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Abstract. We review the ABPS Conjecture in the case of a split p-adic reductive group G, its
links with the Langlands correspondence for G, and how it can be used in order to provide a
conjectural description for K∗(C∗

red(G)).

1. Introduction and a few memories. The first time I heard the name of Paul Baum
was in a talk given by Vincent Lafforgue at the École Normale Supérieure on the “Baum–
Connes conjecture” in the end of the 90’s. A few years later, while I was already working
with Roger Plymen, I had the opportunity to start collaborating with Paul also. A series
of exchanges of emails and files with Paul and Roger led to two papers [ABP1], [ABP2]
on the very early stages of what is now known as the “ABPS conjecture”. A version of the
conjecture, that was stated and studied jointly with Paul, Roger and Maarten Solleveld,
is recalled in Section 3.

I met Paul for the first time at the Institut Henri Poincaré (IHP) in Paris, on his
way to visiting the Université Clermont Auvergne. I had a very interesting mathematical
discussion with Paul, and he talked also in French with my Mother and told her that he
travelled several times with his own Mother to mathematical conferences.

We met again at several occasions, notably at three “birthday conferences”: the one
in honor of Alain Connes in 2007 in Paris, the one in honor of Roger the year after in
Manchester, and the “Conference on Geometry, Representation Theory and the Baum–
Connes Conjecture” in 2016 at the Fields Institute in Toronto, whose aim was also to
celebrate the 80th birthday of Paul. I was very glad and honored in giving a talk at
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the conference on joint works with Paul, Maarten, Roger and my former student Ahmed
Moussaoui, which link the Baum–Connes conjecture to the Langlands program. Paul
himself gave a beautiful talk on our work [ABPS10], the most recent of a long list of joint
papers [ABPS1], [ABPS2], [ABPS3], [ABPS4], [ABPS5], [ABPS6], [ABPS7], [ABPS8],
[ABPS9]. I enjoy always very much attending Paul’s talks: I really appreciate his ability
in presenting the key ideas of a rather technical subject in a very simple and limpid
manner. For more memories, the reader is invited to look at [APS].

Here is a brief outline of the article. In the first section we will describe two kinds
of extended quotients that we will call geometric and spectral, respectively. The notion
of geometric (also called “ordinary”) extended quotient of a complex affine variety by
a finite group Γ acting on it was brought by Paul from the world of noncommutative
geometry to that of representations of p-adic groups. The spectral extended quotient is
the analogue of the latter in which the role of the conjugacy classes of Γ is played by the
isomorphism classes of irreducible representations of Γ.

In the rest of the article, we will focus on the spectral version and explain how it
occurs in the theory of smooth representations of split p-adic reductive groups and in the
Langlands program via the ABPS conjecture and a Galois version of the latter (that is in
fact a theorem: Theorem 5.1), respectively. The key ingredients are the decompositions
into Bernstein series of the set of isomorphism classes of irreducible smooth represen-
tations of the p-adic group (due to Bernstein) and of the set of its enhanced Langlands
parameters (obtained in [AMS1]). In the last section, we will explain the relation of the
Bernstein decomposition of the reduced C∗-algebra of a split p-adic group G with the
Baum–Connes Conjecture for G (which was proved by V. Lafforgue).

The results presented in the article are specializations to the case of split groups of
more elaborated versions (see in particular [ABPS8] and [AMS1]) that involve certain
non-trivial twists in general, and notably a notion of twisted extended quotient.

2. The geometric and spectral extended quotients. Let Γ be a finite group acting
as automorphisms of a complex affine variety X. For x ∈ X, let Γx denote the stabilizer
group of x:

Γx := {γ ∈ Γ : γ · x = x}.

We denote by Γx the set of conjugacy classes of Γx and by Irr(Γx) the set of equivalence
classes of irreducible representations of Γx.

We set
X̃geo := {(x, γ) ∈ X × Γ : γ ∈ Γx},

X̃spec := {(x, τ) ∈ X × Irr(Γ) : τ ∈ Irr(Γx)}.

Then Γ acts on X̃geo by
γ′ · (x, γ) := (γ′ · x, γ′γ(γ′)−1),

on X̃spec by
γ′ · (x, τ) := (γ′ · x, γ′∗τ),

where γ′∗ : Irr(Γx)→ Irr(Γγ′x).
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Definition 2.1. We define the geometric and spectral extended quotients of X by Γ as

X//Γ := X̃geo/Γ and X//Γ := X̃spec/Γ,

respectively.

The quotient variety X/Γ is obtained by collapsing each orbit to a point, it is an
affine variety. The geometric extended quotient is obtained by replacing the orbit of
x ∈ X by Γx, while the spectral extended quotient is obtained by replacing it by the set
Irr(Γx).

Remark 2.2. For each x ∈ X, the sets Γx and Irr(Γx) are in bijection, but not in
canonical way in general. It follows that the extended quotients X//Γ and X//Γ are in
bijection, but again not in canonical way in general.

The geometric extended quotient X//Γ, also called the ordinary extended quotient1,
coincides with the transformation groupoid attached to the Γ-set X. Recall that the latter
is the small category with objects the elements of X and with morphisms x→ y the pairs
(x, γ) such that γ · x = y, the composition being defined as (x′, γ′) ◦ (x, γ) := (x, γ′γ),
which is defined provided x′ = γ · x.

The projections (x, 0) 7→ x and (x, τ) 7→ x from X̃geo and X̃spec to X are Γ-equivariant
and so pass to quotient spaces to give morphisms of affine varieties

prgeo : X//Γ→ X/Γ and prspec : X//Γ→ X/Γ.

These maps will be referred to as the projections of the extended quotients onto the
ordinary quotient.

The inclusions x 7→ (x, e) and x 7→ (x, triv) ofX into X̃geo and X̃spec are Γ-equivariant
and so pass to quotient spaces to give inclusions of affine varieties

X/Γ ↪→ X//Γ and X/Γ ↪→ X//Γ.

with X/Γ removed will be denoted X//Γ−X/Γ and X//Γ−X/Γ, respectively.

3. Extended quotients and representations of p-adic groups: the ABPS con-
jecture. Let F be a local non-Archimedean field with finite residual field kF = Fq. Let
Fsep be a fixed separable closure of F , and let ΓF denote the Galois group of Fsep/F . Let
WF denote the Weil group WF of F (relative to Fsep), and let IF ⊂ WF be the inertia
subgroup.

Let G be a connected reductive algebraic group defined and split over F , and let G
denote the group of the F -rational points of G.

3.1. The Bernstein center. Let Rep(G) denote the category of smooth representations
of G. Recall that an irreducible smooth complex representation of the group G is called
supercuspidal if it does not appear in any G-representation induced from a proper Levi
subgroup of G. An irreducible G-representation is supercuspidal if and only if all its
matrix coefficients have compact support modulo the center of G.

1In this terminology, the spectral extended quotient is called the extended quotient of the
second kind.
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Let P be a parabolic subgroup of G with Levi factor L and write IGP for the functor
of normalized parabolic induction from Rep(L) to Rep(G). Let σ be a supercuspidal
irreducible representation of L. We call (L, σ) a cuspidal pair, and we consider such pairs
up to inertial equivalence: this is the equivalence relation generated by

• unramified twists, (L, σ) ∼ (L, σ ⊗ χ) for χ ∈ Xnr(L), where Xnr(L) is the group of
unramified (not necessarily unitary) characters L→ C×;

• G-conjugation, (L, σ) ∼ (gLg−1, g · σ) for g ∈ G.

We denote a typical inertial equivalence class by s = [L, σ]G. In particular

sL := [L, σ]L = {σ ⊗ χ ∈ Irr(L) : χ ∈ Xnr(L)}.

If π ∈ Irr(G) is a constituent of IGP (τ) for some τ ∈ sL, then sL is called the supercuspidal
support of π. Bernstein attached to every s a block in the category Rep(G), in the following
way. We define

Irr(G)s = {π ∈ Irr(G) : π has supercuspidal support sL},
Rep(G)s = {π ∈ Rep(G) : every irreducible constituent of π belongs to Irr(G)s}.

We denote the set of all inertial equivalence classes for G by B(G).
The category Rep(G) decomposes as

Rep(G) =
∏

s∈B(G)

Rep(G)s,

see [BeDe, Proposition 2.10]. In particular, the space of irreducible G-representations is
a disjoint union

Irr(G) =
⊔

s∈B(G)

Irr(G)s.

Let Irrcusp(L) be the set of isomorphism classes of supercuspidal irreducible smooth
representations of L. For σ ∈ Irrcusp(L) (and in fact for every irreducible L-representation)
the group

Xnr(L, σ) := {χ ∈ Xnr(L) : σ ⊗ χ ∼= σ}

is finite. Thus there is a bijection

Xnr(L)/Xnr(L, σ)→ Irr(L)sL : χ 7→ σ ⊗ χ, (1)

which endows Irr(L)sL with the structure of a complex torus. Up to isomorphism this
torus depends only on s, and it is known as the Bernstein torus Ts attached to s. We
note that Ts is only an algebraic variety, it is not endowed with a natural multiplication
map. The group W (G,L) := NG(L)/L acts on Irr(L) by

w · π = [w̄ · π : l 7→ π(w̄−1lw̄)] for any lift w̄ ∈ NG(L) of w ∈W (G,L). (2)

Bernstein also associated to every s the finite group

Ws := {w ∈W (G,L) : w · Irr(L)sL = Irr(L)sL}. (3)

It acts naturally on Ts, by automorphisms of algebraic varieties.
By [BeDe, Théorème 2.13] the categorical center of the Bernstein block Reps(G) is

Z(Rep(G)s) ∼= O(Ts)Ws = O(Ts/Ws). (4)
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Here O stands for the regular functions on an affine variety. Then taking supercuspidal
support gives a map

sc : Irr(G)s → Ts/Ws (5)

which is surjective and has finite fibers [BeDe, §3]. Every π ∈ Irr(G) is a constituent of
IGP (σ), where [L, σ]G is uniquely determined. By (4) the supercuspidal L-representation
σ ∈ Ts is in fact uniquely determined up to Ws. The map π 7→ Wsσ is just sc, and for
this reason it is called the cuspidal support map. Via this map Irrs(G) can be regarded
as a non-separated algebraic variety lying over Ts/Ws.

3.2. The statement of the conjecture. Let s = [L, σ]G be an inertial equivalence
class for G. Let Ws,t be the stabilizer in Ws of a point t ∈ Ts.

The ABPS conjecture from [ABPS1, §15] and [ABPS8, Conjecture 2] in its roughest
form asserts that there exists a bijection

Irr(G)s ←→ Ts//Ws (6)

such that:

(a) it restricts to a bijection between tempered representations and the unitary part of
the extended quotient (as explained below);

(b) it is canonical up to permutations within L-packets Πφ(G) (see Section 4), that is,
for any Langlands parameter φ for G, the image of Πφ(G) ∩ Irrs(G) is canonically
defined (assuming the existence of the LLC for G).

The definitions of Ws and of extended quotients imply that for a fixed Levi subgroup
L of G there is a natural bijection⊔

s=[L,σ]G

Ts//Ws → Irrcusp(L)//W (G,L). (7)

Let L(G) be a set of representatives for the G-conjugacy classes of Levi subgroups
of G. The ABPS conjecture can also be formulated in terms of a bijection

Irr(G)←→
⊔

L∈L(G)

Irrcusp(L)//W (G,L). (8)

In this version, the conjecture asserts that Irr(G) is determined by a much smaller set of
data, namely the supercuspidal representations of Levi subgroups L of G, and the actions
of the Weyl groups W (G,L) on those.

Recall [Wal, §III.1–III.2] that a supercuspidal representation is tempered if and only
if it is unitary.

Definition 3.1. Let Ts,un be the set of unitary representations in Ts, a Ws-stable com-
pact real subtorus.

Let Xunr(L) denote the group of unitary unramified characters of L. Without loss
of generality we may assume that the basepoint σ ∈ Ts is unitary. Then (1) becomes a
bijection

Xunr(L)/Xunr(L, σ)→ Ts,un : χ 7→ σ ⊗ χ.
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Let X+
nr(L) be the group of unramified characters L→ R>0. The polar decomposition of

Xnr(L) reads
Xnr(L) = Xunr(L)×X+

nr(L).
Since Xnr(L, σ) is finite and R>0 has no nontrivial finite subgroups, Xnr(L, σ) ∩
X+

nr(L) = {1}. Hence the canonical map
Ts,un ×X+

nr(L)→ Ts : (σ, χ+) 7→ σ ⊗ χ+ (9)
is bijective. We regard (9) as the polar decomposition of Ts.

Let Irrt(G) be the set of irreducible tempered G-representations (still considered up
to isomorphism) and write

Irrt(G)s = Irr(G)s ∩ Irrt(G).
Part (a) in the ABPS conjecture asserts that there is a bijection

Irrt(G)s ←→ Ts,un//Ws. (10)
In view of the Ws-equivariant polar decomposition (9), Ts//Ws is a natural way the
complexification of its compact real form Ts,un//Ws. Similarly Irrs(G) can be regarded
as the “complexification” of Irrt(G)s [ABPS2, §2]. If we manage to construct a bijection
(10) with suitable properties, then the method of [ABPS2, §4] shows that it extends to
a bijection Irr(G)s ←→ Ts//Ws with the same properties. Thus it suffices to prove the
ABPS conjecture for tempered representations.

4. The local Langlands correspondence

4.1. Enhanced Langlands parameters. Let WF be the Weil group of F . We write
W ′F := WF × SL2(C) (that may be viewed as version of the Weil–Deligne group of F ).
Let Φ(G) denote the set of G∨-orbits of Langlands parameters for G, where G∨ is the
Langlands dual group of G (a complex Lie group with root datum dual to that of G).

The local Langlands conjecture (LLC) asserts notably that the set Irr(G) of isomor-
phism classes of irreducible smooth representations of G can be parametrized by Φ(G).
This parametrization is not a bijection in general. In fact, it is conjectured that each
conjugacy class φ ∈ Φ(G) is associated with a finite set Πφ(G) of isomorphism classes of
irreducible smooth representations of G, and they give a disjoint decomposition of Irr(G):

Irr(G) =
⊔

φ∈Φ(G)

Πφ(G). (11)

Such finite sets are called L-packets for G. Recent developments of the LLC can be found
in [Au] and the references there.

In order to parametrize the irreducible representations in a given L-packet, we need
more information than just the Langlands parameter itself.

We denote by Z∨ the center of G∨. Let G∨ad be the adjoint group of G∨, and let G∨sc
be the simply connected cover of the derived group of G∨.

Let φ : W ′F → G∨ be an L-parameter. Let ZG∨ad
(φ(WF )) be the centralizer of φ(WF )

in G∨ad, and let
Gφ := Z1

G∨sc
(φ(WF )) (12)

be the inverse image of ZG∨ad
(φ(WF )) in G∨sc. We set Gφ := ZG∨(φ(WF )).
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Example 4.1. The group Z∨ is {±1} if G = SO2n+1(F ), and is trivial if G = Sp2n(F ).
We have{

Gφ = Gφ = ZSp2n(C)(φ(WF )), if G = SO2n+1(F ),
Gφ = Z1

Spin2n+1(C)(φ(WF )) and Gφ = ZSO2n+1(C)(φ(WF )), if G = Sp2n(F ).

We define the finite groups

Sφ := π0(Z1
G∨sc

(φ)) and Aφ := π0(ZG∨(φ)). (13)

We call any irreducible representation of Sφ an enhancement of φ. An irreducible repre-
sentation ρ of Sφ is said to be G-relevant if its restriction to Z(G∨sc)WF is a multiple of
the character which corresponds to the cohomology class defined by G via the Kottwitz
isomorphism

X∗(Z(G∨ad)WF ) ' H1
c(F,Gad).

An enhanced Langlands parameter (or enhanced L-parameter) for G is a pair (φ, ρ),
where φ ∈ Φ(G) and ρ is a G-relevant irreducible representation of the group Sφ. The
group Sφ coincides with the group considered by both Arthur in [Ar] and Kaletha in
[Kal, §4.6]. We set

uφ := φ(1, ( 1 1
0 1 )), (14)

and denote Oφ the conjugacy class of uφ in Gφ.
The group Sφ and Aφ are isomorphic to the groups

AGφ(uφ) := π0(Z1
Gφ(uφ)) and AGφ(uφ) := π0(ZGφ(uφ)),

respectively, see [AMS1, (92)] and [Mou1, §3].
Let Rφ denote the component group of ZG∨(φ)/Z∨. It is expected that Πφ(G) is in

bijection with Irr(Rφ). The map G∨sc → G∨ad induces a homomorphism Sφ → Rφ. Set

Zφ := Z(G∨sc)/Z(G∨sc) ∩ ZG∨sc
(φ)◦. (15)

Then Sφ is a central extension of Rφ by Zφ (see [ABPS8, Lemma 1.7]):

1→ Zφ → Sφ → Rφ → 1. (16)

Since G∨sc is a central extension of G∨ad = G∨/Z(G∨), the conjugation action of G∨sc on
itself and on Sφ descends to an action of G∨ad. Via the canonical quotient map, also G∨
acts on Sφ by conjugation.

We let G∨ act on the set of enhanced L-parameters for G by

g · (φ, ρ) = (gφg−1, g · ρ) where (g · ρ)(a) = ρ(g−1ag). (17)

We denote by Φe(G) the set of G∨-conjugacy classes of enhanced Langlands parameters
for G.

4.2. The ordinary and generalized Springer correspondences. Let G be a com-
plex (possibly disconnected) reductive group. Let G◦ be its identity component. We denote
by U(G) the unipotent variety of G.

For u ∈ G unipotent, we denote by AG(u) the component group of the centralizer of
u in G, and by Irr(AG(u)) the set of equivalence classes of irreducible representations of
AG(u).
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Definition 4.2. The enhancement of U(G) is the set Ue(G) of G-conjugacy classes of
pairs (O, ρ), with O is a unipotent class in G, and ρ ∈ Irr(AG(u)), with u ∈ O. The pair
(O, ρ) is called an enhanced unipotent class in G.

For u a given unipotent element in G◦, let AG◦(u) denote the component group of its
centralizer ZG◦(u) of u in G◦. Let O := (u)G◦ be the G◦-conjugacy class of u. We denote
by ρ 7→ Eρ the bijection between Irr(AG◦(u)) and the irreducible G◦-equivariant local
systems E on O, and by E 7→ ρE the inverse bijection. A representation ρ◦ ∈ Irr(AG◦(u))
is said to be cuspidal if the perverse sheaf IC(O, Eρ◦) is cuspidal. Then, a representation
ρ ∈ Irr(AG(u)) is cuspidal if its restriction to AG◦(u) is a direct sum of cuspidal irreducible
representations of AG◦(u) and an enhanced unipotent class (O, ρ) (resp. (O, ρ◦)) is called
cuspidal if ρ (resp. ρ◦) is cuspidal. We set

Irrcusp(AG(u)) :=
{
ρ ∈ Irr(AG(u)) such that ρ is cuspidal

}
.

A quasi-Levi subgroup of G is a subgroup M of the form M = ZG(Z(L)◦), with L a
Levi subgroup of G◦. The group M is said to be cuspidal if there exists a cuspidal
enhanced unipotent pair inM. Let B(Ue(G)) be the set of G-conjugacy classes of pairs
(M, (O, ε)), where M is a cuspidal quasi-Levi subgroup of G, and (O, ε) is a cuspidal
enhanced unipotent pair inM.

The simple objects in PervG◦(U(G◦)) are the IC(O, E), where O is a unipotent class
in G◦ and E is an irreducible G◦-equivariant Q`-local system on O. Let (O, ρ) ∈ Ue(G◦)
be an arbitrary enhanced unipotent class, and set Fρ := IC(O, Eρ). Then Fρ occurs
as a summand of iL◦⊂P◦(IC(O0, E0)), for some quadruple (P◦,M◦,O0, E0), where P◦
is a parabolic subgroup of G◦ with Levi subgroup M◦ and (O0, E0) is a cuspidal en-
hanced unipotent class in M◦ (see [Lus, §6.2] and [AHJR, Cor. 2.7]) and, moreover,
(P◦,M◦,O0, E0) is unique up to G◦-conjugation (see [Lus, Prop. 6.3]). We denote by
t◦ := (M◦, (O0, ε0))G◦ the G◦-conjugacy class of (M◦, (O0, ε0)), where ε0 corresponds
to E0, and we call it the cuspidal support of the enhanced unipotent class (O, ρ).

The center Z(G◦) of G◦ maps naturally to AG◦(O) and to AM◦(O0). By construction
[Lus, Theorem 6.5.a] ρ and ε0 have the same Z(G◦)-character. We define a cuspidal support
map from

ΨG◦ : Ue(G◦)→ B(Ue(G◦)), (18)

by sending the G◦-conjugacy class of (O, ρ) to its cuspidal support t◦ = (M◦, (O0, ε0))G◦ .
Let t◦ ∈ B(Ue(G◦)).

1. We denote by Ue(G◦)t◦ the fiber of t under the map ΨG◦ .
2. Let WM◦ := NG◦(M◦)/M◦, and let Wt◦ := NG◦(t◦)/M◦.

The group WM◦ is a Weyl group, it coincides withWt◦ for every t◦ ∈ B(Ue(G◦)), and

Ue(G◦) =
⊔

t◦∈B(Ue(G◦))

Ue(G◦)t
◦
,

and Ue(G◦)t◦ is in bijection with Irr(WM◦) (see [Lus]).
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In [AMS1] we extend the generalized Springer correspondence from G◦ to G in the
following way. Let t = (M, (O0, ε))G ∈ B(Ue(G)). We set

Wt := NG(τ)/M and W ◦t := NG◦(M◦)/M◦.
Let (O, ρ) ∈ Ue(G). There exists a map, called the cuspidal support map for Ue(G)

ΨG : Ue(G)→ B(Ue(G)), (19)
which coincides to the map ΨG◦ from (18) in the case when G is connected, such that

Ue(G) =
⊔

t∈B(Ue(G))

Ue(G)t, (20)

in which the fiber Ue(G)t of t under the map ΨG is isomorphic to the group algebra C[Wt]
of the finite group Wt.

Remark 4.3. When G is disconnected, the cocycle κt is not always trivial. It is trivial
in the case whenM◦ is a torus as proved in [ABPS6].

Definition 4.4. An enhanced L-parameter (φ, ρ) ∈ Φ(G)e is called cuspidal if φ is
discrete and (uφ, ρ) is a cuspidal enhanced unipotent class in the group Gφ defined in (12).

Cuspidality Conjecture 4.5 ([AMS1, §6]). The cuspidal enhanced Langlands param-
eters for G correspond by the LLC to the irreducible supercuspidal representations of G.

4.3. Bernstein series of enhanced Langlands parameters. Applying the above
construction to the group G = Gφ, for every (φ, ρ) ∈ Φe(G), allows us to obtain a partition
of the set of enhanced Langlands parameters into “Bernstein series”.

Definition 4.6. Let L be a Levi subgroup of G. An enhanced Langlands parameter
(ϕ, ε) for L is cuspidal if ϕ : W ′F → L∨ is discrete and (Oϕ, ε) is a cuspidal pair in Lφ,
whereOϕ is the L∨-conjugacy class of the unipotent element ϕ(1, ( 1 1

0 1 )), and Lϕ is defined
analogously as Gφ, that is,

Lϕ := Z1
L∨sc

(ϕ(WF )).

We will denote by Φe(L) the set of L∨-orbits and by Φe,cusp(L) the subset of cuspidal
L∨-orbits.

Let (φ, ρ) ∈ Φ(G). Recall the unipotent element uφ in Gφ from (12). We set
[Mφ, (O0, ε)]Gφ := ΨGφ(uφ, ρ) ∈ B(Ue(Gφ)), (21)

where ΨGφ is the cuspidal support map for Ue(Gφ) defined in (19). Then the cuspidal
support of (φ, ρ) is defined to be

Sc(φ, ρ) :=
(
ZG∨(Z(Mφ)◦), ϕ, ε

)
.

On the other hand, the group of unramified characters of L is naturally isomorphic to
Xnr(LL) := {ξ : WF /IF → Z◦G∨}. (22)

Given (ϕ, ε) ∈ Φe(L), and ξ ∈ Xnr(L∨), define (ξϕ, %) ∈ Φe(L) by

ξ · ϕ(w, x) :=
{
ϕ(w, t), if (w, x) ∈ IF × SL2(C),
ξ̃ϕ(FrF ), if (w, x) = (FrF , 1),

where ξ̃ ∈ Z◦L∨oIF represents ξ.
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Definition 4.7. We denote by s∨ := s∨G the G∨-conjugacy class of (L∨, Xnr(L∨) ·(ϕ, ε)),
where L is a Levi subgroup of G, and (ϕ, ε) is a cuspidal enhanced Langlands parameter
for L. We write

s∨ = [L∨, (ϕ, ε)]G∨ .

We call s∨ an inertial class for Φe(G) and denote by B∨(G) the set of such s∨.

Let s∨ = [L∨, (ϕ, ε)]G∨ ∈ B∨(G). We set

Ts∨ := {(ξ · ϕ)L∨ : ξ ∈ Xnr(LL)} ' Xnr(LL)/Xnr(LL)(ϕ), (23)

where
Xnr(LL)(ϕ) :=

{
ξ ∈ Xnr(LL) : (ξ · ϕ)L∨ ' (ϕ)L∨

}
.

The following statement formulates a extension of Conjecture 4.5 to Irr(G):

Conjecture 4.8. Let s = [L, σ]G ∈ B(G). The LLC for L induces a bijection

c : B(G)→ B∨(G)
s 7→ s∨,

that satisfies the following properties:

(a) Ts ' Ts∨ ,
(b) Ws 'Ws∨ .

Conjecture 4.8 is known to be true in particular for split classical groups over a p-adic
field of characteristic 0 [Mou2] and for representations with unipotent reduction of an
arbitrary p-adic group [Sol3].

The construction that we will recall below was achieved in [AMS1] and leads to a
decomposition

Φe(G) =
⊔

s∨∈B∨(G)

Φe(G)s
∨
. (24)

Moreover, for each s∨ in B∨(G), the results of [AMS2] and [AMS3] show that the subset
Φe(G)s∨ is in bijection with the simple modules of a generalized affine Hecke algebras
with possibly unequal parameters.

Let s∨ = [LL, (ϕ, ε)]G∨ ∈ B∨(G). We associate to s∨ the finite group

Ws∨ := stabilizer of s∨L∨ in NG∨(L∨)/L∨. (25)

Let (φ, ρ) ∈ Φe(G)s∨ and write as above ΨGφ(uφ, ρ) =: [Mφ, v, ε]Gφ . Fix a cuspidal datum
(L,ϕ, ε) and set v := uϕ ∈ LL. Let (φ, ρ) be an enhanced L-parameter for G. We set

[Mφ, v, ε]Gφ := ΨG(uφ, ρ). (26)

We set
LΨ(φ, ρ) := (ZG∨oWF

(Z(M)◦), φ|WF
, v, ε), (27)

a cuspidal datum for LG. Fix a cuspidal datum (LL, φ|WF
, v, ε) for LG, and write

t := [G ∩ Lc, v, ε]G, t◦ = [G◦ ∩ Lc, v, ε0]G◦ . (28)

The next result may be considered to be a version of the generalized Springer correspon-
dence for enhanced L-parameters instead of enhanced unipotent classes.
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Proposition 4.9 ([AMS1]).
(a) There is a bijection

LΣt : LΨ−1(LL, φ|WF
, v, ε)←→ Irr(C[Wt, κt])
(φ, ρ) 7−→ Σt(uφ, ρ)

(φ|WF
,Σ−1

t (τ)) ←− τ.

(b) Recall that we have a canonical bijection Σt◦ between IrrC(Wt◦) and Ψ−1
G◦ (t◦) ⊂

Ue(G◦). It relates to part (a) by
LΣt(φ, ρ)|Wt◦ =

⊕
i

Σt◦(uφ, ρi),

where ρ =
⊕

i ρi is a decomposition into irreducible AG◦(uφ)-subrepresentations.
(c) The G∨-conjugacy class of (φ|WF

, uφ, ρi) is determined by any irreducible C[Wt◦ ]-
subrepresentation of LΣt(φ, ρ).

5. A Galois version of ABPS. Let L be a Levi subgroup of G and let φL : W ′F → L∨

be a Langlands parameter for L.
Thanks to the decomposition (24), the following result reveals a new structure in the

space of enhanced Langlands parameters for G, that of a disjoint union of extended quo-
tients. It asserts that Conjecture 4 in [ABPS8] holds and is proved in [Mou2, Theorem 3.3]
for G a split classical group, and in [AMS1, Theorem 9.3] for general G.
Theorem 5.1. Let s∨L = [L∨, φ|WF

, v, ε]L∨ be an inertial equivalence class for L∨. The
maps LΣt from Proposition 4.9 (a) combine to a bijection

Φe(G)s
∨
←→ Φe(L)s

∨
L//Ws∨

(φ, ρ) 7−→
(
LΨ(φ, ρ),Σt(uφ, ρ)

)(
φ|WF

,Σ−1
t (τ)

)
←−

(
L∨, φ|WF

, v, ε, τ
)
,

with the following properties:
• it preserves boundedness of (enhanced) L-parameters,
• the restriction of τ to Wt◦ canonically determines the (non-enhanced) L-parameter in
LΣt(τ),

6. Link with the Baum–Connes conjecture. This section is a simplified version of
[ABPS8, Section 4] for split p-adic groups.

Let X be a locally compact Hausdorff space and let Γ be a group acting on X. For
simplicity we assume that Γ is finite. The Γ-equivariant K-theory of X was defined in
[Ati, §2.4]. When X is compact, K0

Γ(X) is the Grothendieck group of the semigroup of
complex Γ-vector bundles on X. When X is only locally compact, we let X ∪ {∞} be its
one-point compactification, and we put

K0
Γ(X) = ker

(
K0

Γ(X ∪ {∞})→ K0
Γ({∞})

)
. (29)

We recall that the equivariant K1-group is defined via the suspension functor. It can be
expressed as

K1
Γ(X) = K0

Γ(X × R),
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where Γ acts trivially on R. Typically one writes

K∗Γ(X) = K0
Γ(X)⊕K1

Γ(X),

a Z/2Z-graded abelian group. Let

C0(X) =
{
f ∈ C(X ∪ {∞},C) : f(∞) = 0

}
be the commutative C∗-algebra of functions on X which vanish at infinity. By the Serre–
Swan Theorem its K-theory is

K∗(C0(X)) ∼= K∗(X).

The group Γ acts on C0(X) by automorphisms, and we form the crossed product
C0(X) o Γ. We have Irr(C0(X)oΓ) ∼= X//Γ (see [ABPS6]). By the Green–Julg Theorem
[Jul] and the equivariant Serre–Swan Theorem [Phi, Theorem 2.3.1] there is a natural
isomorphism

K∗(C0(X) o Γ) ∼= K∗Γ(X). (30)

Thus we can interpret K∗Γ(X) as the K-theory of the topological space X//Γ. That space
being usually not Hausdorff, the statement is not precise, it is rather a manifestation of
the philosophy of noncommutative geometry.

As before, let G be a reductive p-adic group. Let H(G) denote the Hecke algebra of G,
that is, the vector space C∞c (G) of locally constant compactly supported functions on G,
endowed with the convolution product. It is the version of the group algebra of G which
is most suitable for studying smooth representations. The category Rep(G) is naturally
equivalent with the category Rep(H(G)) of H(G)-modules V such that H(G) · V = V .

The reduced C∗-algebra C∗red(G) is the completion of H(G) in the algebra of bounded
linear operators on the Hilbert space L2(G). It follows from the work of Harish–Chandra
(see [Vig, §10]) that the irreducible representations of C∗red(G) can be identified with
those of the Schwartz algebra of G. By [Wal, §III.7] the latter are the same as irreducible
tempered G-representations. Thus we get

Irr(C∗red(G)) = Irrt(G), (31)

which means that C∗red(G) is the correct C∗-algebra to study the noncommutative geom-
etry of the tempered dual of G. The structure of C∗red(G) was described by means of the
Fourier transform in [Ply].

The Baum–Connes conjecture provides a picture of the K-theory of this C∗-algebra
in geometric terms. Let I(G) be the (nonreduced) Bruhat–Tits building of G. This is a
proper G-space with many remarkable properties, for example:

• I(G) satisfies the negative curvature inequality [Tit, 2.3] and hence is contractible and
has unique geodesics [Bro, §VI.3];

• every compact subgroup of G fixes a point of I(G), see [Tit, §2.3.1] or [Bro, §VI.4].

In view of [BCH, Proposition 1.8], these properties make I(G) into a universal space for
proper G-actions [BCH, Definition 1.6].
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Let KG
∗ (I(G)) denote the G-equivariant K-homology of I(G) as defined in [Kas]. The

Baum–Connes conjecture asserts that the canonical assembly map

KG
∗ (I(G))→ K∗(C∗red(G)) (32)

is an isomorphism. This was proven (for a large class of groups containing G) in [Laf]. For
the groups under consideration the Baum–Connes conjecture can also be formulated and
proven more algebraically [HiNi], [Sch], with equivariant cosheaf homology (also known
as chamber homology). By [Sol1] these two versions of the conjecture are compatible.

The left-hand side of (32), defined in terms of K-cycles, has never been directly
computed for a noncommutative reductive p-adic group. Results of Voigt [Voi] allow us
to replace the left-hand side with the chamber homology groups. Chamber homology has
been directly computed for only two noncommutative p-adic groups: SL2(F ) [BHP] and
GL3(F ) [AHP]. In the case of GL3(F ), one can be sure that representative cycles in all
the homology groups have been constructed only by checking with the right-hand side
of the Baum–Connes conjecture. In other words, one always has to have an independent
computation of the right-hand side.

On the C∗-algebra of (32) side our earlier conjectures have something to say. The
Bernstein decomposition of H(G):

H(G) =
⊕

s∈B(G)

H(G)s

gives rise to a decomposition

C∗red(G) =
⊕

s∈B(G)

C∗red(G)s with Irr(C∗red(G)s) = Irrt(G)s.

Combining this with (6) leads to the following conjecture that is the specialization of
Conjecture 5 of [ABPS8] to the case where G is split:
Conjecture 6.1. Let s ∈ B(G). There exists a canonical isomorphism

K∗Ws
(Ts,un)→ K∗(C∗red(G)s),

where Kj
Ws

(Ts,un) is the classical topological equivariant K-theory for the group Ws acting
on the compact torus Ts,un introduced in Definition 3.1.

Conjecture 6.1, that can be viewed as the topological K-theory version of the ABPS
conjecture, provides a much finer and more precise formula for K∗(C∗red(G)) than Baum–
Connes alone. In the case when s = [L, trivL]G, with L a torus, it is established modulo
torsion in [ABPS8, (4.9)]. In the more general case when s = [L, σ]G and the supercuspidal
representation σ of L has unipotent reduction (that is, it is a depth-zero representation
obtained from a unipotent cuspidal representation of the reductive quotient of a parahoric
subgroup of L), then Conjecture 6.1 follows from the combination of [Sol2] and [Sol3].
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