
FUNCTION SPACES XII
BANACH CENTER PUBLICATIONS, VOLUME 119

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES

WARSZAWA 2019

TURING PATTERNS, LENGYEL–EPSTEIN SYSTEMS
AND FABER SPLINES

HANS TRIEBEL

Institut für Mathematik, Friedrich-Schiller-Universität
D-07737 Jena, Germany

E-mail: hans.triebel@uni-jena.de

Abstract. This paper deals with the Lengyel–Epstein CIMA (chlorite-iodide-malonic acid) sys-
tem of non-linear parabolic equations in the context of function spaces, especially of Hölder-
Zygmund type. We discuss in particular the size of Turing patterns (if occur) in dependence on
initial data. This will be based on expansions in terms of Faber splines.

1. Introduction and motivation. A. M. Turing (1912–1954), well known for his sig-
nificant contributions to the theory of computing, artificial intelligence, cryptography and
for cracking the code used by the German Enigma machine in World War II, dealt at
the end of his short life with mathematical biology. In his seminal paper [30] (now by
far his most quoted publication) he developed a theory that competing chemicals are
responsible for plant evolution and pattern creation. The beginning of the Abstract of
his paper reads as follows.

It is suggested that a system of chemical substances called morphogens, reacting
together and diffusing through a tissue, is adequate to account for the main phe-
nomena of morphogenesis. Such a system, although it may originally be quite ho-
mogeneous, may later develop a pattern or structure due to an instability of the
homogeneous equilibrium, which is triggered off by random disturbances.

Turing coined the word morphogen whereas morphogenesis (origination and development
of morphological characters) and morphological (derived from morphology, the branch of
biology that deals with the form of living organisms and with relations between their
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structure) are somewhat older. According to [11, p. 71] they go back to J. W. von Goethe
(1749–1832) who developed a theory of plant evolution that hypothesizes that most plants
come from one archetypal plant. (But this was not taken very seriously and Goethe was
angry about this.) But it needed almost 40 years to confirm Turing’s vision experimentally
in [2]. A strip of gel loaded with starch indicator was fed with constant concentrations of
malonic acid (MA) at one end and of chlorite (ClO−2 ) and iodide (I−) ions at the other
end. Nonuniform patterns both parallel and perpendicular to the direction along which
the reactants diffuse towards each other were observed. The original five-variable model
in [2] could be simplified in [6, 7] essentially resulting in

∂tu− σu∆u = a− u− 4uv
1 + u2 , (1.1)

∂tv − σv∆v = bcu− cuv

1 + u2 , (1.2)

where u = u(x, t) and v = v(x, t) denote the chemical concentrations of the activator
(substance that activates) iodide I− and the inhibitor (substance which slows down,
prevents reaction) chlorite ClO−2 at time t > 0 and x ∈ Ω (underlying domain). As usual
∂t = ∂/∂t, whereas ∆ is the Laplacian with respect to the space variables. Furthermore,
σu, σv are positive diffusion constants and a, b, c are positive constants, reflecting feed
concentrations of the chemicals involved. This is the Lengyel–Epstein CIMA system,
usually studied in (smooth) bounded domains Ω in Rn, n ∈ N, with some (unimportant)
boundary conditions (preferable zero Dirichlet or Neumann conditions) and given initial
data

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω. (1.3)

A detailed discussion of what is meant by Turing instability and related Turing patterns
may be found in [13, Chapter 7]. We refer the reader also to [11, Chapter 2] and Turing’s
original paper [30]. In any case the question under which conditions Turing patterns may
occur is a rather delicate interplay between the two diffusion coefficients σu, σv (must be
very different) and the positive chemical constants a, b, c. Some details may be found in
[13, Section 7.5.2, pp. 128–130]. The question of whether systems like (1.1), (1.2), maybe
with more general non-linearities on the related right-hand sides, can produce Turing
patterns depends on the following three ingredients:

1. The system under consideration, here (1.1), (1.2), has a positive (at best unique)
constant solution u, v, in our case

u = a

4b+ 1 , v = b(1 + u2). (1.4)

2. One expands the system under consideration, here (1.1), (1.2), with respect to
(u, v) at (u, v) and asks of whether the resulting linear system (neglecting higher powers
of u− u and v− v) has Turing unstable solutions of type eλtu(x), eλtv(x) with Reλ > 0.

3. If this is the case then it is Turing’s vision that under lucky circumstances the so
far neglected nonlinear terms have the ability to catch these unstable solutions (of the
linearized system), to prevent them to escape to infinity and to produce at the end steady
non-constant positive solutions u(x, t) = u(x) and v(x, t) = v(x) of the related elliptic
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system

σu∆u = 4uv
1 + u2 + u− a, (1.5)

σv∆v = cuv

1 + u2 − bcu. (1.6)

It comes out that this problem is a matter of the Leray–Schauder degree theory (fixed
point theorem) discussing under which conditions for the parameters the system (1.5),
(1.6) has non-constant positive solutions u(x), v(x) and under which conditions this is
not the case. Related assertions may be found in [12] and [13, Lemma 7.5, p. 129].

Turing instabilities, Turing patterns and in particular Lengyel–Epstein systems at-
tracted a lot of attention in recent times. We refer the reader to [1, 4, 8, 9, 10, 15, 31, 32, 33]
and the literature mentioned there. This covers also several generalizations and modifica-
tions of the classical Lengyel–Epstein equations to systems fractional in space and time
and with more general nonlinearities.

Somewhat in contrast to the set-up and the technicalities in the above-mentioned liter-
ature we deal with the Lengyel–Epstein equations (1.1), (1.2) in the context of (weighted
and unweighted) function spaces in Rn. This might be considered as the continuation of
our approach to the Navier–Stokes equations in [25, 26] and to the Keller–Segel equa-
tions underlying chemotaxis (the movement of biological cells or organisms in response
to chemical gradients) in [28].

Section 2 deals with basic assertions, in particular the existence and uniqueness of
mild and strong solutions (local in time) of (1.1), (1.2) complemented by suitable initial
data. In addition we ask for properties of these solutions being of relevance with respect
to the above-described chemical background. This applies in particular to the positivity
of related solutions. In Section 3 we complement the properties collected in Section 2
by the assumption that the related Lengyel–Epstein system displays Turing patterns.
It has been discussed in the literature in connection with Turing instabilities how large
Turing patterns, if occur, might be in dependence on initial data (and the size of related
domains reflecting the size of the plant or animal). We refer the reader in particular to
[11, Section 3.1, pp. 142–156], entitled ‘Mammalian coat patterns — how the leopard got
is spots’. The underlying equations in [11, (3.1), p. 145] which are responsible for dots and
stripes on the skins of animals in the context of Turing patterns, are very much similar
to the Lengyel–Epstein system (1.1), (1.2). According to [11], based on some qualitative
discussions, dots and stripes originating from related Turing patterns cannot be very
small (in dependence on initial data and other ingredients). It is mentioned there that
the elephant is too big to have dots caused by Turing patterns. We deal with questions of
this type in Section 3 and estimate how large Turing patterns must be in dependence on
initial data. The related assertions in Section 3 might be considered as the main results
of this paper. One may also consult [28, Section 5.6, pp. 85–93] for related discussions.

The main bulk of the paper consists of the Sections 1, 2 and Sections 3.1–3.3 inclusively
where we tried to simplify the needed function spaces as much as possible. The final
Section 3.4 is different. Here we indicate how future research may look like based on the
full machinery of the recent theory of function spaces. It is directed to specialists in the
theory of function spaces and may be skipped otherwise.
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2. Lengyel–Epstein systems in function spaces

2.1. Function spaces and heat kernels. We use standard notation. Thus, N is the
collection of all natural numbers, N0 = N ∪ {0}, and Rn is the Euclidean n-space, where
n ∈ N. Put R = R1, whereas C is the complex plane. Let S(Rn) be the usual Schwartz
space and S′(Rn) be its dual, the space of all tempered distributions on Rn. Further,
Lp(Rn) with 1 ≤ p ≤ ∞, is the standard Banach space in Rn, normed by

‖f |Lp(Rn)‖ =
(∫

Rn

|f(x)|p dx
)1/p

(2.1)

with the natural modification if p =∞. As usual, Z is the collection of all integers; and
Zn, where n ∈ N, denotes the lattice of all points m = (m1, . . . ,mn) ∈ Rn with mj ∈ Z.
Let as usual ∂j = ∂/∂xj , ∂mj = ∂m/∂xmj , m ∈ N0 (∂0

j f = f) and let in particular
∆ =

∑n
j=1 ∂

2
j be the Laplacian with respect to the space variable x = (x1, . . . , xn) ∈ Rn.

Let ∂t = ∂/∂t where t stands for the time variable.
If ϕ ∈ S(Rn) then

ϕ̂(ξ) = (Fϕ)(ξ) = (2π)−n/2
∫
Rn

e−ixξϕ(x) dx, ξ ∈ Rn, (2.2)

denotes the Fourier transform of ϕ. Also, F−1ϕ and ϕ∨ stand for the inverse Fourier
transform, given by the right-hand side of (2.2) with i in place of −i. Here xξ denotes
the scalar product in Rn. Both F and F−1 are extended to S′(Rn) in the standard way.
Define ϕ0 ∈ S(Rn) by

ϕ0(x) = 1 if |x| ≤ 1 and ϕ0(x) = 0 if |x| ≥ 3/2, (2.3)

and let
ϕk(x) = ϕ0

(
2−kx

)
− ϕ0

(
2−k+1x

)
, x ∈ Rn, k ∈ N. (2.4)

Since
∞∑
j=0

ϕj(x) = 1 for x ∈ Rn, (2.5)

the ϕj form a dyadic resolution of unity. The entire analytic functions (ϕj f̂)∨(x) make
sense pointwise in Rn for any f ∈ S′(Rn).

Definition 2.1. Let n ∈ N. Let ϕ = {ϕj}∞j=0 be the above resolution of unity and let
s ∈ R. Then Cs(Rn) is the collection of all f ∈ S′(Rn) such that

‖f |Cs(Rn)‖ϕ = sup
j∈N0,x∈Rn

2js
∣∣(ϕj f̂)∨(x)

∣∣ (2.6)

is finite.

Remark 2.2. These are the so-called Hölder–Zygmund spaces. They are special cases of
the spaces Asp,q(Rn) with A ∈ {B,F}, s ∈ R and 0 < p, q ≤ ∞,

Cs(Rn) = Bs∞,∞(Rn), s ∈ R. (2.7)

The theory of these spaces, including Cs(Rn) and their history may be found in [17, 18, 21].
In particular Cs(Rn) is independent of the chosen resolution of unity according to (2.3)–
(2.5) (equivalent norms). This justifies our omission of the subscript ϕ in (2.6) in what
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follows. We recall the better known characterizations of the Hölder–Zygmund spaces
Cs(Rn) with s > 0 in terms of differences. Let C(Rn) be the usual space of all complex-
valued continuous bounded functions f(x) in Rn normed by

‖f |C(Rn)‖ = sup
x∈Rn

|f(x)|. (2.8)

Let (
∆1
hf
)
(x) = f(x+ h)− f(x),

(
∆l+1
h f

)
(x) = ∆1

h

(
∆l
hf
)
(x), (2.9)

where x ∈ Rn, h ∈ Rn, l ∈ N, be the iterated differences in Rn. Let 0 < s < m ∈ N. Then
Cs(Rn) is the collection of all f ∈ C(Rn) such that

‖f |Cs(Rn)‖m = sup
x∈Rn

|f(x)|+ sup |h|−s|∆m
h f(x)| (2.10)

is finite, where the second supremum is taken over all x ∈ Rn and h ∈ Rn with 0 < |h| ≤ 1
(equivalent norms in Cs(Rn)).

We need a weighted extension of Definition 2.1.

Definition 2.3. Let s ∈ R, β ∈ R and

wβ(x) =
(
1 + |x|2

)β/2
, x ∈ Rn. (2.11)

Then Cs(Rn, β) is the collection of all f ∈ S′(Rn) such that

‖f |Cs(Rn, β)‖ = ‖wβf |Cs(Rn)‖ (2.12)

is finite.

This is the special case Cs(Rn, β) = Bs∞,∞(Rn, β) of related spaces Asp,q(Rn, β),
A ∈ {B,F}, s ∈ R, β ∈ R and 0 < p, q ≤ ∞. One reason for the distinguished role
played by these weighted spaces is the following observation.

Proposition 2.4. Let ϕ = {ϕj}∞j=0 be the resolution of unity according to (2.3)–(2.5).
Let s ∈ R and β ∈ R. Then Cs(Rn, β) is the collection of all f ∈ S′(Rn) such that

‖f |Cs(Rn, β)‖ϕ = sup
j∈N0,x∈Rn

wβ(x) 2js
∣∣(ϕj f̂)∨(x)

∣∣ (2.13)

is finite (equivalent norms).

Remark 2.5. This extension of (2.6) is a special case of the related assertion for the
spaces Asp,q(Rn, β), having some history. The shortest available proof may be found [3,
Section 4.2.2, pp. 156–158], based on [5].

We need a second crucial property of the spaces Cs(Rn, β). A quasi-Banach space
A(Rn) on Rn with

S(Rn) ↪→ A(Rn) ↪→ S′(Rn), A(Rn) ⊂ Lloc
1 (Rn) (2.14)

(locally integrable functions in Rn, whereas ↪→ stands for continuous embedding) is said
to be a multiplication algebra if f1f2 ∈ A(Rn) for f1 ∈ A(Rn), f2 ∈ A(Rn) and if there is
a constant c′ > 0 such that

‖f1f2 |A(Rn)‖ ≤ c′ ‖f1 |A(Rn)‖ · ‖f2 |A(Rn)‖ (2.15)
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for all f1 ∈ A(Rn), f2 ∈ A(Rn). If A(Rn) is a multiplication algebra then

A(Rn) ↪→ L∞(Rn). (2.16)

A short proof of this well known assertion (in the context of pointwise multipliers),
further discussions and, in particular, related references, may be found in [29, Section
1.2.6, pp. 40–44].

Proposition 2.6. The space Cs(Rn, β) according to Definition 2.3 is a multiplication
algebra if and only if s > 0 and β ≥ 0.

Proof. Step 1. The space C0(Rn) is not a subset of Lloc
1 (Rn). This follows from [20,

Theorem 11.2, pp. 168–169] and the references given there, in particular to [14]. It is a
local property as a consequence of [20, p. 42, (5.13)] with a reference to [18, Theorem
2.4.7, p. 124]. This shows that Cs(Rn, β) with s ≤ 0 and β ∈ R is not a multiplication
algebra. If β < 0 then the unbounded function w−β belongs to Cs(Rn, β). Then it follows
from (2.16) that Cs(Rn, β) is not a multiplication algebra.

Step 2. Let s > 0 and β ≥ 0. From [25, Theorem 1.16, p. 12] it follows that Cs(Rn) =
Bs∞,∞(Rn) is a multiplication algebra. Related references may be found in [25, Remark
1.17, p. 12]. One may also consult [29, Section 1.4.2, pp. 77–83] for further information
and wavelet arguments. Let f ∈ Cs(Rn, β) and g ∈ Cs(Rn, β). Then one obtains from
(2.12), (2.13) that

‖fg |Cs(Rn, β)‖ ≤ c′ ‖wβf |Cs(Rn)‖ · ‖g |Cs(Rn)‖
≤ c′′‖f |Cs(Rn, β)‖ · ‖g |Cs(Rn, β)‖.

(2.17)

This shows that Cs(Rn, β) is a multiplication algebra.

We need a second preparation. Let w ∈ S′(Rn). Then

Wtw(x) = 1
(4πt)n/2

∫
Rn

exp
(
−|x− y|

2

4t

)
w(y) dy

= 1
(4πt)n/2

(
w, exp

(
−|x− ·|

2

4t

))
, t > 0, (2.18)

x ∈ Rn, is the well-known Gauss–Weierstrass semi-group which can be written on the
Fourier side as

Ŵtw(ξ) = e−t|ξ|
2
ŵ(ξ), ξ ∈ Rn, t > 0. (2.19)

The Fourier transform is taken with respect to the space variables x ∈ Rn. Of course,
both (2.18) and (2.19) must be interpreted in the context of S′(Rn). But we recall
that (2.18) makes sense pointwise: It is the convolution of w ∈ S′(Rn) and gt(y) =
(4πt)−n/2e−|y|2/(4t) ∈ S(Rn). In particular,

w ∗ gt ∈ C∞(Rn), |(w ∗ gt)(x)| ≤ c′t
(
1 + |x|2

)N/2
, x ∈ Rn, (2.20)

for some c′t > 0 and some N ∈ N. Further explanations and related references may be
found in [26, Section 4.1]. If w and f are regular distributions, subject to some restrictions,
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then
W (x, t)

= 1
(4πt)n/2

∫
Rn

exp
(
− |x−y|

2

4t
)
w(y) dy + 1

(4π)n/2

∫ t

0

∫
Rn

exp
(
− |x−y|

2

4(t−τ)
)

(t− τ)n/2
f(y, τ) dy dτ

= Wtw(x) +
(∫ t

0
Wt−τfτ dτ

)
(x), (2.21)

x ∈ Rn, t > 0, with fτ (y) = f(y, τ) is the well-known unique solution of the classical
Cauchy problem

∂tW (x, t)−∆W (x, t) = f(x, t), x ∈ Rn, t > 0, (2.22)
W (x, 0) = w(x), x ∈ Rn. (2.23)

By using (2.19), equality (2.21) can be written on the Fourier side in terms of the Duhamel
formula

Ŵ (ξ, t) = e−t|ξ|
2
ŵ(ξ) +

∫ t

0
e−(t−τ)|ξ|2 f̂τ (ξ) dτ, (2.24)

ξ ∈ Rn, t > 0. Details and references may be found in [19, Sections 3.3.4–3.3.6, pp. 169–
172], [16, Section 2.5.2, pp. 190–192] and [25, p. 160]. Let X be a suitable space, say,
of type Asp,q(Rn) and let T > 0, b ∈ R and 1 ≤ v ≤ ∞. Then the Banach spaces
Lv
(
(0, T ), b,X

)
normed by∥∥f |Lv((0, T ), b,X

)∥∥ =
(∫ T

0
tbv‖f(·, t) |X‖v dt

)1/v
, (2.25)

with the usual modification if v =∞, are the basic spaces of our approach to the Navier–
Stokes equations in [25, 26] and to the Keller–Segel equations of chemotaxis in [28].
For this purpose we converted the related equations with the help of (2.21) into fixed
point problems in spaces of this type. Now we are doing the same with respect to the
Lengyel–Epstein equations (1.1), (1.2). The peculiar nature of these equations requires to
specify the spaces in (2.25). Let X = Cs(Rn, β) be the spaces introduced in Definition 2.3
and covered by Propositions 2.4 and 2.6. Then C

(
(0, T ), Cs(Rn, β)

)
is the usual Banach

space of bounded continuous functions u(·, t) belonging for any t with 0 < t < T to
Cs(Rn, β) and normed by∥∥u |C((0, T ), Cs(Rn, β)

)∥∥ = sup
0<t<T

‖u(·, t) |Cs(Rn, β)‖. (2.26)

Any element u(·, t) of this space can be extended to t ≥ T and to t ≤ 0 by zero. Then
the resulting Banach space may be considered as a subspace of S′(Rn+1).

2.2. Basic assertions. Let

∂tu− σu∆u = a− u− 4uv
1 + u2 , x ∈ Rn, 0 < t < T , (2.27)

∂tv − σv∆v = bcu− cuv

1 + u2 , x ∈ Rn, 0 < t < T , (2.28)

u(·, 0) = u0, x ∈ Rn, (2.29)
v(·, 0) = v0, x ∈ Rn, (2.30)
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be the Lengyel–Epstein system (1.1), (1.2) in Rn × (0, T ), complemented by the initial
data u0(x), v0(x). As before ∂t = ∂/∂t whereas ∆ =

∑n
j=1 ∂

2
j =

∑n
j=1 ∂

2/∂x2
j is the

Laplacian with respect to the space variables x = (x1, . . . , xn) ∈ Rn. Let again σu > 0
and σv > 0 be the diffusion coefficients. We deal with these equations in the context of
the above spaces Cs(Rn, β), s > 0, β ≥ 0, according to Definition 2.3. This requires that
in addition to the constants b ∈ C and c ∈ C the constant a in (1.1) must be adapted by

a(x) = ca(1 + |x|2)−β/2 = ca wβ(x)−1, ca ∈ C. (2.31)

As already indicated we convert the Cauchy problem (2.27)–(2.30) into a fixed point
problem and abbreviate for this purpose the related right-hand sides of (2.27), (2.28) by

f(u, v) = a− u− 4uv
1 + u2 and g(u, v) = bcu− cuv

1 + u2 . (2.32)

Modifying (2.22), (2.23) by (2.27)–(2.30) one has to replace (2.21) by(
Uu0,v0(u, v)

)
(x, t)

= Wσutu0(x) +
[∫ σut

0
σ−1
u Wσut−τf

(
u
(
·, σ−1

u τ
)
, v
(
·, σ−1

u τ
))

dτ
]
(x), (2.33)(

Vu0,v0(u, v)
)
(x, t)

= Wσvtv0(x) +
[∫ σvt

0
σ−1
v Wσvt−τg

(
u
(
·, σ−1

v τ
)
, v
(
·, σ−1

v τ
))

dτ
]
(x). (2.34)

But this modification is a technical matter and can be neglected in the context of our
qualitative arguments below based on Cs(Rn, β) according to Definition 2.3 and Propo-
sition 2.6. In addition to C

(
(0, T ), Cs(Rn, β)

)
in (2.26) we introduce the space Xs,β(T )

consisting of all pairs u, v ∈ C
(
(0, T ), Cs(Rn, β)

)
and normed by

‖(u, v) |Xs,β(T )‖ = max
(∥∥u |C((0, T ), Cs(Rn, β)

)∥∥,∥∥v |C((0, T ), Cs(Rn, β)
)∥∥). (2.35)

Let
Xs,β(T )δ =

{
(u, v) ∈ Xs,β(T ) : ‖(u, v) |Xs,β(T )‖ ≤ δ

}
(2.36)

be the δ-ball in this space, δ > 0. By the same arguments as in [28, p. 80] we may assume
that Cs(Rn, β) with s > 0 and β ≥ 0 as in Proposition 2.6 is normed such that

‖fg |Cs(Rn, β)‖ ≤ ‖f |Cs(Rn, β)‖ · ‖g |Cs(Rn, β)‖, f, g ∈ Cs(Rn, β), (2.37)

and
|f(x)| ≤ ‖f |Cs(Rn, β)‖, f ∈ Cs(Rn, β), x ∈ Rn. (2.38)

Theorem 2.7. Let s > 0 and β ≥ 0. Let b, c and ca in (2.31) be complex numbers.
Then there are positive numbers ε, δ and T such that (2.27)–(2.30) with u0 ∈ Cs(Rn, β),
v0 ∈ Cs(Rn, β) and

‖u0 |Cs(Rn, β)‖ ≤ ε, ‖v0 |Cs(Rn, β)‖ ≤ ε (2.39)

has a unique solution (u, v) in Xs,β(T )δ.
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Proof. We apply Banach’s contraction theorem to (2.33), (2.34) with σu = σv = 1 for
simplicity. Since the Gauss–Weierstrass kernels in (2.18) are positive one obtains∥∥Uu0,v0(u, v) |C

(
(0, T ), Cs(Rn, β)

)∥∥
≤ c′ ‖u0 |Cs(Rn, β)‖+ c′T

∥∥f(u, v) |C
(
(0, T ), Cs(Rn, β)

)∥∥ (2.40)

for some constant c′ > 0 and a counterpart for Vu0,v0(u, v). We add a technical com-
ment about this estimate in Remark 2.8 below. What follows is justified if δ > 0 in
(2.36) is sufficiently small. In particular, if (u, v) ∈ Xs,β(T )δ then we may assume that
|u2(x, t)| < 1/2 uniformly in x ∈ Rn and 0 < t < T . Then it follows from (2.37), (2.38)
that ∣∣∣ 1

1− q

∣∣∣ =
∣∣∣ ∞∑
l=0

ql
∣∣∣ < 2 where q = q(x, t) = −u2(x, t) (2.41)

uniformly in x ∈ Rn and 0 < t < T as needed in (2.32), (2.33). Again at the expense of
δ > 0 small one has ∥∥(1− q(x, t))−1 |C

(
(0, T ), Cs(Rn, β)

)∥∥ < 2. (2.42)

Inserted in (2.32) and (2.40) one has f(u, v) ∈ C
(
(0, T ), Cs(Rn, β)

)
and for some c′ > 0,

c′′ > 0, ∥∥Uu0,v0(u, v) |C
(
(0, T ), Cs(Rn, β)

)∥∥ ≤ c′ε+ c′′T < δ, (2.43)

if ε > 0 in (2.39) and T > 0 are chosen sufficiently small. Similarly for Vu0,v0(u, v).
In particular (Uu0,v0 , Vu0,v0) maps Xs,β(T )δ into itself. We prove that this map is a
contraction. Let (u1, v1) ∈ Xs,β(Rn)δ and (u2, v2) ∈ Xs,β(Rn)δ. Then it follows from
(2.33) (again with σu = 1) that(

Uu0,v0(u1, v1)− Uu0,v0(u2, v2)
)
(x, t)

=
(∫ t

0
Wt−τ

[
f
(
u1(·, τ), v1(·, τ)

)
− f

(
u2(·, τ), v2(·, τ)

)]
dτ
)

(x). (2.44)

By (2.32) and u2 = u1 + (u2 − u1), v2 = v1 + (v2 − v1) we have

f(u1, v1)− f(u2, v2) = u2 − u1 + 4 (1 + u2
1)u2v2 − (1 + u2

2)u1v1

(1 + u2
1)(1 + u2

2)

= (u1 − u2)P1 + (v1 − v2)P2

(1 + u2
1)(1 + u2

2)

(2.45)

where P1, P2 are polynomials in u1, u2, v1, v2 of fourth degree. Inserted in (2.44) one can
argue as above resulting in∥∥Uu0,v0(u1, v1)− Uu0,v0(u2, v2) |C

(
(0, T ), Cs(Rn, β)

)∥∥
≤ λ

∥∥(u1, v1)− (u2, v2) |Xs,β(T )
∥∥ (2.46)

for some 0 < λ < 1 at the expense of a small T > 0. Similarly for Vu0,v0(u1, v1) −
Vu0,v0(u2, v2). Then

(
Uu0,v0 , Vu0,v0

)
is a contraction in Xs,β(Rn)δ. The assertions of the

theorem follow from Banach’s contraction theorem.
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Remark 2.8. With y = x+
√
t z one can rewrite (2.18) by

Wtw(x) = 1
(4π)n/2

∫
Rn

e−|z|
2/4w(x+

√
t z) dz, t > 0, x ∈ Rn. (2.47)

Then
‖Wtw |Cs(Rn)‖ ≤ ‖w |Cs(Rn)‖, t > 0, (2.48)

follows from the translation invariance of Cs(Rn) = Cs(Rn, 0). If β > 0 then one can rely
on (2.12) and

wβ(x) ≤ c′
(
1 +
√
t |z|2

)β/2
wβ(x+

√
t z) (2.49)

for some c′ > 0 resulting in
‖Wtw |Cs(Rn, β)‖ ≤ c′′ ‖w |Cs(Rn, β)‖, 0 < t < T, (2.50)

for some c′′ > 0. This justifies (2.40).
Remark 2.9. If β = 0 then a(x) in (2.31) is a constant and (2.27)–(2.30) coincides with
(1.1), (1.2) complemented by suitable initial data. Usually (1.1)–(1.3) is considered in
bounded (smooth) domains Ω in Rn where related (zero) Dirichlet or Neumann boundary
data at ∂Ω play only a marginal role. The incorporation of the weight wβ according to
(2.11) makes sense from the point of view of applications. If u0, v0 in (2.29), (2.30) have
compact support and if the constant a in (1.1) is adapted according to (2.31) then the
solutions u(x, t), v(x, t) belonging to Cs(Rn, β) decay rapidly. This may be considered
as a reasonable substitute for dealing with (1.1), (1.2) in bounded domains Ω in Rn.
We discuss in Section 2.3 below some more specific properties of the Lengyel–Epstein
equations nearer to the chemical and biological origin.

Solutions of (2.27)–(2.30) originating from fixed point theorems are called mild. Fur-
thermore one may ask of whether these solutions are also strong, what means in the above
context

u(·, t)→ u0(·) in Cs(Rn, β) if t→ 0, (2.51)
v(·, t)→ v0(·) in Cs(Rn, β) if t→ 0, (2.52)

what can also be written as
u ∈ C

(
[0, T ), Cs(Rn, β)

)
, v ∈ C

(
[0, T ), Cs(Rn, β)

)
(2.53)

incorporating continuity at t = 0. Let
◦
Cs(Rn, β) be the completion of S(Rn) in Cs(Rn, β).

Corollary 2.10. Under the additional assumption

u0 ∈
◦
Cs(Rn, β), v0 ∈

◦
Cs(Rn, β) (2.54)

the solutions u and v in Theorem 2.7 are mild and strong.
Proof. By (2.33), (2.34) (again with σu = σv = 1) and the arguments resulting in (2.40)
one has ∥∥u(·, t)−Wtu0(·) |Cs(Rn, β)

∥∥ ≤ c′ t, 0 < t < T, (2.55)∥∥v(·, t)−Wtv0(·) |Cs(Rn, β)
∥∥ ≤ c′ t, 0 < t < T. (2.56)

Using (2.50) one can argue as in [28, pp. 42–43] with a reference to [26, pp. 121–122] as
far as initial data u0 ∈ S(Rn), v0 ∈ S(Rn) are concerned.
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2.3. Further properties. So far we ignored that the coefficients a, b, c in (1.1), (1.2)
are positive and that we are interested in positive solutions u(x, t), v(x, t) under the
assumption that the underlying initial data u0(x), v0(x) are positive. We switch again
from bounded domains Ω to Rn compensated by the requested strong decay of the initial
data u0, v0 and the solutions u, v with respect to the space variables. Then a > 0 is
replaced by ca > 0 in (2.31). Theorem 2.7 can now be complemented as follows. We
say that (u, v) ∈ Xs,β(T )δ is positive if u(x, t) > 0 and v(x, t) > 0 for all x ∈ Rn and
0 < t < T .

Proposition 2.11. Let s > 0 and β ≥ 0. Let b, c and ca in (2.31) be positive numbers.
Then there are positive numbers ε, δ and T such that (2.27)–(2.30) with u0 ∈ Cs(Rn, β),
v0 ∈ Cs(Rn, β), u0(x) ≥ 0, v0(x) ≥ 0 if x ∈ Rn and with (2.39) has a unique positive
solution (u, v) in Xs,β(T )δ.

Proof. We prove that under the indicated conditions the unique solution according to
Theorem 2.7 is positive if the positive numbers ε, δ, T are sufficiently small. With w = a

according to (2.31) in (2.47), using in addition a suitable counterpart of (2.49), one has

(1 + |x|2)β/2(Wta)(x) = ca(4π)−n/2
∫
Rn

e−|z|
2/4 (1 + |x|2)β/2

(1 + |x+
√
t z|2)β/2

dz ≥ Ca > 0 (2.57)

independently of x ∈ Rn and t with 0 < t < T . Then one obtains(∫ t

0
Wt−τadτ

)
(x) ≥ Ca

t

(1 + |x|2)β/2
, x ∈ Rn, 0 < t < T. (2.58)

The usual proof of Banach’s contraction theorem is based on the iterations

uj+1(x, t) = Wtu0(x) +
(∫ t

0
Wt−τf

(
uj(·, τ), vj(·, τ)

)
dτ
)

(x), (2.59)

vj+1(x, t) = Wtv0(x) +
(∫ t

0
Wt−τg

(
uj(·, τ), vj(·, τ)

)
dτ
)

(x), (2.60)

j ∈ N, with f, g as in (2.31), (2.32) and (2.33), (2.34) assuming again σu = σv = 1. One
may begin with u1(x, t) = v1(x, t) = 0. Then u2(x, t) > 0, v2(x, t) ≥ 0 and the related
norms according to the above procedure and (2.10), (2.12) are small. Iteration, (2.57),
(2.58) as the dominant terms in (2.32), (2.33) with

g(u, v) ∼ bcu
(

1− v

b(1 + u2)

)
∼ bcu (2.61)

show that uj(x, t) > 0, vj(x, t) > 0, 3 ≤ j ∈ N, always under the assumption that ε, δ
and T are sufficiently small positive numbers.

Remark 2.12. The above arguments and the underlying fixed norm according to (2.10)
show that

0 ≤Wtu0(x) ≤ u(x, t) ≤ δ

(1 + |x|2)β/2
,

0 ≤Wtv0(x) ≤ v(x, t) ≤ δ

(1 + |x|2)β/2
,

(2.62)

x ∈ Rn, 0 < t < T . This will be of some service for us.
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As mentioned above the strong decay of u(x, t), v(x, t) as indicated in (2.62) may be
considered as a substitute for dealing with Lengyel–Epstein systems in bounded (smooth)
domains. This applies also to the following observation.

Corollary 2.13. Let s > 0 and β > n ∈ N. Let b, c and ca in (2.31) be positive numbers.
Let u(x, t), v(x, t) be the unique positive solution of (2.27)–(2.30) according to Proposition
2.11. Then for 0 < t < T ,

0 ≤
∫
Rn

u(x, t) dx−
∫
Rn

u0(x) dx ≤ t
∫
Rn

a(x) dx, (2.63)

0 ≤
∫
Rn

v(x, t) dx−
∫
Rn

v0(x) dx ≤ bct
∫
Rn

u0(x) dx+ bc

2 t
2
∫
Rn

a(x) dx. (2.64)

Proof. The assumption β > n in (2.12), (2.10) and (2.35), (2.36) ensures that the initial
data u0, v0, the function a in (2.31) and the positive solutions u(x, t), v(x, t) are integrable
with respect to x ∈ Rn. The left-hand sides of (2.63), (2.64) follow from (2.62) and∫

Rn

Wtu0(x) dx =
∫
Rn

u0(x) dx,
∫
Rn

Wtv0(x) dx =
∫
Rn

v0(x) dx. (2.65)

We rely on the identities (2.33), (2.34) with u(x, t), v(x, t) on the related left-hand sides
and f, g as in (2.32). Then the right-hand side of (2.63) follows by integration and the
above reasoning in the proof of Proposition 2.11 and Remark 2.12. In the corresponding
integration of (2.34) with v(x, t) on the left-hand side we use (2.63). This proves, again
on the basis of the above reasoning, the right-hand side of (2.64).

Remark 2.14. In connection with the so-called Keller–Segel equations of chemotaxis one
asks for the conservation property∫

Rn

u(x, t) dx =
∫
Rn

u0(x) dx, 0 < t < T, (2.66)

for the total mass of cells, where u(x, t) is the cell density and u0(x) the related initial
distribution. We refer the reader to [28, Section 4.9, pp. 60–61]. For the positive solutions
u(x, t) and v(x, t) of (1.1), (1.2) according to Proposition 2.11 and Corollary 2.13 one may
ask the same questions, although the situation is different because of the chemical reac-
tions. This applies both to the involved non-linearities and the acting (competing) chem-
icals u(x, t) and v(x, t). Nevertheless the outcome (2.63), (2.64) looks reasonable. Both∫

Rn

u(x, t) dx and
∫
Rn

v(x, t) dx (2.67)

grow at most linearly in time as long as Corollary 2.13 can be applied. Furthermore, the
functions in (2.67) are monotonically increasing in time. This can be seen if one shifts
the Cauchy problem from t = 0 to an admitted t0 > 0 and uses that the related solutions
are unique. In addition, u(x, t) and v(x, t) are C∞ functions in Rn × (0, T ).

3. Turing patterns and Faber splines

3.1. The hypothesis: Let Turing patterns be. We described in Section 1 Turing
patterns in connection with the Lengyel–Epstein system (1.1), (1.2) usually considered in
bounded domains Ω in Rn. After some general assertions for the equations (2.27)–(2.30) in
Section 2.2 we dealt in Section 2.3 with a few more specific properties nearer to the original
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task. In particular instead of function spaces in bounded domains we relied on the spaces
Cs(Rn, β) in Definition 2.3 and (2.10), (2.13) ensuring a rapid decay if β is large of possible
solutions of (2.27)–(2.30) for suitable initial data, say, with compact support. Combined
with the specific properties derived in Section 2.3 and the experimental observations as
described in Section 1 we convert the question

how large Turing patterns must be

into the study of the Hypothesis below. We will rely on one-dimensional Faber splines
(in good agreement with observed Turing patterns). First we describe our set-up.

Let the unit square Q = (0, 1)2 in the plane R2 be the underlying domain. We imitate
the vertical patterns as described in Section 1 by

SJ,m =
{

(x1, x2) ∈ Q : 2−Jm < x1 < 2−J(m+ 1), 0 < x2 < 1
}
, (3.1)

J ∈ N; m = 0, . . . , 2J − 1. Let

∂SJ =
2J−1⋃
m=0

∂SJ,m =
2J⋃
m=0

{
x = (x1, x2) ∈ Q : x1 = 2−Jm, 0 ≤ x2 ≤ 1

}
(3.2)

be the collection of the boundaries of the stripes in (3.1). Let Cs(R2) with s > 0 be the
Hölder–Zygmund spaces as introduced in Definition 2.1 and Remark 2.2. Let

C̃s(Q) = {f ∈ Cs(R2) : supp f ⊂ Q}, s > 0, (3.3)
where Q = [0, 1]2. Similarly

C̃s(I) = {f ∈ Cs(R) : supp f ⊂ I}, s > 0, (3.4)
where I = (0, 1) and I = [0, 1]. There is a constant c′ > 0 such that

‖u(·, x2) |Cs(R)‖ ≤ c′ ‖u |Cs(R2)‖, u ∈ C̃s(Q), (3.5)
uniformly for all 0 ≤ x2 ≤ 1. This follows from the trace theorem

trx2 : C̃s(Q) ↪→ C̃s(I) with trx2u = u(·, x2) (3.6)
which is a special case of [18, Corollary 4.4.2, p. 219].

Hypothesis 3.1. Let s > 0 and
u0 ∈ C̃s(Q), v0 ∈ C̃s(Q), u0 ≥ 0, v0 ≥ 0. (3.7)

Let T > 0 and
u(·, T ) ∈ C̃s(Q), v(·, T ) ∈ C̃s(Q), u ≥ 0, v ≥ 0, (3.8)

such that

0 <
∫
Q

u0(x) dx ≤
∫
Q

u(x, T ) dx ≤
∫
Q

u0(x) dx+ T, (3.9)

0 <
∫
Q

v0(x) dx ≤
∫
Q

v(x, T ) dx ≤
∫
Q

v0(x) dx+ T, (3.10)

and
‖u(·, T ) |Cs(Q)‖ ≤ ‖u0 |Cs(Q)‖+ T, (3.11)
‖v(·, T ) |Cs(Q)‖ ≤ ‖v0 |Cs(Q)‖+ T. (3.12)
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Let furthermore
u(x, T ) = v(x, T ) = 0 if x ∈ ∂SJ , J ∈ N, (3.13)

according to (3.2).
Remark 3.2. We interpret u0, v0 according to (3.7) with (3.3) as the initial data in
Theorem 2.7, Corollary 2.10 and Proposition 2.11, Corollary 2.13. In particular, (3.8)
may be considered as a reasonable adaption of u(·, t) ∈ Cs(R2, β), v(·, t) ∈ Cs(R2, β)
in Corollary 2.13. In other words, (3.7)–(3.12) reflect faithfully crucial properties of the
Lengyel–Epstein equations as considered above. The additional decisive request (3.13)
can be rephrased as

Let Turing patterns be
adapting the well-known epitaph of Alexander Pope (1688–1744)

Nature, and Nature’s Laws lay hid in Night.
God said, Let Newton be! and All was Light.

This again is in a good agreement with observed periodic (in space) vertical Turing
patterns as described in [2, 6, 7]. It might also be considered as a complement to the
experimental data, numerical simulations and analytical justifications as described in the
books and papers mentioned in Section 1. It is our main aim to contribute to the question

How large Turing patterns must be?

3.2. Faber splines. We rely on Faber splines in one dimension as considered in [24,
Section 3.4.1, pp. 58–62], based on [23, Sections 3.5.2, 3.5.3, pp. 167–173]. The basic
Faber spline Vl(x), l ∈ N0, x ∈ R has the following properties:
(i) The function Vl has classical derivatives up to order 2l in R.
(ii) The restriction of Vl to each interval

(
m,m + 1

2
)
with 2m ∈ Z is a polynomial of

order 2l + 1.
(iii) There are constants c′ > 0, ν > 0, such that

|Vl(x)| ≤ c′ 2−2ν|x|, x ∈ R. (3.14)
In contrast to the classical compactly supported hat function V0 we have now only the

exponential decay (3.14) for Vl, l ∈ N, with some ν = νl > 0. According to [24, Definition
3.9, p. 59] = [23, Definition 3.38, p. 169]{

vlj,m(x) = Vl(2jx−m) : j ∈ N0, m ∈ Z
}

(3.15)
is called a Faber spline system of order l. We give now a brief description of expansions
in terms of Faber splines specifying [24, Proposition 3.11, pp. 60–61] to

C̃s(I∗) =
{
f ∈ Cs(R) : supp f ⊂ [0, 1/2]

}
, 0 < s < 2l + 1, (3.16)

l ∈ N0, where I∗ = (0, 1/2). Any f ∈ C̃s(I∗) can be uniquely expanded by

f(x) =
∑
j∈N

2j−1∑
k=1

f
(
2−j−1k

)(∑
m∈Z

alk,m v
l
j,m(x)

)
=
∑
j∈N

∑
m∈Z

λj,m v
l
j,m(x), x ∈ R, (3.17)

with
‖f |Cs(R)‖ ∼ sup

j∈N,m∈Z
2js|λj,m|. (3.18)
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Furthermore alk,m ∈ R and

|alk,m| ≤ c′ 2−%|2m−k|, m ∈ Z, k ∈ N, (3.19)

for some c′ > 0, % > 0, and

λj,m =
2j−1∑
k=1

ak,m f(2−j−1k). (3.20)

Of course one can replace I∗ = (0, 1/2) in (3.16) by I = (0, 1) as needed in (3.3)–(3.6).
But this is an immaterial technical matter and we wanted to stick at the presentation
given in [24].

3.3. Main assertion. In Hypothesis 3.1 we tried to compress the essence of the Lengyel–
Epstein system displaying laminar Turing patterns. We wish to say something about the
size of these patterns (estimates from below). For this purpose we rely on expansions in
terms of Faber splines as described in Section 3.2 now extended to functions belonging
to C̃s(Q).

Theorem 3.3. Let Q = (0, 1)2 and s > 0. Then there is a constant c′ > 0 such that∫
Q

u0(x) dx ≤ c′ 2−Js (‖u0 |Cs(Q)‖+ T ), (3.21)∫
Q

v0(x) dx ≤ c′ 2−Js (‖v0 |Cs(Q)‖+ T ), (3.22)

for all J ∈ N, all T > 0 and all functions u0, v0 and u, v satisfying Hypothesis 3.1.

Proof. One can replace Q = (0, 1)2 by (0, 1/2)2 underlying the Faber expansions as
described in Section 3.2. Let 0 < s < 2l+1, l ∈ N0. Then one has by (3.13), (3.17), (3.20)

u(x1, x2, T ) =
∑
j≥J

∑
m∈Z

λj,m v
l
j,m(x1) (3.23)

with

λj,m =
2j−1∑
k=1

alk,m u
(
2−j−1k, x2, T

)
, j ≥ J, m ∈ Z, (3.24)

and (3.19). We split the summation over m ∈ Z in (3.23) into terms with |m| ≤ 2j and
with |m| > 2j . By (3.14), (3.15) and (3.18) one has∣∣∣∫

R

∑
j≥J

∑
|m|≤2j

λj,m v
l
j,m(x1) dx1

∣∣∣ ≤ c′ ∑
j≥J

sup
m∈Z
|λj,m|

≤ c′′ 2−Js ‖u(·, x2, T ) |Cs(R)‖.
(3.25)

If k = 1, . . . , 2j − 1 and |m| > 2j then it follows from |2m − k| ∼ |m|, (3.19) and (3.24)
that

|λj,m| ≤ ‖u(·, x2, T ) |L∞(R)‖
2j−1∑
k=1
|alk,m| ≤ c′ ‖u(·, x2, T ) |Cs(R)‖ 2j 2−%|m| (3.26)
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and, using again (3.15),∣∣∣∫
R

∑
j≥J

∑
|m|>2j

λj,m v
l
j,m(x1) dx1

∣∣∣ ≤ c′ ‖u(·, x2, T ) |Cs(R)‖
∑
j≥J

∑
|m|>2j

2−%|m|

≤ cs 2−Js ‖u(·, x2, T ) |Cs(R)‖.
(3.27)

By (3.23), (3.25), (3.27) and (3.5) one has∫
Q

u(x, T ) dx ≤ c′ 2−Js ‖u(·, T ) |Cs(R2)‖. (3.28)

Similarly for v(x1, x2, T ). Then (3.21), (3.22) follow from Hypothesis 3.1.

Remark 3.4. We return to the discussion in Remark 3.2. Let δ = 2−J be the distance
of the laminar vertical patterns as mentioned there. Then one has by (3.21)

δ ≥ c′
( ∫

Q
u0(x) dx

‖u0 |Cs(Q)‖+ T

)1/s
. (3.29)

If the initial data u0 are distributed rather evenly and if they vary only slowly than
‖u0 |Cs(Q)‖ differs from

∫
Q
u0(x) dx not very much and δ is comparatively large. But

if u0(x) is unevenly distributed and heavily oscillating than ‖u0 |Cs(Q)‖ might be large
and δ might be small. These effects are confirmed by numerical simulation of equations
underlying pattern formation as described in [11, 13] (and some other papers mentioned
in Section 1). It supports the observation, also briefly mentioned at the end of Section 1,
that spots and stripes (governed by the Turing formalism) cannot be too small, in de-
pendence on the oscillations of the initial data. Even Turing’s original vision as quoted
at the beginning of Section 1 fits in this scheme: One may assume that u0(x), v0(x) are
rather uniformly distributed, but randomly perturbed by small sharp peaks which do not
contribute to

∫
Q
u0(x) dx and

∫
Q
v0(x) dx very much. But

∥∥u0 |Cs(Q)
∥∥ and

∥∥v0 |Cs(Q)‖
may increase substantially having a strong impact on δ in (3.29).

3.4. Peaks, troughs, stripes, spots and Faber systems. This is (almost) the same
heading as of [28, Section 5.6]. There we suggested to deal with specific Faber devices,
originating from the classical Faber hat function in one dimension and their products
in higher dimensions, as a reliable scheme to describe peaks, troughs, stripes, spots and
other filigree structures as occur in chemotaxis and elsewhere, including Turing patterns.
But this did not work as hoped beyond the very first comments in [28]. Now we return
to this topic. But the present approach will be different. Roughly speaking we wish to
make the assumptions underlying Theorem 3.3 and the discussions in Remark 3.4 more
flexible.

We rely on the theory of the so-called refined localization spaces F s,rloc
p,q (Ω) on E-thick

domains Ω in Rn. Although only the special case F s∞,∞ = Bs∞,∞ = Cs in planar bounded
domains Ω will be of interest for us later on, it seems to be reasonable to give a description
of some crucial properties in terms of the general spaces F sp,q. A reader who is not familiar
with the spaces F sp,q may specify what follows by F s∞,∞ = Cs, what may justify that we
do not repeat the basic definitions of F sp,q.

Let l(Q) be the side-length of a (finite) open cube Q in Rn with sides parallel to the
axes of coordinates. A domain (= open set) Ω in Rn, n ∈ N, with Ω 6= Rn is said to be
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E-thick (exterior thick) if one finds for any interior cube Qi ⊂ Ω with

l(Qi) ∼ 2−j , dist(Qi, ∂Ω) ∼ 2−j , j ≥ j0 ∈ N, (3.30)

a complementing exterior cube Qe ⊂ Rn \ Ω with

l(Qe) ∼ 2−j , dist(Qe, ∂Ω) ∼ dist(Qi, Qe) ∼ 2−j , j ≥ j0 ∈ N. (3.31)

Details and discussions may be found in [22, Section 3.1, pp. 69–77]. In particular, any
bounded Lipschitz domain Ω in Rn is E-thick. Furthermore, the classical snowflake do-
main Ω in the plane R2 is E-thick, [22, Proposition 3.8, p. 75]. Let Ω be an E-thick
domain in Rn and let

0 < p ≤ ∞, 0 < q ≤ ∞, s > n
(

max
(1
p
,

1
q
, 1
)
− 1
)
, (3.32)

(q =∞ if p =∞). Then

F s,rloc
p,q (Ω) = F̃ sp,q(Ω) = {f ∈ F sp,q(Rn) : supp f ⊂ Ω} (3.33)

with F s∞,∞ = Bs∞,∞ = Cs, [22, Proposition 3.10, pp. 77–78]. Here F s,rloc
p,q (Ω) are the so-

called refined localization spaces as introduced in [22, Section 2.2.3, pp. 36–40]. We recall
the basic construction adapted to our needs. Let Ω be an arbitrary bounded domain
(= open set) in Rn and let

Q−1
l,r ⊂ Q

0
l,r ⊂ Q1

l,r, l ∈ N and r = 1, 2, . . . , (3.34)

be concentric (open) cubes in Rn with sides parallel to the axes of coordinates, centered
at 2−lmr for some mr ∈ Zn with the respective side-lengths 2−l−1, 2−l, 2−l+1 such that
the cubes Q0

l,r are pairwise disjoint,

Ω =
⋃
l,r

Q0
l,r and dist

(
Q1
l,r, ∂Ω

)
∼ 2−l, l ∈ N. (3.35)

Details and references about this so-called Whitney decomposition may be found in [22,
Section 2.1.2, pp. 30–31]. Let % = {%l,r} be a related resolution of unity consisting of
non-negative functions with

supp %l,r ⊂ Q1
l,r, |Dγ%l,r(x)| ≤ cγ 2l|γ|, x ∈ Ω, γ ∈ Nn0 , (3.36)

for some cγ > 0,
∞∑
l=1

∑
r

%l,r(x) = 1 if x ∈ Ω, (3.37)

and
%l,r(x) = 1 if x ∈ Q−1

l,r . (3.38)

For p, q, s as in (3.32) we introduced in [22, Definition 2.14, pp. 36–37] the refined local-
ization spaces

F s,rloc
p,q (Ω) = {f ∈ D′(Ω) : ‖f |F s,rloc

p,q (Ω)‖% <∞} (3.39)

with

‖f |F s,rloc
p,q (Ω)‖% =

( ∞∑
l=1

∑
r

‖%l,rf |F sp,q(Rn)‖p
)1/p

(3.40)
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(natural modification if p = q =∞). They are quasi-Banach spaces which are independent
of % = {%l,r} (equivalent quasi-norms), [22, Theorem 2.16, p. 37]. This assertion is based
on related pointwise multiplier properties and the local homogeneity

‖gl,r |F sp,q(Rn)‖ ∼ 2−l(s−n/p) ‖%l,rf |F sp,q(Rn)‖ (3.41)

where
gl,r(x) = (%l,rf)(2−lmr + 2−lx), x ∈ Rn, (3.42)

normalizes the functions %l,rf based now on the cubes Q−1, Q0, Q1 centered at the origin
and having respective side-lengths 1/2, 1, 2. We refer the reader to [22, Theorem 2.11,
Remark 2.12, pp. 34–35] and also to [27, Corollary 3.55, p. 116] for an improvement (not
needed here).

We are interested here in planar bounded E-thick domains Ω in R2 such that its
boundary

∂Ω is a d-set with 1 ≤ d < 2. (3.43)

As usual, a compact set in Rn is called a d-set, 0 ≤ d ≤ n, if it is the support of a
Hausdorff d-measure. Recall that d ≥ 1 is necessary for boundaries ∂Ω being a d-set
for E-thick domains Ω in R2, [22, Proposition 3.18, p. 86] where one finds also further
explanations. In particular one needs in (3.35)

Ml ∼ 2ld squares Q0
l,r, l ∈ N. (3.44)

(A few related comments may be found in [22, p. 222].) We specify (3.33) to

Cs,rloc(Ω) = C̃s(Ω) = {f ∈ Cs(R2) : supp f ⊂ Ω} (3.45)

with s > 0 and

‖f |C̃s(Ω)‖ ∼ sup
l∈N; r=1,...,Ml

‖%l,rf |Cs(R2)‖, f ∈ C̃s(Ω), (3.46)

according to (3.40).
We wish to extend Theorem 3.3 to bounded E-thick domains Ω in R2 satisfying (3.43).

Let ψ(x) =
(
ψ1(x), ψ2(x)

)
, x ∈ R2, be a diffeomorphic map of R2 onto itself. It is well

known that not only L1(R2) but also all spaces Asp,q(R2) are invariant with respect to
diffeomorphic distortions f

(
ψ(x)

)
= (f ◦ ψ)(x), [18, Theorem 4.3.2, p. 209]. This shows

that one can replace in Theorem 3.3 the line segments (3.13) by suitable curved lines
(including rotations).

Let u(x, T ) ∈ C̃s(Ω), s > 0. Then∫
Ω
u(x, T ) dx =

∞∑
l=1

Ml∑
r=1

∫
Ω
%l,r(x)u(x, T ) dx, (3.47)

where we used (3.37), (3.44). We rely on the reduction to the standard situation according
to (3.41), (3.42) with f(x) = u(x, T ), apply (3.28) with J − l in place of J (if l < J),
based on a suitable version of (3.13) with J inside Q1

l,r, and return to the squares in
(3.34). Then one obtains∫

Q1
l,r

%l,r(x)u(x, T ) dx ≤ c 2−2l 2−Js ‖%l,r(·)u(·, T ) |Cs(R2)‖. (3.48)
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By using (3.46) and (3.44) it follows from (3.47) that∫
Ω
u(x, T ) dx ≤ c′ 2−Js ‖u(·, T ) |Cs(R2)‖

∞∑
l=1

2−l(2−d)

≤ c′′ 2−Js ‖u(·, T ) |Cs(R2)‖
(3.49)

(incorporating the terms with l ≥ J , where no patterns are assumed). As far as the
reduction of (3.49) and an v(x, T )-counterpart to assertions of type (3.21), (3.22) is
concerned one must have in mind that on the one hand the created (straight or curved)
lines in the squares Q1

l,r (originated by %l,ru, %l,rv) are independent to each other but on
the other hand there is some overlap with exception of the spotted subdomain

Ω◦ =
∞⋃
l=1

Ml⋃
r=1

Q−1
l,r , (3.50)

This follows from (3.34) and (3.37), (3.38) making clear that in Q−1
l,r only the related

function %l,r is different from zero. In other words, the above arguments produce spotted
patterns on Ω with (independent curved) lines inside, having a minimal distance of type
(3.29) from each other. This can be interpreted as coat patterns of animals (leopard etc.)
or as the outcome of struggling chemicals in connection with CIMA chemical reactions
based (observed experimentally and by numerical simulation) on (1.1), (1.2). In any case
it supports the opinion that spots resulting from the Turing formalism cannot be too
small, [11, Section 3.1, Mammalian Coat Patterns – How the Leopard Got Its Spots,
pp. 142–156].

Acknowledgement. I wish to thank the referee for careful reading, valuable comments
and suggestions.
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