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Abstract. We generalize Young’s inequality to Orlicz functions. The Young’s inequality is widely
used not only in Mathematics but also in Mechanics and Risk Management. We show that for
Orlicz function Φ, its Young complementary function Φ̃ and dual complementary function Φ∗

coincide.

1. Introduction. In the 1930’s Young’s Inequality was proved [HLP]. That is, for
f : [0,+∞)→ [0,+∞) a continuous and strictly increasing function with f(0) = 0, for
all nonnegative u, v, ∫ u

0
f(s) ds+

∫ v

0
f−1(s) ds ≥ uv

and the inequality turns into equality if and only if v = f(u). After that, in the last
century, Jensen’s Inequality was proved [BO, Jj, MPF]. That is, if p : [0,+∞)→ [0,+∞)
a right continuous and nondecreasing function with

(1) p(0) = 0;
(2) p(s) > 0 if s > 0;
(3) lims→0 p(s) = 0 and lims→+∞ p(s) = +∞
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then for all u, v ∈ R ∫ u

0
p(s) ds+

∫ v

0
p∗(t) dt ≥ uv

and the inequality turns into equality if and only if v = p(u) or u = p∗(v), where
p∗(t) = sup{s : p(s) ≤ t}. There is a proof using graphs [KR] with details in [WS]. These
inequalities play not only a fundamental role in many fields of Mathematics [BB, Bz, MO],
but also an important role in other fields [BDP]. The developing of Mechanics [FL, FS]
and Risk Management [BF] lead the more functions involved. For example, in [BF], it
is needed that the functions take the value of +∞. In this paper, removing the above
restrictions (1)–(3), we prove Young’s Inequality in every detail for a right continuous
and nondecreasing function p : [0,+∞)→ [0,+∞] whose value can be +∞. Such kind of
functions are widely adopted [BF, FL, FS], especially in Orlicz spaces theory [HW, FHS,
Mj, HM, Ml]. We generalize the results of [KR, Cs, WW, WWCW]. We refer the reader
to see [Cs, WW, WWCW, RR] for more details.
Definition 1.1 ([KR]). Φ : R → [0,+∞], where +∞ can be a possible value, is called
an Orlicz function, provided that it is even, convex and left continuous on [0,+∞) with
Φ(0) = 0. Set

αΦ := sup{s ≥ 0 : Φ(s) = 0}; βΦ := sup{s ≥ 0 : Φ(s) <∞}
where R is the set of all real numbers. An interval (a, b) is called a Structure Affine
Interval (SAI) of Φ provided that Φ(s) is affine on (a, b), and for all ε > 0, Φ(s) is not
affine on (a − ε, b) or (a, b + ε). Set SΦ := R \

⋃∞
i=0(ai, bi), where (ai, bi) is a SAI of Φ

and b0 = +∞.
Definition 1.2 ([KR]). Let Ω be a set in Rn and (Ω,Σ, µ) be a measure space [DU].
For a real valued measurable function u(t) on Ω, let ρΦ(u) :=

∫
Ω Φ(u(t)) dµ. We define

the Orlicz function spaces LΦ

LΦ := {u : ρΦ(λu) <∞ for some λ > 0},
equipped with the Luxemburg norm

‖u‖(Φ) := inf
{
λ > 0 : ρΦ

(u
λ

)
≤ 1
}

or the Orlicz norm

‖u‖Φ := sup
ρΦ∗ (v)≤1

∫
Ω
|u(t)v(t)| dµ = inf

k>0

1
k

[1 + ρΦ(ku)], where v ∈ LΦ∗

LΦ is a Banach space.
Lemma 1.3 ([KR]). For an Orlicz function Φ, its right derivative Φ′+(s) exists for all
s ∈ R, and Φ′+(s) is nonnegative, nondecreasing and right continuous in [0,+∞). More-
over, for each u ∈ R,

Φ(u) =
∫ |u|

0
Φ′+(s) ds.

Proof. In the paper, for a convex function Φ, if s′ < s′′, Φ(s′) = Φ(s′′) = +∞, we always
assume

Φ(s′′)− Φ(s′) = +∞
(that is to say, Φ′+(s) =∞ for s ≥ βΦ).
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First, for 0 ≤ s1 < s2 < s3, since Φ is convex and Φ(0) = 0, we see that
Φ(s2)− Φ(s1)

s2 − s1
≤ Φ(s3)− Φ(s1)

s3 − s1
≤ Φ(s3)− Φ(s2)

s3 − s2
. (∗)

In fact, if Φ(s3) < +∞, by [KR], we get (∗). If Φ(s2) < +∞, and Φ(s3) = +∞, by the
convexity of Φ, we get

Φ(s2)− Φ(s1)
s2 − s1

≤ Φ(s3)− Φ(s1)
s3 − s1

,

and
Φ(s2)− Φ(s1)

s2 − s1
< +∞ = Φ(s3)− Φ(s2)

s3 − s2
,

so (∗) is true. If Φ(s1) < +∞, and Φ(s2) = +∞ = Φ(s3), then by the assumption at the
beginning of the proof

Φ(s2)− Φ(s1)
s2 − s1

= +∞ = Φ(s3)− Φ(s1)
s3 − s1

= Φ(s3)− Φ(s2)
s3 − s2

,

so (∗) is true. If Φ(s1) = Φ(s2) = Φ(s3) = +∞, then by the same assumption
Φ(s2)− Φ(s1)

s2 − s1
= +∞ = Φ(s3)− Φ(s1)

s3 − s1
= Φ(s3)− Φ(s2)

s3 − s2
,

so (∗) is true.
Summarizing, for 0 ≤ s1 < s2 < s3, (∗) holds.
Secondly, for all h > 0, by (∗), f(h) = Φ(s+h)−Φ(s)

h is nondecreasing, so

Φ′+(s) := lim
h→0+

Φ(s+ h)− Φ(s)
h

,

exists for all s ∈ [0,+∞).
We claim that Φ′+(s) is nondecreasing on [0,+∞). In fact, for 0 ≤ s1 < s2, and h > 0

small enough, by (∗)
Φ(s1 + h)− Φ(s1)

h
≤ Φ(s2 − h)− Φ(s1 + h)

s2 − s1 − 2h

≤ Φ(s2)− Φ(s2 − h)
h

≤ Φ(s2 + h)− Φ(s2)
h

,

so
Φ(s1 + h)− Φ(s1)

h
≤ Φ(s2)− Φ(s2 − h)

h
≤ Φ(s2 + h)− Φ(s2)

h
.

Let h→ 0. We get
Φ′+(s1) ≤ Φ′−(s2) ≤ Φ′+(s2).

Finally, Φ′+(s) is right continuous on [0,+∞). Since Φ′+(s) is nondecreasing, we get

lim
s′→s+

Φ′+(s′) ≥ Φ′+(s).

If Φ′+(s) = +∞, we have +∞ ≥ lims′→s+ Φ′+(s′) ≥ Φ′+(s) = +∞, i.e. lims′→s+ Φ′+(s′) =
Φ′+(s).

If Φ′+(s) < +∞, for any ε > 0, there exists h > 0 such that

Φ′+(s) ≤ Φ(s+ h)− Φ(s)
h

≤ Φ′+(s) + ε.
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For s < s′ < s+ h

Φ′+(s) ≤ Φ′+(s′) < Φ′−(s+ h) ≤ Φ(s+ h)− Φ(s)
h

+ ε ≤ Φ′+(s) + 2ε

so Φ′+(s) ≤ lims′→s+ Φ′+(s′) ≤ Φ′+(s) + 2ε, since ε is arbitrary, we get lims′→s+ Φ′+(s′) =
Φ′+(s).

Summarizing, for all s ∈ [0,+∞), lims′→s+ Φ′+(s′) = Φ′+(s), i.e. Φ′+(s) is right con-
tinuous on [0,+∞).

For each u ∈ R, since Φ(u) is even, we can assume u ≥ 0.
As u < βΦ, then there exists a positive number M such that Φ′+(s) ≤ M , for all

s ≤ u. By [Ni], we get

Φ(u) =
∫ u

0
Φ′+(s) ds.

As u = βΦ, since Φ′+(s) is nondecreasing and nonnegative, by the left continuity of Φ(u)
and the Levy Theorem, we have

Φ(βΦ) = lim
u→β−Φ

Φ(u) = lim
u→β−Φ

∫ |u|
0

Φ′+(s) ds =
∫ βΦ

0
Φ′+(s) ds.

As u > βΦ, Φ(u) = +∞. By the assumption, we get +∞ =
∫ u
βΦ

Φ′+(s) ds ≤
∫ u

0 Φ′+(s) ds,
so Φ(u) = +∞ =

∫ u
βΦ

Φ′+(s) ds ≤
∫ u

0 Φ′+(s) ds.
In summary, for all u ∈ R,

Φ(u) =
∫ |u|

0
Φ′+(s) ds.

Remark 1.4 ([KR]). For an Orlicz function Φ, there exists a nonnegative, nondecreasing
and right continuous function p on [0,+∞) such that for each u ∈ R,

Φ(u) =
∫ |u|

0
p(s) ds.

For simplicity, we rewrite Φ′+(s) as p(s) and Φ′−(s) as p−(s).
Obviously, we have

Remark 1.5 ([Cs]). An interval (a, b) is SAI of Φ if and only if p(s) is constant on (a, b).
Definition 1.6 ([KR]). For p : [0,+∞)→ [0,+∞] a nondecreasing function, set

p∗(t) := sup{s ≥ 0 : p(s) ≤ t} = inf{s ≥ 0 : p(s) > t},
p∗−(t) := sup{s ≥ 0 : p(s) < t} = inf{s ≥ 0 : p(s) ≥ t},

Φ∗(v) :=
∫ |v|

0
p∗(t) dt.

Remark 1.7. If p(s) ≡ 0, Φ(u) ≡ 0, LΦ = L0 := {all measurable functions}, but for
all u ∈ LΦ, ‖u‖(Φ) = inf

{
λ > 0 : ρΦ(uλ ) ≤ 1

}
= 0, so (LΦ, ‖.‖) is not a normed space. If

p∗(t) = sup{s ≥ 0 : p(s) ≤ t} = +∞, Φ∗(v) ≡ +∞, then LΦ∗ = {θ}, a trivial space. Also
the converse is true, i.e. if p ≡ +∞, p∗ ≡ 0.

Hence we further assume p 6≡ 0 and p 6≡ +∞, i.e. αΦ < +∞ and βΦ > 0.
Definition 1.8 (Young’s sense complementary function [KR]).

Φ̃(v) := sup{u|v| − Φ(u) : u ∈ R}.



ON GENERALIZED YOUNG’S INEQUALITY 299

2. Main results

Lemma 2.1 ([KR]). If p : [0,+∞)→ [0,+∞] is nondecreasing and right continuous, then
p∗ : [0,+∞)→ [0,+∞] is nondecreasing and right continuous, and for all ε > 0,

(1) p∗(p(s)) ≥ s;
(2) p∗(p(s) + ε) > s, if p(s) < +∞;
(3) p∗(p(s)− ε) ≤ s, if p(s) < +∞.

Proof. For t ∈ [0,+∞), first by the definition p∗(t) = sup{s ≥ 0 : p(s) ≤ t} ≥ 0. Next
for 0 ≤ t′ < t′′, we see that

p∗(t′) = sup{s ≥ 0 : p(s) ≤ t′} ≤ sup{s ≥ 0 : p(s) ≤ t′′} = p∗(t′′).

Suppose that for some t ≥ 0, p∗(t) < p∗(t+) := limh→0,h>0 p
∗(t + h). Take p∗(t) < s′ <

s′′ < p∗(t+). By p∗(t+) ≤ p∗(t + h) for all h > 0, from the definition of p∗ and since
p is nondecreasing, we see p(s′′) ≤ t + h. Since h is arbitrary, p(s′′) ≤ t, we obtain a
contradiction: t < p(s′) ≤ p(s′′) ≤ t.

We see that p∗(p(s)) = sup{s′ ≥ 0 : p(s′) ≤ p(s)} ≥ s, hence (1) is true.
For any s ≥ 0, ε > 0, p(s) < +∞, since p(s) is right continuous, there exists s′ > s

such that p(s′) < p(s) + ε, so p∗(p(s) + ε) = sup{s′ ≥ 0 : p(s′) ≤ p(s) + ε} ≥ s′ > s, thus
(2) holds.

For p(s) < +∞, p∗(p(s) − ε) = sup{s′ ≥ 0 : p(s′) ≤ p(s) − ε} = inf{s′ ≥ 0 : p(s′) >
p(s)− ε} ≤ s. Thus (3) is satisfied.

By the Levy Theorem and p∗ being nondecreasing and nonnegative on [0,+∞), it is
easy to see the following

Remark 2.2 ([KR]). For p∗ of Lemma 2.1, Φ∗(v) =
∫ |v|

0 p∗(t) dt is an Orlicz function,
i.e. Φ∗ : R→ [0,+∞] is even, convex and left continuous on [0,+∞) with Φ∗(0) = 0.

Proposition 2.3. For an Orlicz function Φ

αΦ∗ = p(0−) := lim
s→0+

p−(s) = lim
s→0+

p(s)

βΦ∗ = p(+∞) := lim
s→+∞

p−(s) = lim
s→+∞

p(s).

Proof. Let α = lims→0+ p(s) = lims>0,s→0 p(s), by the assumption p 6≡ ∞, we get
α < +∞. For any h > 0, there is δ > 0 such that for all 0 ≤ s ≤ δ, p(s) < α + h.
From αΦ∗ = sup{v ≥ 0 : Φ∗(v) = 0} = inf{t ≥ 0 : p∗(t) > 0} and p∗(α + h) =
sup{s ≥ 0 : p(s) ≤ α + h} ≥ δ > 0, we see that αΦ∗ ≤ α + h. Since h > 0 is arbitrary,
we deduce that αΦ∗ ≤ α. If α = 0, we get αΦ∗ = α. If α > 0, since p(s) is nonde-
creasing, we see that p∗(t) = sup{s ≥ 0 : p(s) ≤ t} ≤ 0 for all 0 ≤ t < α, moreover
αΦ∗ = sup{v ≥ 0 : Φ∗(v) = 0} = sup{t ≥ 0 : p∗(t) ≤ 0} ≥ t. Since t is arbitrary, we
deduce αΦ∗ ≥ α, hence αΦ∗ = α.

Put β = lims→+∞ p−(s) = lims→+∞ p(s).

A. Consider the case βΦ < +∞ and p(+∞) = +∞. For all n > 0, p∗(n) =
sup{s ≥ 0 : p(s) ≤ n} ≤ βΦ and βΦ∗ = sup{v ≥ 0 : Φ∗(v) < +∞} = sup{t ≥ 0 :
p∗(t) < +∞} ≥ n. Since n is arbitrary, we get βΦ∗ = +∞ = p(+∞).
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B. The case βΦ = +∞.
B-1. If β = +∞, then for all n > 0, there exists +∞ > s′ > 0 such that p(s′) > n,

so p∗(n) = sup{s ≥ 0 : p(s) ≤ n} = inf{s ≥ 0 : p(s) > n} ≤ s′ < +∞,
moreover βΦ∗ = sup{t ≥ 0 : p∗(t) < +∞} ≥ n. Since n is arbitrary, we get
βΦ∗ ≥ +∞ = β = p(+∞).

B-2. If β < +∞, for all h > 0, p∗(β + h) = sup{s ≥ 0 : p(s) ≤ β + h} = +∞,

βΦ∗ = sup{t ≥ 0 : p∗(t) < +∞} = inf{t ≥ 0 : p∗(t) = +∞} ≤ β + h.

Since h is arbitrary, we get βΦ∗ ≤ β.
B-2-i. If 0 = β, combining βΦ∗ ≤ β and βΦ∗ ≥ 0, we get βΦ∗ = 0 = β = p(+∞).
B-2-ii. If 0 < β, for all h > 0 there exists 0 ≤ s′ < +∞ such that +∞ > p(s′) > β − h.

Thus p∗(β − h) = inf{s ≥ 0 : p(s) > β − h} ≤ s′ < +∞. Moreover βΦ∗ =
sup{t ≥ 0 : p∗(t) < +∞} ≥ β − h. Since h is arbitrary, we get βΦ∗ ≥ β, and
therefore βΦ∗ = β = p(+∞).

Lemma 2.4 ([KR]). If p : [0,+∞)→ [0,+∞] is nondecreasing and right continuous, then
p∗∗ = p. Moreover Φ∗∗ = Φ.

Proof. Let s ∈ [0,+∞). If p(s) < +∞, s < βΦ, then for any ε > 0, by Lemma 2.1
p∗[p(s)− ε] ≤ s, so

p∗∗(s) = sup{t ≥ 0 : p∗(t) ≤ s} ≥ p(s)− ε.

Since ε is arbitrary, we get p∗∗(s) ≥ p(s).
On the other hand, by Lemma 2.1 p∗[p(s) + ε] > s, so

p∗∗(s) = sup{t ≥ 0 : p∗(t) ≤ s} = inf{t ≥ 0 : p∗(t) > s} ≤ p(s) + ε.

Since ε is arbitrary, we get p∗∗(s) ≤ p(s). So p∗∗(s) = p(s).
If p(s) = +∞, then s ≥ βΦ, for all n > 0, p∗(n) = sup{s ≥ 0 : p(s) ≤ n} ≤ βΦ < +∞.

p∗∗(s) = sup{t ≥ 0 : p∗(t) ≤ s} ≥ sup{t ≥ 0 : p∗(t) ≤ βΦ} ≥ n. Since n is arbitrary, we
get p∗∗(s) = +∞ = p(s).

Lemma 2.5. Given a nonnegative and nondecreasing function p(s), p(s) is strictly in-
creasing on [0,+∞) implies that p∗ is continuous on [0,+∞), and p(s) is continuous on
[0,+∞) implies that p∗ is strictly increasing on [0, p(+∞)].

Proof. First, we prove that p(s) is strictly increasing implies that p∗(t) is continuous.
Suppose that p∗(t) is not continuous. Since p∗(t) is right continuous, we have p∗(t−) <

p∗(t) for some t ∈ (0,+∞). Take s′, s′′ ∈ R such that p∗(t−) < s′ < s′′ < p∗(t). By Lemma
2.4, p(s) = p∗∗(s) and by Lemma 2.1, we see that for all t′ < t, there exists ε′ > 0 such
that p(s′) = p∗∗(s′) = p∗∗(p∗(t′) + ε′) > t′. By the arbitrariness of t′, p(s′) ≥ t. On
the other hand, by Lemma 2.1, p(s′′) = p∗∗(s′′) = inf{t ≥ 0 : p∗(t) > s′′} ≤ t, so
p(s′′) ≤ t ≤ p(s′), and since p is nondecreasing, p(s′′) ≥ p(s′), hence p(s′′) = p(s′). This
is a contradiction to p(s′) < p(s′′).

Secondly, we prove that p(s) is continuous implies p∗(t) is strictly increasing. Suppose
that for some t′, t′′ ∈ (0, p(+∞)], t′ < t′′ with p∗(t′) = p∗(t′′) := s. Then

p(s) = p∗∗(s) = sup{t : p∗(t) ≤ s} ≥ t′′ > t′.
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On the other hand, for all s′ < s, since p∗(t) is nondecreasing,

p(s′) = p∗∗(s′) = sup{t ≥ 0 : p∗(t) ≤ s′} = inf{t ≥ 0 : p∗(t) > s′} ≤ t′ < t′′,

so p(s−) = lims′→s− p(s′) ≤ t′ < t′′ ≤ p(s), a contradiction to the continuity of p.

Lemma 2.6. Given a nonnegative and nondecreasing function p, for any ε > 0, if

(1− ε)p(s) ≤ pε(s) ≤ (1 + ε)p(s) ∀ s ≥ 0,

then
p∗
( t

1 + ε

)
≤ pε∗(t) ≤ p∗

( t

1− ε

)
∀ t ≥ 0,

(1 + ε)Φ∗
( v

1 + ε

)
≤ Φε∗(v) ≤ (1− ε)Φ∗

( v

1− ε

)
∀ v ≥ 0.

Proof. Since (1− ε)p(s) ≤ pε(s) ≤ (1 + ε)p(s), we get

pε∗(t) = sup{s ≥ 0 : pε(s) ≤ t} ≤ sup{s ≥ 0 : (1− ε)p(s) ≤ t}

= sup
{
s ≥ 0 : p(s) ≤ t

1− ε

}
= p∗

( t

1− ε

)
and

pε∗(t) = sup{s ≥ 0 : pε(s) ≤ t} ≥ sup{s ≥ 0 : (1 + ε)p(s) ≤ t}

= sup
{
s ≥ 0 : p(s) ≤ t

1 + ε

}
= p∗

( t

1 + ε

)
Thus p∗

(
t

1+ε
)
≤ pε∗(t) ≤ p∗

(
t

1−ε
)
. Hence

Φε∗(v) =
∫ |v|

0
pε∗(t) dt ≤

∫ |v|
0

p∗
( t

1− ε

)
dt

= (1− ε)
∫ |v|

0
p∗
( t

1− ε

)
d

t

1− ε = (1− ε)Φ∗
( v

1− ε

)
Φε∗(v) =

∫ |v|
0

pε∗(t) dt ≥
∫ |v|

0
p∗
( t

1 + ε

)
dt

= (1 + ε)
∫ |v|

0
p∗
( t

1 + ε

)
d

t

1 + ε
= (1 + ε)Φ∗

( v

1 + ε

)
,

so
(1 + ε)Φ∗

( v

1 + ε

)
≤ Φε∗(v) ≤ (1− ε)Φ∗

( v

1− ε

)
.

Lemma 2.7 ([Cs]). Given an Orlicz function Φ, for any ε > 0, there exists a strictly
convex Orlicz function Φε with pε(s) strictly increasing such that αΦε = 0, pε(0) = 0 and

(1− ε)p(s)− ε ≤ pε(s) ≤ (1 + ε)p(s) + ε ∀ s ≥ 0
(1− ε)Φ(u)− ε ≤ Φε(u) ≤ (1 + ε)Φ(u) + ε ∀u ∈ R

and (1 + ε)Φ∗
( v

1 + ε

)
− ε ≤ Φε∗(v) ≤ (1− ε)Φ∗

( v

1− ε

)
+ ε ∀ v ∈ R.
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If αΦ = 0 and p(0) = 0
(1− ε)p(s) ≤ pε(s) ≤ (1 + ε)p(s) ∀ s ≥ 0

(1− ε)Φ(u) ≤ Φε(u) ≤ (1 + ε)Φ(u) ∀u ∈ R

and (1 + ε)Φ∗
( v

1 + ε

)
≤ Φε∗(v) ≤ (1− ε)Φ∗

( v

1− ε

)
∀ v ∈ R.

Proof.
Case 1. Assume that αΦ = 0 and p(0) = 0.
A. For (a1, b1):

A-I. If p(a1) = p(b1), by the right continuity of p, take b′1 > b1 such that p(b1) < p(b′1) <
(1 + ε)p(b1) and take a′1 = a1, define pε(a′1) = p(a1), pε(b′1) = p(b′1). For s ∈ (a′1, b′1),
pε(s) is defined as a line connecting (a′1, p(a′1)) and (b′1, p(b′1)).
A-II. If p(a1) < p(b1). Take a′1 = a1 and b′1 = b1, define pε(a′1) = p(a1), c =

min{p(b′1), (1 +ε)p(a1)} and pε(s) is defined as a line that connects (a′1, p(a′1)) and (b′1, c)
for s ∈ (a′1, b′1).

Thus we see that pε(s) is nonnegative and strictly increasing on (a′1, b′1) and for all
s ∈ (a′1, b′1), (1−ε)p(s) ≤ p(s)

(1+ε) ≤
(1+ε)
(1+ε)p(a1) = p(a1) ≤ pε(s) ≤ (1+ε)p(a1) ≤ (1+ε)p(s).

B. For (a2, b2):
B-I. In the case of S2 = (a2, b2) ∩ [a′1, b′1) = ∅, repeating arguments as in Case A, we

define pε(s).
B-II. In the case of S2 = (a2, b2)∩ [a′1, b′1) 6= ∅, we see that a2 < a′1 < b2 or a2 < b′1 < b2.

B-II-1. Since (a1, b1)∩ (a2, b2) = ∅ and a1 = a′1, the inequality a2 < a′1 < b2 is impossible.
B-II-2. If b′1 < b2, take a′2 = b′1. Repeating the arguments of Case A, we define pε(s).

C. For (a3, b3):
C-I. In the case of S3 = (a3, b3) ∩ ([a′1, b′1) ∪ [a′2, b′2)) = ∅, repeating the arguments of

Case A, we define pε(s).
C-II. In the case of S3 = (a3, b3) ∩ ([a′1, b′1) ∪ [a′2, b′2)) 6= ∅.

C-II-1. If (a3, b3) ⊆ ([a′1, b′1) ∪ [a′2, b′2)), pε(s) has been well defined.
C-II-2. If (a3, b3) 6⊆ ([a′1, b′1) ∪ [a′2, b′2)), combining that (a1, b1),(a2, b2) and (a3, b3) are
mutually disjoint, and (a′1, b′1) and (a′2, b′2) are disjoint, we see that there exists one and
only one i such that a′i < a3 < b′i < b3. Repeating arguments of Case B-II-2, we define
pε(s).

Assume that for (ak, bk), there exist mutually disjoint {(a′i, b′i)}ki=1 with
⋃k
i=1(ai, bi) ⊆⋃k

i=1(a′i, b′i) such that pε(s) is positive and strictly increasing with

(1− ε)p(s) ≤ pε(s) ≤ (1 + ε)p(s) ∀s ∈
k⋃
i=1

(a′i, b′i).

For (ak+1, bk+1), we see that
D-I. In the case of Sk+1 = (ak+1, bk+1) ∩ (

⋃k
i=1[a′i, b′i)) = ∅, repeating the arguments

of Case A, we define pε(s).
D-II. In the case of Sk+1 = (ak+1, bk+1) ∩ (

⋃k
i=1[a′i, b′i)) 6= ∅.

D-II-1. If (ak+1, bk+1) ⊆ (
⋃k
i=1[a′i, b′i)), pε(s) has been defined previously.

D-II-2. If (ak+1, bk+1) 6⊆ (
⋃k
i=1[a′i, b′i)), combining that {(ai, bi)}ki=1 are mutually disjoint

and {(a′i, b′i)}ki=1 are mutually disjoint, we see that there exists one and only one i such
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that a′i < ak+1 < b′i < bk+1. Repeating arguments of Case B-II-2, we define pε(s). Hence
pε(s) is positive and strictly increasing with

(1− ε)p(s) ≤ pε(s) ≤ (1 + ε)p(s) ∀s ∈
k+1⋃
i=1

(a′i, b′i).

By induction, we define pε(s) on
⋃∞
i=1(ai, bi) such that pε(s) is positive and strictly

increasing with
(1− ε)p(s) ≤ pε(s) ≤ (1 + ε)p(s) ∀s ≥ 0.

In the case of (a0, b0) = (a,+∞) 6= ∅, if +∞ > p(a) > 0, define

pε(s) =
{

(1 + (1− 1
2n )ε)p(a), s = a+ n, n = 0, 1, 2, . . .

connected by line, s ∈ (a+ n, a+ n+ 1), n = 0, 1, 2, . . .

then for s ∈ (a,+∞), there exists n such that for s ∈ [a+ n, a+ n+ 1), we have

p(s) ≤
(

1 +
(

1− 1
2n
)
ε
)
p(a) ≤ pε(s)

≤
(

1 +
(

1− 1
2n+1

)
ε
)
p(a) ≤ (1 + ε)p(a) = (1 + ε)p(s).

If p(a) = +∞, we define pε(s) = p(s) = +∞, s ∈ [a0,+∞).
If p(a) = 0, by the monotonicity, we see that (a0,+∞) = (0,+∞), then p ≡ 0, which

contradicts the assumption.
Hence we define pε(s) well as s ∈

⋃∞
i=0(ai, bi), and define pε(s) = p(s) as s 6∈⋃∞

i=0(ai, bi). Then for any ε > 0, there exists a strictly convex Orlicz function Φε such
that pε(s) is strictly increasing with αΦε = 0, pε(0) = 0 and

(1− ε)p(s) ≤ pε(s) ≤ (1 + ε)p(s) ∀ s ≥ 0
(1− ε)Φ(u) ≤ Φε(u) ≤ (1 + ε)Φ(u) ∀u ∈ R

and (1 + ε)Φ∗
( v

1 + ε

)
≤ Φε∗(v) ≤ (1− ε)Φ∗

( v

1− ε

)
∀ v ∈ R.

Case 2. αΦ > 0 or p(0) > 0.
2-I. If αΦ > 0, then without loss of generality, assume p(s) is strictly increasing for
s > αΦ. We can make the arguments in Case 1 once more if p(s) is not strictly increasing
for s > αΦ. By the assumption αΦ < +∞, since p is right continuous, there exists a
number α, α > αΦ > 0 such that αc ≤ ε for some c ≤ min{p(α), ε}. Define pε(s) = c

αs

as s ≤ α and pε(s) = p(s) as s > α. Then pε(s) is strictly increasing with αΦε = 0,
pε(0) = 0. And as 0 ≤ t ≤ c, pε∗(t) = sup{s ≥ 0 : pε(s) ≤ t} = sup{s ≥ 0 : c

αs ≤ t} = α
c t;

as t > c, pε∗(t) = sup{s ≥ 0 : pε(s) ≤ t} = sup{s ≥ 0 : p(s) ≤ t} = p∗(t). Thus αΦ∗ = 0,
and

Φε(u) ≤ Φε(α) = c

α

α2

2 = αc

2 ≤
ε

2 , 0 ≤ u ≤ α,

Φε∗(v) ≤ Φε∗(c) = α

c

c2

2 = αc

2 ≤
ε

2 , 0 ≤ v ≤ c.
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In summary, pε(s) is strictly increasing with αΦε = 0, pε(0) = 0 and

(1− ε)p(s)− ε ≤ pε(s) ≤ (1 + ε)p(s) + ε ∀ s ≥ 0
(1− ε)Φ(u)− ε ≤ Φε(u) ≤ (1 + ε)Φ(u) + ε ∀u ∈ R

and (1 + ε)Φ∗
( v

1 + ε

)
− ε ≤ Φε∗(v) ≤ (1− ε)Φ∗

( v

1− ε

)
+ ε ∀ v ∈ R.

2-II. If p(0) > 0 then since p is nondecreasing, αΦ = 0. Since βΦ > 0, take βΦ > α >

αΦ = 0 such that αp(α) ≤ ε. Repeating the arguments of Case 2-I, we get pε(s) of 2-I.

Theorem 2.8 (Young’s Inequality [KR]). If Φ is an Orlicz function, then for all u, v ∈ R,

Φ(u) + Φ∗(v) ≥ |u| |v| ≥ uv.

Proof. Let u, v ∈ R.
A. Φ : R → [0,+∞] and p(s) is continuous and strictly increasing on [0,+∞). Let

t = p(s) ↔ s = p−1(t), then p : [0,+∞) → [0,+∞], s = 0 ↔ t = p(0) := α∗ and s =
u↔ t = p(u). Therefore p−1 : p([0,+∞))→ [0,+∞), i.e. p−1 : [p(0), p(+∞))→ [0,+∞).
Then p∗ : [0,+∞) → [0,+∞], and for 0 ≤ t < α∗, p∗(t) = sup{s ≥ 0 : p(s) ≤ t} ≤
sup{s ≥ 0 : p(s) < α∗} = 0. Hence for all u, v ∈ R∫ |u|

0
p(s) ds = sp(s)||u| −

∫ |u|
0

s dp(s) = |u|p(u)−
∫ p(u)

α∗
p−1(t) dt∫ |v|

0
p∗(t) dt =

∫ α∗

0
p∗(t) dt+

∫ |v|
α∗

p∗(t) dt =
∫ |v|
α∗

p−1(t) dt

Φ(u) + Φ∗(v) =
∫ |u|

0
p(s) ds+

∫ |v|
0

p∗(t) dt

= |u|p(u)−
∫ p(u)

α∗
p−1(t) dt+

∫ |v|
α∗

p−1(t) dt = |u|p(u) +
∫ |v|
p(u)

p−1(t) dt

= |u| |v|+ |u|(p(u)− |v|) +
∫ |v|
p(u)

p−1(t) dt

If |v| = p(u),
Φ(u) + Φ∗(v) = |u| |v|.

If |v| > p(u),

Φ(u) + Φ∗(v) = |u| |v|+ |u|(p(u)− |v|) +
∫ |v|
p(u)

p−1(t) dt

≥ |u| |v|+ |u|(p(u)− |v|) + p−1(p(u))(|v| − p(u)) = |u| |v|.

If |v| < p(u),

Φ(u) + Φ∗(v) = |u| |v|+ |u|(p(u)− |v|) +
∫ |v|
p(u)

p−1(t) dt

= |u| |v|+ |u|(p(u)− |v|)−
∫ p(u)

|v|
p−1(t) dt

≥ |u| |v|+ |u|(p(u)− |v|)− p−1(p(u))(p(u)− |v|) = |u| |v|.
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In summary, for all u, v ∈ R

Φ(u) + Φ∗(v) = |u| |v| ≥ uv.

B. For an Orlicz function Φ, by Lemma 2.7, we get a strictly convex function Φε with
a strictly increasing pε. By Lemma 2.5, pε∗ is continuous, and by Lemma 2.7 once more
we get an Orlicz function Φε∗ε with a continuous strictly increasing pε∗ε. Hence for all
u, v ∈ R, let u′ = u(1− ε), v′ = v(1− ε), by the result A, we get

Φε∗ε(v′) + Φε∗ε∗(u′) ≥ |u′| |v′|.

By Lemmas 2.4, 2.5, 2.7 and 2.6, we get

Φε∗ε(v′) ≤ (1 + ε)Φε∗(v′) + ε ≤ (1 + ε)(1− ε)Φ∗
( v′

1− ε

)
+ 2ε

and

Φε∗ε∗(u′) ≤ (1− ε)Φε∗∗
( u′

1− ε

)
= (1− ε)Φε

( u′

1− ε

)
≤ (1− ε)(1 + ε)Φ

( u′

1− ε

)
+ ε.

Hence

(1− ε2)Φ(u) + (1− ε2)Φ∗(v) + 3ε = (1− ε2)Φ
( u′

1− ε

)
+ (1− ε2)Φ∗

( v′

1− ε

)
+ 3ε

≥ |u′| |v′| = (1− ε)2|u| |v|,

so
(1− ε2)Φ(u) + (1− ε2)Φ∗(v) + 3ε ≥ (1− ε)2|u| |v|.

Letting ε→ 0, we have
Φ(u) + Φ∗(v) ≥ |u| |v| ≥ uv.

Proposition 2.9. Given an Orlicz function Φ, the following are equivalent: for u, v ∈ R

(1) |v| = p(u) or |u| = p∗(v);
(2) |v| ∈ [p−(u), p(u)];
(3) |u| ∈ [p∗−(v), p∗(v)].

Proof. (1) =⇒ (2). Otherwise,

1-I. |v| = p(u) or |u| = p∗(v), |v| < p−(u) or
1-II. |v| = p(u) or |u| = p∗(v), |v| > p(u).
1-I-i. |v| = p(u), |v| < p−(u). We deduce |v| < p−(u) ≤ p(u), a contradiction with

|v| = p(u).
1-I-ii. |u| = p∗(v), |v| < p−(u). Since p−(u) = sup{t ≥ 0 : p∗(t) < |u|} = inf{t ≥ 0 :

p∗(t) ≥ |u|}, we deduce that p∗(v) < |u|, a contradiction with |u| = p∗(v).
1-II-i. |v| = p(u), |v| > p(u). A contradiction.
1-II-ii. |u| = p∗(v), |v| > p(u). By Lemma 2.1, p∗(v) = p∗(p(u)+ε) > |u|, a contradiction

with |u| = p∗(v).

(2) =⇒ (1). Otherwise, |v| ∈ [p−(u), p(u)], |v| 6= p(u), |u| 6= p∗(v).

2-I. |v| ∈ [p−(u), p(u)], |v| 6= p(u), |u| > p∗(v).
2-I-i. |v| ∈ [p−(u), p(u)], |v| > p(u), |u| > p∗(v). v ≤ p(u) is contradictory to |v| > p(u).
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2-I-ii. |v| ∈ [p−(u), p(u)], |v| < p(u), |u| > p∗(v). From p−(u) = p−(p∗(v) + ε), since p∗
is right continuous, there exists v′ > |v| such that p∗(v′) < p∗(v) + ε, we deduce
p−(u) = p−(p∗(v)+ε) = sup{t ≥ 0 : p∗(t) < p∗(v)+ε} ≥ v′ > |v|, a contradiction
to |v| ≥ p−(u)).

2-II. |v| ∈ [p−(u), p(u)], |v| 6= p(u), |u| < p∗(v).
2-II-i. |v| ∈ [p−(u), p(u)], |v| > p(u), |u| < p∗(v). |v| ≤ p(u) is contradictory to |v| > p(u).
2-II-ii. |v| ∈ [p−(u), p(u)], |v| < p(u), |u| < p∗(v). By Lemma 2.1, we deduce p(u) =

p(p∗(v)− ε) ≤ |v|, a contradiction to |v| < p(u).

In summary, (1)⇐⇒ (2).
Replacing Φ by Ψ∗ and u by v, using Lemma 2.4, repeating the arguments of (1)⇔ (2),

we get (1)⇔ (3).

Theorem 2.10 (Young’s Equality [KR]). If Φ is an Orlicz function, then for all u, v ∈ R

Φ(u) + Φ∗(v) = uv ⇐⇒ |v| = p(u) or |u| = p∗(v).

Proof. Necessity. Set f : R × R −→ R, f(u, v) := Φ(u) + Φ∗(v) − uv. By Theorem 2.8,
it follows that f(u, v) ≥ 0. If f(u0, v0) = 0 then f(u0, v0) = min f(u, v), ∂f∂u−(u0, v0) :=
limu→u−0

f(u,v0)−f(u0,v0)
u−u0

≤ 0 and ∂f
∂u+(u0, v0) := limu→u+

0

f(u,v0)−f(u0,v0)
u−u0

≥ 0. We get

p−(u0)− v0 ≤ 0, p(u0)− v0 ≥ 0,

so
p−(u0) ≤ v0, p(u0) ≥ v0

i.e. by Proposition 2.9

p−(u0) ≤ v0 ≤ p(u0) ⇐⇒ |v0| = p(u0) or |u0| = p∗(v0).

Sufficiency. For u, v ∈ R, |v| = p(u) or |u| = p∗(v). We shall discuss two cases:
A. |v| = p(u) and B. |u| = p∗(v).

A. |v| = p(u), then p(u) = |v| < +∞.
A-1. If |u| < βΦ, p(u) < +∞, for ε small enough (1+ε)u

1−ε < βΦ, by Lemmas 2.6, 2.4
and 2.7

pε∗ε∗((1 + ε)u) ≤ pε∗∗
(

(1 + ε)u
1− ε

)
= pε

(
(1 + ε)u

1− ε

)
≤ (1 + ε)p

(
(1 + ε)u

1− ε

)
+ ε < +∞,

we get pε∗ε∗((1 + ε)u) ∈ R. By Theorem 2.8-A

(1 + ε)|u|pε∗ε∗((1 + ε)u) = Φε∗ε∗((1 + ε)u) + Φε∗ε(pε∗ε∗((1 + ε)u)).

By Lemmas 2.6, 2.4 and 2.7 again

Φε∗ε∗((1 + ε)u) ≥ (1 + ε)Φε∗∗
[

(1 + ε)u
1 + ε

]
(1 + ε)Φε(u) ≥ (1− ε2)Φ(u)− ε
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and

Φε∗ε
(
pε∗ε∗((1 + ε)u)

)
≥ (1− ε)Φε∗

(
pε∗ε∗((1 + ε)u)

)
≥ (1− ε)(1 + ε)Φ∗

[
pε∗ε∗((1 + ε)u)

1 + ε

]
− ε

≥ (1− ε2)Φ∗
[
pε∗∗(u)
1 + ε

]
− ε = (1− ε2)Φ∗

[
pε(u)
1 + ε

]
− ε

≥ (1− ε2)Φ∗
[

(1− ε)p(u)− ε
1 + ε

]
− ε.

Hence,

(1 + ε)|u|
(

(1 + ε)p
[

(1 + ε)u
1− ε

]
+ ε

)
≥ (1− ε2)Φ(u) + (1− ε2)Φ∗

[
(1− ε)p(u)− ε

1 + ε

]
− 2ε.

By the left continuity of Φ∗ and the right continuity of p and βΦ∗ > 0, we get

|u|p(u) ≥ Φ(u) + Φ∗[p(u)].

By Theorem 2.8, we see that for u ∈ R, |u| < βΦ

|u|p(u) = Φ(u) + Φ∗[p(u)].

A-2. For u, v ∈ R, |u| = βΦ < +∞. By the right continuity of p(s), we get p(u) =
p(βΦ) = lims′→βΦ+ p(s) = +∞. By the assumption βΦ > 0, we see that |u|p(u) = +∞.
Also by the assumption αΦ∗ < +∞, Φ∗[p(βΦ)] = Φ∗[+∞] = +∞. So Φ(βΦ)+Φ∗[p(βΦ)] ≥
Φ∗[p(βΦ)] = +∞, thus for |u| = βΦ < +∞ we have

|u|p(u) = Φ(u) + Φ∗[p(u)].

A-3. For u, v ∈ R, |u| > βΦ < +∞. Then |u|p(u) = +∞ and Φ(u) ≥
∫ |u|
βΦ

p(s) ds =
+∞, so

|u|p(u) = Φ(u) + Φ∗[p(u)].

Summarizing for u ∈ R,
|u|p(u) = Φ(u) + Φ∗[p(u)].

B. |u| = p∗(v). By Lemma 2.4, exchanging positions of v and u, Φ and Φ∗ (p and p∗),
and repeating the arguments of A, we get for v ∈ R,

|v|p∗(v) = Φ(p∗(v)) + Φ∗(v).

Theorem 2.11 ([KR]). Given an Orlicz function Φ, then for all v ∈ R

Φ∗(v) = Φ̃(v).

Proof. For all u, v ∈ R. By Theorem 2.8,

Φ(u) + Φ∗(v) ≥ u|v|, i.e. Φ∗(v) ≥ u|v| − Φ(u),

so for all v ∈ R
Φ∗(v) ≥ sup{u|v| − Φ(u) : u ∈ R} = Φ̃(v).
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On the other hand, if 0 ≤ p∗(v) < +∞, by Theorem 2.10,
Φ∗(v) = p∗(v)|v| − Φ(p∗(v)) ≤ sup{u|v| − Φ(u) : u ∈ R} = Φ̃(v).

if p∗(v) = +∞, |v| ≥ βΦ∗ > 0, |v|p∗(v) = +∞, by the assumption αΦ < +∞ and
Φ(p∗(v)) = Φ(+∞) = +∞, so

|v|p∗(v) = Φ∗(v) + Φ(p∗(v)),
thus

Φ∗(v) = sup{u|v| − Φ(u) : u ∈ R} = Φ̃(v).

By Remark 2.2, we get
Remark 2.12 ([KR]). Φ̃ is an Orlicz function, i.e. Φ̃ : R→ [0,+∞] is even, convex and
left continuous on [0,+∞) with Φ̃(0) = 0.

By Remark 2.12 and Lemma 1.3, we have
Proposition 2.13 ([KR]). For an Orlicz function Φ, ˜̃Φ = Φ.
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