any § > 0.

EXAMPLE 3.12. Let E be an IcHs, k € Ny o, and Q@ C R? open. The space C*(2, F)
with the usual topology of uniform convergence of all partial derivatives up to order k on
compact subsets of Q and the Schwartz space S(R?, E) fulfil the cut-off criterion.

Proof. For the Schwartz space this follows directly from Example b) and Remark
By Examplea) we have C*(Q, E) = CW§(Q, E) with W* .= {v;, := xo; |jeN,
I € (k)} where (©;);en is a compact exhaustion of Q. Choosing K := ; and 0 :=
inf{l|z —z|| 2z € 0Q;, x € 0Q;41} > 0 for j € N, we note that the cut-off criterion is
fulfilled. =

The proof of the density given below uses cut-off functions and the additional § > 0
independent of € > 0 allows us to choose a suitable cut-off function whose derivatives
can be estimated independently of €. But first we recall the following definitions since we
need the product rule. Let v, 3 € Nd. We write v < 3 if 4,, < 3, for all 1 < n < d, and

define ]
() =1()

n=1
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if v < 8 where the right-hand side is defined by ordinary binomial coefficients. Now, we
can phrase the product rule whose proof follows by induction (just adapt the proof for
scalar-valued functions).

PROPOSITION 3.13 (product rule). Let E be an IcHs, k € Ny o, Q@ C R? open, f €
CF(Q, E) and g € C*(Q). Then gf € C*(Q, E) and

0PN =3 (7)o@, wen sen |5 <k
v<B K

LEMMA 3.14. Let E be an lcHs, k € Ny o and V¥ be a family of locally bounded weights on

an open set 0 C R If CVE(Q, E) satisfies the cut-off criterion, then the space CF(Q, E)

is dense in CVE(Q, E).

Proof. The local boundedness of V* yields that C*(Q, E) is a linear subspace of CV§ (9, E)
by Remark which we equip with the induced topology. Let f € CV’S (QE), jed,
I € (k) and o € 2. Due to the cut-off criterion there is § > 0 such that for ¢ > 0 there is
K C Q compact with (K +Bs(0) ) C Q and |f|o\k,j,1.a < €. We choose a cut-off function
Y € CX(Q) with 0 <1 <1 so that ¢ = 1 in a neighbourhood of K and

|(36)K¢| < Cﬁ(gflﬂl

on (2 for all 3 € N¢ where Cz > 0 only depends on 3 (see [I2, Theorem 1.4.1, p. 25]). We
set Ko := supp ), note that 1 f € C¥(, E) by the product rule and

f = ¥flita= sup  pa((O°)E(f —vf)(@))vi(z)

z€Q\K
BENG,|B|<I
< sup  pa((0°)FF(@) @)+ sup  pa((07)F(f)(2))vsa(x)
TEQ\K zeQ\K
BENG,|8I<I BENG,|BI<l
~lovesat 5w a3 (7) @ 00 @) st
z€(Q\K)NKy B v
BENG,|8<I -
<Iflovkjia+ sup Z(%!(aﬁ_w)ﬂw(z)‘( sup pa((aT)Ef(x))l/j,l(x))
z€Ko S\ z€Q\K
BENG,|8<1 "= TeNE | 7|<l

g 1A=
<|flexkjla+ sup Z ( Cpy6 1777 | flonk j.1.a
BENG.IBI<L \<p

=:C <00
= (14 Cis)lflark jia < (1+ Cis)e.
The independence of Cj 5 from € implies the statement. m

We complete this section by pointing out the link between our question on finite di-
mensional approximation and the tensor product. If V¥ is locally bounded away from zero,
there is a nice relation between our spaces of vector-valued functions and the e-product
which uses that the point-evaluation functionals d,: f — f(z) are continuous on CV*(Q)
by our definition of a weight.
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PROPOSITION 3.15. Let E be an lcHs, k € Ny, V¥ be a family of weights which is
locally bounded away from zero on a locally compact Hausdorff space Q (k = 0) or an
open set Q C R? (k > 0).

a) In addition, let CVE(Q) be barrelled if k > 0. Then
Sevi(ay: CV5(Q)eE = CVG(Q, E), ur—s [z — u(5,)),

is an isomorphism into, i.e. an isomorphism to its range.
b) In addition, let CV*(Q) be barrelled if k > 0. Then

Sevi(ay: CVHQ)EE = CVH(Q, E), ur— [z u(5,)],
is an isomorphism into.

Proof. Let u € CVE(Q)eE, resp. CVF(Q)eE, and as a simplification we omit the index
of S. The continuity of S(u) is a consequence of [I7, 4.1 Proposition, p. 18] and [17]
4.2 Lemma (i), p. 19] since V* is locally bounded away from zero. If k& > 0, then the
continuous partial differentiability of S(u) up to order k follows from [I7], 4.12 Proposition,
p. 22] as CVE(Q), resp. CV¥(), is barrelled and V* locally bounded away from zero. If
u € CVE(Q)eE, then S(u) vanishes together with all its derivatives when weighted at
infinity by [I7, 4.13 Proposition, p. 23]. Thanks to these observations [IT, 3.9 Theorem,
p. 9] proves our statement. m

In particular, if J is countable and V¥ locally bounded away from zero, then the
Fréchet spaces CV*(Q) and CVE(Q) are barrelled. This result allows us to identify the
injective tensor product of CVk(Q), resp. CV’S(Q), and E with a subspace of CVk(Q, E),
resp. CVE(Q, E). Let us use the symbol F for CV* or CVE. We consider F(2) ® E as an
algebraic subspace of F(Q)eE by means of the linear injection

Or@): FQ®E = F(QeE, Y fu®e,— [y = y(fn)en].
n=1 n=1

Via © r(q) the topology of F(2)eE induces a locally convex topology on F(2) ® £ and
F()®. E denotes F(Q)® F equipped with this topology. From the preceding proposition
and the composition Sr) o © 7() we obtain:

COROLLARY 3.16. Let E be an IcHs, k € No o, V¥ be a family of weights which is locally
bounded away from zero on a locally compact Hausdorff space Q (k = 0) or an open set

Q c R? (k > 0). Fix the notation F = CV* or CV§ and let F(Q) be barrelled if k > 0.
a) We get by identification of isomorphic subspaces
FQ)®. FECF(QeE CF(Q,E)

and the embedding F(Q) @ E — F(Q, E) is given by f @ e — [z — f(x)e].
b) Let F(Q2) and E be complete. If F(Q) ® E is dense in F(2, E), then

F(Q,E) = F(Q)eE = F(N)R.E.

In particular, F(Q) has the approzimation property if F(Q) ® E is dense in F(2, E)
for every complete E.
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Proof.
a) The inclusions hold by Proposition and F(Q)eE and F(Q, F) induce the same
topology on F(Q2) ® E. Further, we have

Foe Y [y y(el LD fr s Iy = y(He)] = [o = Fla)el.

b) If () and E are complete, then we obtain that F(Q)eE is complete by [I5, Satz

10.3, p. 234]. In addition, we get the completion of F(Q) ®. F as its closure in F(Q)eE
which coincides with the closure in F (2, E'). The rest follows directly from a). m

Looking at part a), we derive

(Sr@) ©Or@)) (Z fn® en) = Z fnen
n=1 n=1

formeN, f, € F(Q) and e, € E, 1 < n < m. Hence we see that the answer to our
question is affirmative if F(Q) ® E is dense in F(Q, E). For the sake of completeness we
remark the following.

PROPOSITION 3.17. Let E be an lcHs, k € Ny o, V¥ be a family of weights which is

locally bounded away from zero on a locally compact Hausdorff space Q (k = 0) or an
open set Q C R? (k > 0).

a) In addition, let CV}S(Q) be barrelled if k > 0. If E is quasi-complete and V* locally
bounded on €2, then

CVG(QeE = CVG(QLE)  via Seyiq)-
b) In addition, let CVk(Q) be barrelled if k > 0. If E is a semi-Montel space, then
CVH(Q)eE = CVH(QL, E)  via Seyr(q)-

Proof. For k > 0 this is [I7, 5.10 Example a), p. 28], resp. [I7, 3.21 Example a), p. 14].
Statement a) for k = 0 is a consequence of [I7, 3.20 Corollary, p. 13] in combination with
[17, 4.1 Proposition, p. 18], [I7, 4.2 Lemma (i), p. 19] and [I7, 4.13 Proposition, p. 23].
For k = 0 statement b) follows from [I7], 3.19 Corollary, p. 13] in combination with [I7]
4.1 Proposition, p. 18] and [I7], 4.2 Lemma (i), p. 19]. =

The corresponding results for k¥ = 0 and a Nachbin-family V° of weights are given
in [3, 2.4 Theorem, p. 138-139] and [3| 2.12 Satz, p. 141]. In combination with our
preceding observation, we deduce that every element of CVS’ (Q, E) can be approximated
in CV’S(Q,E) by functions with values in a finite dimensional subspace if E is a quasi-
complete space with approximation property and the assumptions of the proposition
above are fulfilled. The same is true for CV*(Q, E) if F is a semi-Montel space with
approximation property. Due to the strong conditions on E this is not really satisfying
but actually the best we get for general CV*(Q, E). For CV§ (9, E) there is a better result
available, whose proof we prepare on the next pages.

4. Convolution via the Pettis-integral. In this section we review the notion of the
Pettis-integral. Treves uses the Riemann-integral to define the convolution f % g of a
function f € C¥(Q2, F) and a function g € C2°(R?) in the proof of Thoorcm and states
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(without a proof) that the convolution defined in this way is a function in C2°(R¢, E) and

has all the properties known from the convolution of two scalar-valued functions. We use

the Pettis-integral instead to define the convolution. The reason is that we can use the

dominated convergence theorem for the Pettis-integral [19, Theorem 2, p. 162-163] to

get the Leibniz’ rule for differentiation under the integral sign which enables us to prove

that the convolution has some of the key properties known from the scalar-valued case.
Let us fix some notation first. For a measure space (X, X, 1) let

N X, p) = {f: X — K measurable | g1 (f) := /X |f(z)|dp(x) < oo}

and define the quotient space of integrable functions with respect to the measure p by
LYX, p) == LYX, ) /{f € £4X,u) |1 (f) = 0}. From now on we do not distinguish
between equivalence classes and their representatives anymore. We say that f: X — K
is integrable on A € ¥ and write f € LY(A,u) if xaf € L£Y(X,pn) where x, is the
characteristic function of A. Then we set

/ f(@) dpu(a) == / xa (@) f () dpu(z).
A X

DEFINITION 4.1 (Pettis-integral). Let (X,%, ) be a measure space and E an lcHs.
A function f : X — E is called weakly (scalarly) measurable if the function e’o f : X — K|
(e' o f)(z) := (¢, f(x)) := €'(f(x)), is measurable for all ¢’ € E’. A weakly measurable
function is said to be weakly (scalarly) integrableif e’of € LY (X, ). A function f: X — E
is called Pettis-integrable on A € ¥ if it is weakly integrable on A and

Jex € EVe € E :(cep) = /A<e',f(x)>du(x).

In this case e, is unique due to E being Hausdorff and we set

/A f(@) du(z) = e.
A function f is called Pettis-integrable on X if it is Pettis-integrable on all A € 3.

We write NV, for the set of p-null sets of a measure space (X, X, ) and for A € ¥ we
use the notion (A, X |, uu| ) for the restricted measure space given by 3|, := {w € X|
wCAyand i == p |5 - If we consider the measure space (R?,.Z(R?), \) of Lebesgue
measurable sets, we just write dz := dA(x).

REMARK 4.2. Let (X,X, ) be a measure space, E an lcHs and f Pettis-integrable on
A e X If we ¥ such that w C A and (A\w) C {z € X | f(z) = 0}, then f is
Pettis-integrable on w and

/ f() dpu() = /A £() dp(z). (5)

This follows directly from

(e [ r@an@) = [ @ s@)aua) = [ ¢ re)aute). ¢ e p
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LEMMA 4.3. Let E be a quasi-complete lcHs, (X, %, 1) a measure space, T a metric space
and suppose that f: X x T — FE fulfils the following conditions.

a) f(-,t) is Pettis-integrable on ¥ for allt € T,

b) f(z,): T — E is continuous in a point to € T for p-almost all x € X,

¢) there is a neighbourhood U C T of to and a Pettis-integrable function v on ¥ such
that

VteU ¢ e E'INeN, Vee X\N: (¢, f(z,t))] <[, v(x)).

Then gn: T — E, ga(t fA x,t) dp(zx), is well-defined and continuous in to for every
AeX.

Proof. Let A € ¥ and (¢,) be a sequence in U converging to ¢¢. From the continuous
dependency of a scalar integral on a parameter (see [7, 5.6 Satz, p. 147]) we derive

fim [ (¢, f@ ) dpu(z) = /<e’, Fto) du(z). (6)
n— oo A W—/ A H/—/
=:fn(z) :}'\’(1)
For n € Nand € € E' there is N € NV, such that
€', fu(@))] = [(¢/, f(x, tn))| < [, ()] (7)

for every € X \ N. Due to @ for every A € ¥ and ¢ € E, and the quasi-
completeness of F we can apply the dominated convergence theorem for the Pettis-
integral [19, Theorem 2, p. 162-163] and deduce

lim g (t) = Jim_ [ (o) du(o /f ) du(e) = gato). m

n—oo

The next lemma is the Leibniz’ rule for differentiation under the integral sign for the
Pettis-integral.

LEMMA 4.4 (Leibniz’ rule). Let E be a quasi-complete lcHs, (X,3, u) a measure space,
T C R? open and suppose that f: X x T — E fulfils the following conditions.

a) f(-,t) is Pettis-integrable on ¥ for allt € T,
b) there is a p-null set No € N, with f(z,-) € CY(T,E) for all z € X \ No,
c) for every j € N, 1 < j < d, there is a Pettis-integrable function ; on 3 such that
Ve e EPINeN, Ve X\ (NUN):[(0,) e, flz, )| < (.0 (x))].
Then ga: T — E, ga(t) = fA x,t)du(z), is well-defined for every A € %, gp €
CYT,E) and
(0,)Pga(t) = /A (0,)Pf(x.t) du(z), teT.

Proof. First, we consider the case K=R. Let A€ X, jeN, 1<j<d teT and (h,)
be a real sequence converging to 0 such that h,, # 0 and ¢t + h,e; € T for all n where ¢;
is the j-th unit vector in R?. Then
ga(t + hnej) —galt) [ f(z,t 4 hpey) — fla,t)
hn B A hn
=:fn(z)

du(z).
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We define the function f: X — E given by f(z) := (0¢,)E f(w,t) for z € X \ Ny and
f(z) :=0 for z € Ny. We observe that

Jim [ gt dute) = [ @0 ) duta)
- [ o nte) = [ Fa)dut) @

holds for every e’ € E’ where we used the scalar Leibniz’ rule for differentiation under the
integral sign for the first equation which can be applied due to our assumptions (see [7]
5.7 Satz, p. 147-148]). For ¢’ € E’ there is N € N, such that for every € X \ (N U Ny)
and n € N there is 6 € [0, 1] with

<6/7 f(l‘,t + hnej)> - <el? f(l‘vt))

<6/,fn($)> = h = (8tj)K<e/’f(x’t+9hnej)>
by the mean value theorem (K = R) implying
€'y fu(@))] = 1(9e, (e, f (@, t 4 Ohne))| < [(es 95 (2))]. (9)

Due to forevery A € Y and e € ', @ and the quasi-completeness of E we can apply
the dominated convergence theorem for the Pettis-integral [I9, Theorem 2, p. 162-163]
again and obtain that f is Pettis-integrable on X plus

(01,)%ga (1) = lim gA(”h,ff‘gA(“ — i [ fule)duto)

= [ F)an@) = [ @,)" fa.t) duto).

The continuity of (9;,)¥ga follows from Lemma by replacing f with (0;,)¥ f. For
K = C we just have to substitute (¢’,-) by Re(e’,-) (real part) and Im(e’, ) (imaginary
part) in the considerations above. m

Now, we are able to define the convolution of a vector-valued and a scalar-valued
continuous function via the Pettis-integral, if one of them has compact support, and to
show some of its basic properties which are known from the convolution of scalar-valued
functions (scalar convolution). For the properties of the scalar convolution see e.g. [23]
Chap. 26, p. 278-283].

LEMMA 4.5. Let E be a quasi-complete lcHs, k,n € Ng o, f € C*¥(RY, E) and g € C™(R?),
either one having compact support. The convolution

fro RSB (Fro)@) = [ fwale =y
is well-defined, supp(f * g) C supp f +suppg, f*g =g * f, where

9IRS B (e )@= [ a)ra =
and f g € C"(RY, E) plus

(O7)E(f+g) = f+(0")%9), 1Bl <n, (10)
(O%)E(f+9) = (0°)5f) x g, |B] < min(k,n). (11)
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Proof. Let h: R* x R* — E, h(y,z) := f(y)g(z — y). First, we show that h(-,z) is
Pettis-integrable on .Z(R?) for every z € R? implying that f g is well-defined. We note
that (¢/,h(-,x)) € L1(R?,\) for every € € E' and z € R%. Let z € R? and A € Z(R?).
We define the linear map
Inai B %, Tnale) = [ (4 h(y,2))dy.
A
Setting Ky :=supp f and K, := supp g, we observe that
Do) = [ (et -d= [ (e )
AﬁKf Aﬂ(szg)

If Ky =supp f is compact, we get
[Taa(€)] < MK y)sup{le'(2)| | = € f(Kf)g(w — Ky)}.

The set f(Ky)g(x — Ky) is compact in E and thus the closure of its absolutely convex
hull is compact in F as well by [24], 9-2-10 Example, p. 134] because E is quasi-complete.
Hence it follows that Iy , € (E.) = E by the theorem of Mackey—Arens meaning that
there is ep(x) € E such that

<6/, eA(x)> = IA,I(e/) = / <6/7 h(yvx» dy
A
for all ¢’ € E’. Thus h(-,z) is Pettis-integrable on .#(R%) and

(f x 9)(x) = epa(z) = ex;(2) = ex—k,(2)

for every x € R? if K ¢ = supp f is compact. If K, = supp g is compact, then the estimate
[In,2(€)] < Ma — Kg)sup{le’(2)] | 2 € f(z — Kg)g(EK,)}

yields to the Pettis-integrability in the same manner.

Let = ¢ supp f +suppg. If y ¢ supp f, then h(y,z) = 0. If y € supp f, then = —y ¢
supp g and thus h(y,z) = 0. Hence we have h(-,z) = 0 implying supp(f * g) C supp f +
supp g. From

@ (o) = [

Rd

= (o) <0)@) = (g (o N)(@) = | (ol — ) dy

(€, fy)glx —y))dy = /Rd (€, fy)g(x—y)dy

for every x € R? and ¢’ € E', where we used the commutativity of scalar convolution for
the fourth equation, it follows that

(f xg)(x) = era(z) = (9% f)(x)
for every x € R%.
Next, we show that f * g € C"(R%, E) and holds by applying Lemma and
So we have to check that the conditions a)—c) of these lemmas are fulfilled. First,
fix 1o € R%, let ¢ > 0 and B € N&, |3| < n. If Ky = supp f is compact, we set hy g 1=
(0HER | K xB.(zo) and observe that h| g yB_(2)(¥,") € C"(Be(20), E) for every y € Ky
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(condition b)). It follows from the theorem of Mackey—Arens and
[ (b)) dY| < Mg sup{ e/ (2)] = € £07) 0 g (Bulan) - K)}

for every ¢/ € E', w € ZL(R%)| g, and = € B.(x0) that hyg(-, ) is Pettis-integrable
on Z(R?) | g, for every x € B.(x0) (condition a)). Now, we check that condition c) is
satisfied. We observe that the estimate

[ @ sty an] < suple ()] |2 € 100}

for every ¢’ € E' and w € Z(R?) | g, implies that f| g, is Pettis-integrable on Z(R?) | g,
due to the theorem of Mackey—Arens again. The inequality

(€, by (y, )] = (¢ N g(z —y)))|
< K¢, ( Sup{| 0°)%g(2)| | 2 € Be(wo) — Ky}
<€ taay ke, (9) - FW))]

for every ¢’ € E' and (y,z) € Ky x B, (xo) with the seminorm gg—— K, ,, from (1)) yields
to condition c¢) being satisfied. Hence f * g € C"(B.(x¢), E) by Lemma if n =0 and
by Lemma [I4]if n = 1 as well as

oL 0)@) =05 [z | Flae ) dy] = OF v | fw)elr ~y)dy]

Ky

= | 1@ = gle =l 5 [ f0)0) o= 9)ay

Ky
= (f*((07)%9)) (=)

for every x € B.(zg). Letting ¢ — oo, we obtain the result for n = 0 and n = 1
if Ky = supp f is compact. For n > 2 it follows from induction on the order |3|. If
K, = supp g is compact, the same approach with hy g := (02)Fh | K, xB. (z0) instead of
hy g proves the statement. Furthermore, for || < min(k,n) we get

(€, (0°)P(f + 9)(x))
/ e g(z — y)) dy = / (¢ o ) () (0°Fg(x — ) dy
R4 Rd
( ¥g)) () = ((07)%( o f) * g) (x)
N*a)@ = [ €0 fuaa =)y

/

(o )%
((e' 0 (0%)F
for every ¢/ € E’ and € RY, where we used the corresponding result for the scalar
convolution for the fourth equation, implying (0°)¥(f x g) = ((0°)Ff) *g. m

Looking at the lemma above, we see that it differs a bit from the properties known from
the convolution of two scalar-valued functions. It is an open problem whether we actually
have f * g € C™&x(*1) (R4, F) and for |3] < k under the assumptions of the lemma.
But since we only apply the lemma above in the case n = oo, this does not affect us.
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We recall the construction of a mollifier from [23] p. 155-156]. Let

Cexp(=1/(1—[z[*)), |z <1,

‘R 5 R, )=
’ a2 {0, 2] > 1,

where C = ([, © exp(—l_l%lz) dx)_l. For n € N we define the mollifier p, given by

pn(z) == ndp(nx), x € R%. Then we have p, € C°(R?), p,, > 0, supp p, = By, (0) and
Jga pn(z)de = 1.

We can extend a function f € C¥(Q,E), k € Ny and Q@ C R?, to a function
fox € CF(RY, E) by setting fox := f on Q and for := 0 on R%\ Q. In this way the
convolution f * g := (fex * g) | @ With a function g € C(R?) is a well-defined function on
Q if F is quasi-complete, and we have the following approximation by regularisation in
analogy to the scalar-valued case (see e.g. [23, Chap. 15, Corollary 1, p. 158]).

LEMMA 4.6. Let E be a quasi-complete lcHs, k € Ng o, VE be a family of locally bounded
weights on an open set Q@ C R? and f € CF(Q,E). Then (f % pn) converges to f in
CVE(Q, E) as n — oco.

Proof. Due to Lemma we obtain that fex * p, € C°(R?, E) for every n € N. Since
V¥ is locally bounded on €, we derive f  p, € CV’S(Q, E). Lete>0,j€J,l e (k)and

a € 2. For B € N&, |B| <1, there is 65 > 0 such that for all x € Q and y € R? with
lyl = |(x —y) — z| < dg we have

pa((aB)EfeX(x - y) - (6B)Ef(x)) <e (12)
because the function (97)F f., is uniformly continuous on whole R? as it is continuous with

compact support. Therefore we deduce for all n > 1/ that supp p,, = B;,,,(0) C Bs, (0)
and hence

()% fux(z = )pu(y) = (9°) F()pu(y) dly)

570 (L 0" fute = 9n) = @) fn(0) )

Se/ pn(y)dy =€
(12) JRrd

by Lemma [£.5] for every z € Q. As 0 € supp p., we get

supp(9”)”(f * pn — f) C (supp f + supp pn) = (supp f + By (0))
for every |8] <l and n € N by virtue of Lemma Since supp f C  is compact and

Q open, there is r > 0 such that (supp f -+ B,(0)) C Q yielding
supp(9°) " (f * pn — f) C (supp f + B, (0)) =: K
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for all n > 1/r. Choosing § := min{dg |8 € N¢, |3| < I} > 0, we obtain for all
n > max{1/0,1/r} that

|f*pn_f|jla = sup pa((aﬁ)E(f*pn_f)(x))VjJ(x) < e sup vj(x)
b zeK z€K
BENG,|BI<l

which implies our statement since V¥ is locally bounded on Q and K C € is compact. m

5. Approximation property. Finally, we dedicate our last section to our main theo-
rem. We start with the case k = 0.

PROPOSITION 5.1. Let E be an lcHs and V° a family of locally bounded weights which
is locally bounded away from zero on a locally compact Hausdorff space 2. Then the
following statements hold.
a) C2Q) ® E is dense in CVY(L E).
b) For any f € C2(Q, E) and any open neighbourhood V of supp f, for every e > 0,
j€J and a € 2, there is g € CO(Q) ® E such that suppg CV and |f — g
c) If E is complete, then

CVS(Q, E) = CV5(Q)eE = CV5(N)B.E.
d) CVY(Q) has the approzimation property.
Proof. First, we consider part a). Due to Corollary a) and Remark [3.9(C2(Q) ® F
can be identified with a subspace of CVg (Q, E) equipped with the induced topology since
V0 is locally bounded and locally bounded away from zero.

Let f € CVS(Q,E), €>0,j € Jand a € A and fix the notation v; := v;o. Then
there is a compact set K C €2 such that

j.0,a S €

|f|Q\%,j,0,a = sup~p()é(f(x))l/] (.13) < €.
zeQ\K
Let K := K. Since € is locally compact, every w € K has an open, relatively compact
neighbourhood U,, C Q. As K is compact and K C |J Uy, there are m € N and
w; € K, 1 <14 <m, such that

weK

Kc|JUy, =Wca.
i=1

The set W is open and relatively compact because it is a finite union of open, relatively
compact sets. The local boundedness of V° and relative compactness of W imply that

N :=1+ sup vj(z) < oc.

TEW

For z € K we define V, := {y € Q| pa(f(y)— f(2)) < £}. Then V, = f~1(Ba(f(2), %)),
where B, (f(z), %) = {e € E|pa(e — f(x)) < &}, implying that V, is open in 2 since
[ is continuous. Hence we get K C |J,cx Vo and conclude that there are n € N and
z; € K,1<i<n,such that K C U?:l Vz, from the compactness of K. We note that

n

K=(KnW)c|JV,, nW). (13)
=1
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The sets V,,, NW are open in the compact Hausdorff space W with respect to the topology
induced by €. Since the compact Hausdorff space W is normal by [4, Chap. IX, §4.1,
Proposition 1, p. 181] and K is closed in W, there is a family of non-negative real-valued
continuous functions (¢;) with suppg; C (Vz, N W) such that > ., ¢; = 1 on K and
S @i <1on W by [ Chap. IX, §4.3, Corollary, p. 186]. By trivially extending ¢; on
Q\ W, we obtain ¢; € C2(Q) because W is compact. We define

9:=Y ©i® f(x;) €CUQ @ E
=1

and observe suppg C U/, (Vo, N W). If © € K, then ¢;(z)pa(f(z) — f(z;)) = 0 if
r ¢V, NW, and

Palf(@) = 9@) = pa (Y @) (f(@) = £@:) £ D il@palf(@) - ()
i=1 1=1

" 9 9
< Z%’(x)ﬁ =N
=1

yielding to
€

sup pa((f = 0)(@))y(x) < sup Fy(w) < swp Twya) = 5 (V= 1) <

If v ¢ K, then ¢;(z)f(z;) =0ifx ¢ (V,, "\W)\ K. If z € (V,; "W) \ K, then

Pali(@)f (@) < 0i(@) (palf (@) = F(@)) +palf@))) < @i(@) (< +Palf(2)))
yielding to

|f — 9|Q\K,j,0,a

= sup pa((f —9)@)vi(@) < sup (pa(f(2)) +palg(x)))v;(x)
zeQ\K zeQ\K

et s Y e <e b s Y a5+ mlfe))ue

z€O\K j TEO\K [

€ - € ”
<2+ — sup pi(x)vi(z) < 264+ — sup pilz)vi(z
Ner\K; (x)vj(z) NzeW; (x)v; ()

13
<2 — - (N—-1)<3
_5+N( ) €

implying
‘f - g|j,0,a < e

which proves part a).

Part c) follows from a) and Corollary b) because CVJ() is complete by Propo-
sition Part d) is implied by part c). Let us turn to part b). Let f € Co(Q,E) and V
be an open neighbourhood of K := supp f. Then we can replace by

K=(EnvnW)c|JV.,nVnW)
i=1
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and then the open sets V, by the open sets V., NV in what follows . This gives

suppg C (O(V@ ﬂVﬁW)) cVv
i=1

proving b). m

If Q is an open subset of R, we can choose a smooth partition of unity (see e.g. [12}
Theorem 1.4.5, p. 28]) and even deduce that C2°(Q) ® F is dense in CV}(Q, F) under the
assumptions of the proposition above.

The proof of part a) is a modification of the proof of |2 5.1 Satz, p. 204] by Bierstedt.
Since 2 is locally compact and not just a completely regular Hausdorff space, we can use
the partition of unity from [4, Chap. IX, §4.1, Proposition 1, p. 181]. Bierstedt has to use
the partition of unity from [20] 23, Lemma 2, p. 71] and due to the assumptions of this
lemma he cannot choose K = K but has to use

K':={z € Q| pa(f(z))v;(z) > e} C K.

Bierstedt’s assumption that v; is upper semi-continuous guarantees that K’ is closed and
thus compact as a closed subset of the compact set K. Choosing K := K’, the proof
above works as well where the existence of the open set W C () is a consequence of the
upper semi-continuity of v; again. Comparing Theorem and Proposition we see
that Theorem is far more general concerning the spaces (2 involved but the condition
of V¥ being a locally bounded family in Proposition is weaker than the condition of
being a family of upper semi-continuous weights in Theorem [I.I] Let us phrase our main
theorem.

THEOREM 5.2. Let E be an IcHs, k € Ny and V¥ be a family of locally bounded weights
which is locally bounded away from zero on an open set Q C R?. Let CVIS (Q) be barrelled
and C*(Q, E) dense in CVE(Q, E). Then the following statements hold.

a) C°(Q) @ E is dense in CVE(Q, E).
b) If E is complete, then

CVE(Q,E) = CVE(Q)eE = CVE(Q)®.E.
c) CV’Oc () has the approximation property.

Proof. Tt suffices to prove part a) because part b) follows from a) and Corollary b)
since CVE(Q) is complete by Proposition Then part c) is a consequence of b). Let
us turn to part a). Since CV§(R) is barrelled, V¥ locally bounded and locally bounded
away from zero, the space C2°(2) ® E can be considered as a topological subspace of
CVE(Q) ®. E by Corollary a) and Remark when equipped with the induced
topology.

Let f € CVE(QLE), e >0, € J, 1 € (k) and a € A where (Pa) ,cq 18 the system

of seminorms describing the locally convex topology of the completion E of E. In the
following we consider functions with values in E also as functions with values in E
and note that CVE(Q, E) is the completion of CVE(Q, E) by Proposition Thus the
topologies of CVE(Q, E) and CVE(€), E) coincide on CVE(2, E). The density of C¥(Q, E)

in CV§ (9, E) yields that there is f € CF(, E) such that |f — f|;1.a < £/3. Further, there
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is Ng € N with |f— f* Pnlite < €/3 for all n > Ny by Lemma as E is complete.
Let K := supp ]?and choose an open neighbourhood V' of K; such that V is relatively
compact in € which is possible since K is compact and Q C R? open. Since V¥ is locally
bounded away from zero, there is 7 € J such that
Cy :=sup vio(x) = (infiui,o(x))fl < 0.
€V zeV
From the relative compactness of V' in Q it follows that there is N; € N such that

V+ Bl/n( ) CQ
for all n > N;. Choosing Ny := max{Ny, N1} and defining the compact set Ky :=
V +Bi/n,(0) C Q, we get that

Cy = sup vj,(z) < 00
reKo

because V¥ is locally bounded. Further, we estimate
Cs:= sup / 0% p, ()| dy < (N2)' sup / 10°p(y)| dy < oo.
BENG,|BI<l JR? BENG,|B|<l /R?
By virtue of Proposition b) there is ¢ = 3¢ _, gm ® €, € C2(2) @ E such that
suppg C V and

~ €
|f_g|i70,oz < m

By Lemma we observe that g % pn, € C°(Q, E') with
supp(g * pn,) C V + By n, (0) = Ky C Q

and
q

9N, = D (gm * pN,) @ € € C(Q) @ E.

m=1

Thus we have by Lemma [4.5]
supp(f + piv,) €V + By, (0) = K

yielding
supp(f * pn, — g% pn,) CV + By, (0) = Kp C Q
and
|}7* PN _g*pN2|j,l,a = sup pa((}v— g) * (aﬁpf\b)(x))yjyl(x)
(10} rEKo
BENG,|8]<I
= s pa([ (0w~ ) (Fe0)  90x(0) ) )
ze Ko R4
BENG,|8I<I
< sup | Pona) @ —y)|dy  sup  palf(2) = g(2))vju(x)
TEK2 zESsu
sergipl< St
= sup (0% pv,) ()| dy sup pa(F(2) — 9(2))vsa()
reKo R4 z€V

BENG,|BI<I
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< C3(sup v;4(x)) (sup pa(f(2) — 9(2)))

r€EKs 2€V
= 30, Squa(f(Z) — g(2))vio(2)vio(z)
zeV
~ £
< C3CC|f = glio,a < 3

Therefore we deduce

= ~ = ~ e e €
\f—g*PNglj,l,aS|f—f|j,l,a+|f—f*pN2|j,z,a+|f*pN2—g*pN2|j,l,a<§+§+§=€~

If we keep in mind that f € CVE(Q, E) and g#py, € C2(Q)QE, it follows that C°(Q)®@ E
is dense in CV’S (Q, E) with respect to the topology of CV’S (Q, E) However, the latter space
is just the completion of CVE(Q, E) and thus the topologies of CVE(Q, E) and CVE(Q, E)
coincide on CVE(Q, E). Hence C2°(R2) ® E is dense in CV§(Q, E). =

CH(Q, E) is dense in CV§(2, E) by Lemma if the latter space fulfils the cut-off
criterion and the family V* is locally bounded. CV’S (2) is a Fréchet space and thus bar-
relled by Proposition if the J in V¥ = (Vj,1)jerie) is countable. Let us complement
what we said about the standard structure of a family of weights (see the remarks below
Definition by our additional conditions on the weights collected so far. The standard
structure of a (countable) locally bounded family V¥ which is bounded away from zero
on a locally compact Hausdorff space €, resp. on an open set Q C RY, is given by the
following. Let J := N, (€;);cs, be a family of sets such that Q; C Q;; for all j € J with
Q=U,c,sQj and

VK CQcompact 3j € J: K C .

Let 7j;: Q — (0,00) be continuous for all j € J, | € (k) and increasing in j € J and in
l € (k) such that

vii(x) = xa,(@)v(x), z€Q, (14)
for every j € J and | € (k) where xq, is the indicator function of Q;. If Q # R?, then the

cut-off criterion may add some restrictions on the structure of the sequence (£2,), e.g. a
positive distance from the boundary 9€; of ©; to the boundary 0§41 of Q;4; for all j.

EXAMPLE 5.3. Let E be an IcHs, k € Ny, and Q € R? open. Theoremcan be applied
to the following spaces:

a) C*(Q, E) with the topology of uniform convergence of all partial derivatives up to
order k on compact subsets of €2,

b) the Schwartz space S(RY, F),

c) the space O (R4, E) of multipliers of S(R9),

d) let Q; :={z = (z1,22) eR?*|1/(j +1) < |wa] < j+ 1} for all j € N and

Cro(RP\R,E):={feCFR*\R,E)|VjeN, l€(k), a € A:|f[j1a <00}

where

|fljta == sup pa((0‘3)Ef(x1,xz))e*'“‘/““).
(z1,22)€Q;
BENG,|BI<I
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Proof. a) From Example a) we obtain C¥(Q, E) = CWE(Q, E) with Wk := {v;, :=
xa,; |7 €N, I € (k)} where (€;);en is a compact exhaustion of Q2. The family of weights
W is locally bounded and locally bounded away from zero. The Fréchet space C*(Q) is
barrelled and the cut-off criterion is fulfilled by Example

b) Due to Example [3.5(b) we have S(R?, E) = CV°(R%, E) with V> :={v;,|j € N,
I € No} where v;;(z) := (1+]|z|?)//? for € R?. The family of weights is locally bounded
and bounded away from zero, the Fréchet space S(R?) is barrelled and S(R?, E) fulfils
the cut-off criterion by Example

¢) The space of multipliers is defined by

OuRYLE) :={f€C®R, E)|VgeSMRY), 1 €Ny, a €A: |[fllg1a <0}

where

gt = sup  pa((87)7 f(x))lg(x)]

zeR?
BENG,|BI<I

(see 211, 3°), p. 97]). The space Oy (R?) is barrelled by [TT, Chap. II, §4, n°4, Théoréme
16, p. 131]. Let J := {j C S(RY) | j finite} and define the family V> of weights given by
vii(z) == maxye;|g(z)|, z € RY, for j € J and [ € Ny. It is easily seen that the system of
seminorms generated by

(fliza == sup  pa((0))Pf(2))vji(z), f€OMRYE),

zeR?
BENG,|BI<I

for j € J,1 € Ny and o € 2 induces the same topology on Oy (R%, E). However, the
family V*° is directed, locally bounded and bounded away from zero. Further, for every
g > 0 there is r > 0 such that (1 + |z|?)™! < ¢ for all z ¢ B,.(0) =: K which implies for
j € Jandl € Ny that

vja(a) < emax lg(a)(1+[af)| = via(@), @ ¢ K.

where i := {g-(1+|-|>)|g € j} is a finite subset of S(R?). From Remark we
conclude that Oy (R E) = CV (R, E) = CV° (R4, E). Due to Remark we note
that Oy (R%, E) satisfies the cut-off criterion.

d) The family V¥ given by v;,(z1, 22) == xaq, (21, z2)e~1#11/UHD (2, 25) € R2\R, for
j € Nand ! € (k) is locally bounded and bounded away from zero. For j € N and | € Ny
weset i :=2j+1,m:=1,d :=1/(2j4+2) and for 0 < € < 1 we choose K := {z = (z1,22) €
Q; | |z1| < —(Ine)(2j+2)}. This yields C5 (R*\R, E) = CV*(R?\R, E) = CV§(R*\R, E)
by Remark [3:4] and that the cut-off criterion is fulfilled. In addition, the Fréchet space
CF_(R?\ R) is barrelled. m

exp

Together with Proposition we get from example a) one of our starting points,
namely Theorem back. Example b) and c) are covered by |21}, Proposition 9, p. 108]
and [2I, Théoréme 1, p. 111]. The results b) and ¢) for the Schwartz space in example
b) can also be found in [I1 Chap. II, §3, n°3, Exemples, p. 80-81] with a different proof
using the nuclearity of S(R?). We complete this paper with a comparison of our conditions
in Theorem with the ones stated by Schwartz in [2I] to get the same result for the
spaces in example a)—c) but only for = R
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REMARK 5.4. Schwartz treats the case k > 0 and Q = R? in [2I]. He assumes similar
conditions H;—H, for the space H¥(R?) := H*(R4 K) as we do (see [2I, p. 97-98]).
In H; the members of his family of weights I' are continuous and for every compact
set K C RY there is a weight in I' which is non-zero on K. H¥(R?) is the space of
functions f € C*(R?) such that v f is bounded on R¢ for every v € I' and |3| < k. This
yields to CK(R?) ¢ H*(RY) C C*(RY) algebraically. In Hy he demands that H*(R?) is a
locally convex Hausdorff space and that the inclusions C¥(RY) < H*(R9) — C¥(R?) are
continuous where C¥(R?) has its usual topology and C¥(R?) its inductive limit topology.
In H3 he supposes that a subset B C H*(R?) is bounded if and only if for every v € T
and |B] < k the set {y(2)0°f(z) | x € RY, f € B} is bounded in K. In Hy4 he assumes that
on every bounded subset of H*(R?) the topology of H*(R) and the induced topology of
C*(RY) coincide.

He defines the E-valued version H*(R¢, E) which corresponds to the space H*(R)
for Hk = Ck, C*, S and O); and shows that the statements of Theorem hold for all
of them but H* = C¥ (see [2T], p. 94-97], [Z1, Proposition 9, p. 108] and [2I, Théoréme 1,
p. 111)).

In comparison, our conditions of local boundedness of V* and being locally bounded
away from zero on Q = R? imply H; and H, if the members of V¥ are continuous. The
assumption that the members of V¥ are continuous is not a big difference if the members of
the family V¥ have a structure like in . Then one may replace the indicator functions
Xo, by a smoothed version, e.g. by convolution of the indicator function with a suitable
mollifier, and then one gets a family of continuous weights which generates the same
topology. The condition Hj is clearly fulfilled for the spaces % (R9) and the topology on
them is called ‘topologie naturelle’ by Schwartz (see [21], p. 98]). The condition Hy implies
that C*(R?, E) is dense in H*(RY, E) for H* = C¥, S and Oy, and quasi-complete E (see
[21, p. 106] and [21, Théoréme 1, p. 111]). The same follows in our case from local
boundedness and the cut-off criterion.
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