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Abstract. Let H be the Hopf C∗-algebra of continuous functions on a (locally) compact quan-
tum group of either reduced or full type. We show that endomorphisms of H that respect its
right regular comodule structure are translations by elements of the largest classical subgroup
of G.

Furthermore, we show that for compact G such an endomorphism is automatically an auto-
morphism regardless of the quantum group norm on the C∗-algebra H.

Introduction. The starting point for the present note is the observation that for a
compact group G the map sending g ∈ G to the translation

C(G) 3 f 7→ f(g−) ∈ C(G)

induces an isomorphism between the group G and the monoid of C∗-algebra endomor-
phisms α : C(G)→ C(G) that respect the right comodule structure of C(G) in the sense
that

C(G)
C(G)⊗ C(G)

C(G)
C(G)⊗ C(G)

∆

α

α⊗id

∆

commutes.
The function algebra H = C(G) of a compact quantum group is similarly equipped

with a comultiplication, and one can ask for a similar description of all translations of
the quantum group: those endomorphisms α : H → H for which the analogous diagram
is commutative.

2010 Mathematics Subject Classification: 20G42, 46L51, 22D25.
Key words and phrases: locally compact quantum group, translation, Peter–Weyl algebra.
The paper is in final form and no version of it will be published elsewhere.

DOI: 10.4064/bc120-11 [151] c© Instytut Matematyczny PAN, 2020



152 A. CHIRVASITU

More generally, the same problem can be posed in the context of locally compact
quantum groups in the sense of [9, 10].

To make this more precise, let G be a locally compact quantum group, H = C0(G) the
reduced C∗-algebra of functions on G vanishing at infinity and Hu = Cu0 (G) its universal
analogue. We write Gcl for the largest classical quantum subgroup of G: this is nothing
but the group of characters Hu → C equipped with the convolution product. An element
χ ∈ Gcl induces an endomorphism α of Hu in the category of non-unital C∗-algebras (i.e.
a non-degenerate morphism Hu →M(Hu)) defined by

Hu

M(Hu ⊗Hu)
M(Hu).

∆ χ⊗id

α

(1)

Note that in fact α takes values in Hu, and furthermore it respects the right Hu coactions
on its domain and codomain as discussed before. α is, in other words, a translation of Hu.
One can now ask

• whether this correspondence is an isomorphism between Gcl and the monoid of trans-
lations of Hu;

• whether every such α descends to a translation of the reduced version H;
• if so, then do we once more obtain an isomorphism between Gcl and the monoid of

translations of H?

That the classical answers survive in the quantum setting is one of the main result of
the paper (an aggregate of Theorems 2.9, 2.10, 2.12 and 2.13):

Theorem 0.1. Let G be a locally compact quantum group and C0(G) and Cu0 (G) its
reduced and respectively full C∗-algebras of functions vanishing at infinity. The corre-
spondence χ 7→ α described in (1) gives isomorphisms between Gcl and the monoids of
translations of both Cu0 (G) and C0(G).

Von Neumann algebra versions of this result appear in [5] (for Kac algebras) and [6].
More specifically, [6, Theorems 3.7, 3.9 and 3.11] jointly amount to the fact that von
Neumann algebra morphisms L∞(G) → L∞(G) that preserve the right coaction are in
bijection with Gcl in the fashion described in Theorem 0.1.

Let us now specialize to the case when G is compact, i.e. C(G) := C0(G) is unital.
In general, one can equip the unique dense Hopf ∗-subalgebra of C(G) with a number
of different norms with that of C(G) being minimal and that of Cu(G) maximal (see
[1, discussion preceding Theorem 2.1] for justification of the claim that the norm making
the Haar state faithful is minimal).

The intermediate norms interpolating between C(G) and Cu(G) are often referred to
as exotic; see e.g. [11, 18, 14, 2]. Although I do not know whether Theorem 0.1 holds
for exotic quantum group norms, it is nevertheless the case that every translation of a
quantum group C∗-algebra is bijective (see Corollary 2.4):

Theorem 0.2. Every translation of the underlying C∗-algebra of a compact quantum
group is an automorphism of said C∗-algebra.

This answers a question posed by Piotr M. Hajac.



TRANSLATIONS IN QUANTUM GROUPS 153

Acknowledgements. This work is supported in part by NSF grant DMS-1801011.
I am grateful for enlightening input from Ludwik Dąbrowski, Piotr Hajac, Paweł

Kasprzak and Mariusz Tobolski on earlier drafts.
Additionally, the suggestions of the anonymous referee have improved the content

significantly, pointing out the references [5, 6] and much more.

1. Preliminaries

1.1. Locally compact quantum groups. We will work with locally compact quantum
groups (LCQGs for short) of either reduced or full type, in the sense of [9] and respec-
tively [7]. For locally compact quantum group morphisms we refer to [12]; see also the
preliminary section of [4] for a quick review of the theory.

The category of non-unital C∗-algebras we work with is the usual one, where mor-
phisms A → B are non-degenerate homomorphisms A → M(B) to the multiplier alge-
bra M(B) of B (this is the space denoted by Mor(A,B) in [4, §1.1]). Throughout the
present subsection H = C0(G) will be the underlying non-unital C∗-algebra of a reduced
LCQG G, and Hu the associated C∗-algebra (whose dual object we denote, as before,
by Gu).

[9, Section 1] contains all of the C∗ weight theory we will need (much more in fact).
For a weight ϕ on a (possibly non-unital) C∗-algebra A we define

M+
ϕ := {x ∈ A+ | ϕ(x) <∞}, Mϕ := spanM+

ϕ ,

Nϕ := {x ∈ A | ϕ(x∗x) <∞}.

We write C0(G) and Cu0 (G) for the reduced and full function C∗-algebras attached to
the LCQG G. As has become customary in the literature, denote by ϕ the left-invariant
Haar weight. It is proper (i.e. non-zero, lower semicontinuous and densely defined), faithful
on C0(G), and left invariance means that

ϕ((ω ⊗ id)∆x) = ω(1)ϕ(x) ∀x ∈M+
ϕ ∀ω ∈ C0(G)∗+ (2)

(see [9, Definition 2.2]). Recall (e.g. [9, §1.2]) that proper weights admit unique extensions
to the multiplier algebras of their domains; we take such extensions for granted.

We have a GNS representation (Hϕ, πϕ,Λ) attached to ϕ as in [9, Definition 1.2]:
Hϕ is a Hilbert space and

πϕ : Cu0 (G)→ C0(G)→ B(Hϕ)
Λ : Nϕ → Hϕ

satisfying Λ(xy) = πϕ(x)Λ(y) for all relevant x and y. We regard C0(G) as a subalgebra
of B(Hϕ) via πϕ, and L∞(G) is its von Neumann closure therein.

The multiplicative unitary W ∈ B(H⊗2
ϕ ) is defined by

W ∗(Λ(x)⊗ Λ(y)) = (Λ⊗ Λ)(∆(y)(x⊗ 1)) ∀x, y ∈ Nϕ.

Then W induces the comultiplication on L∞(G) via

∆(x) = W ∗(1⊗ x)W,
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and W is contained in M(C0(Ĝ)⊗C0(G)) for the Pontryagin dual Ĝ of G: by definition,
C0(Ĝ) is the norm-closure of {

(ω ⊗ id)W | ω ∈ B(Hϕ)∗
}

([9, Definition 8.1]). We have

(∆⊗ id)W = W13W23

(id⊗∆)W = W13W12,

relations which we will use below (note that the right hand comultiplication in the second
line of the display above is that of C0(Ĝ)).

1.2. Compact quantum groups. Although these are technically examples of LCQGs
(i.e. those for which C0(G) is unital), there are several aspects peculiar to the compact
case that we outline here very briefly, referring to [20, 8] for further background.

The underlying Hopf C∗-algebra H = C(G) has a unique dense Hopf ∗-algebra we
denote by Pol(G) (the Peter–Weyl algebra of G). It is cosemisimple as a coalgebra and
hence breaks up as a direct sum of matrix coalgebras, one for each irreducible right
H-comodule.

2. Translations. Let H = C(G) be the Hopf C∗-algebra underlying a CQG G.

Definition 2.1. A translation of G orH is a C∗-algebra morphism αmaking the diagram

H

H ⊗H

H

H ⊗H
∆

α

α⊗id

∆

(3)

commutative.
We denote by T (H) or T (G) the monoid of translations of G equipped with opposite

composition.

Remark 2.2. The convention that we compose translations backwards obviates the need
to reverse the multiplication on Gcl in Theorem 0.1.

We topologize T (H) for H = C(G) in the standard way by the topology of pointwise
convergence in the norm of H.

Now let α ∈ T (G). For each γ ∈ Irr(G) the matrix coalgebra Hγ ⊂ H is preserved
by α. If dγ is the dimension of γ and uγ = (uij) ∈ Mdγ (H) is a unitary matrix whose
entries form a basis for Hγ , then the action of α on Hγ is implemented by multiplying
uγ by a unitary dγ × dγ matrix Tγ = Tαγ .

Since ϕ ∈ T (G) is uniquely determined by its action on the dense Hopf ∗-subalgebra
Pol(G), we thus have an embedding

T (G) ⊆ UH :=
∏

γ∈Irr(G)

Udγ (4)

sending α to the tuple (Tαγ )γ .
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Our first observation is

Proposition 2.3. The embedding (4) realizes T (G) as a closed sub-monoid of the right
hand side.

Proof. We have already noted the injectivity of the map (4), and by its very definition it
intertwines the composition of translations and the group operation on its codomain UH .
It thus remains to argue that the map is continuous and its image is closed.

Concerning the closure of T (G) in UH via (4) consider a net (αη)η ⊂ T (G) converging
to α ∈ UH . The latter can be identified with a self-map of

Pol(G) =
⊕
γ

Hγ

as before, acting as multiplication by its γ-component unitary matrix on Hγ . This is a
right comodule endomorphism of Pol(G). It is also an algebra morphism: multiplicativity
is a condition on arbitrary pairs of elements, and hence a closed condition under pointwise
convergence.

It remains to argue that αmust lift to an endomorphism of the C∗-algebraH assuming
that αη are such endomorphisms. Equivalently, since Pol(G) is dense in H, it is enough
to show that α is contractive on Pol(G) (with respect to the norm of H).

To see this, fix x ∈ Pol(G). x is contained in some finite-dimensional subspace

V =
⊕
γ∈F

Hγ

for a finite subset F ⊂ Irr(G). V is preserved by αη as well as α, and hence
αη(x)→ α(x)

in the unique separated vector space topology on V . In particular this is also the topology
inherited from the norm ‖ − ‖ on H, and hence

‖α(x)‖ = lim
η
‖αη(x)‖ ≤ ‖x‖.

because αη all lift to endomorphisms of the C∗-algebra H and are thus contractive. This
finishes the proof.

As an immediate consequence of Proposition 2.3 we have

Corollary 2.4. Every translation of H = C(G) is an automorphism of the
C∗-algebra H.

Proof. We know from Proposition 2.3 that T = T (H) is a closed sub-monoid of a
compact group UH . Being a sub-monoid of a group T is cancellative (i.e. ab = ab′ ⇒ b = b′

and similarly for ba = b′a). This means that it is, in fact, a closed subgroup: see e.g.
[13, Lemma B.1] for (a strengthening of) the well known result to the effect that compact
cancellative semigroups are groups.

2.1. Classifying translations. A simple observation: recall that for any algebra A,
every (left, say) A-module endomorphism of A is automatically of the form

A 3 x 7→ xa

for some a ∈ A. In other words, A is its own algebra of A-module endomorphisms.
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Dually, for a coalgebra C over a field k, every right C-comodule endomap α of C will
be of the form

c 7→ χ(c1)c2,

where c 7→ c1 ⊗ c2 is Sweedler notation for comultiplication and χ : C → k is a linear
map: one simply sets χ = ε ◦ α.

If furthermore C = H is a Hopf algebra (or even just a bialgebra) and α is also a
translation in the sense of Definition 2.1, then χ : H → k is easily seen to be an algebra
map; it is, after all, just the composition

H

H ⊗H
H k

∆ χ⊗id

α

ε

χ

(5)

of α and the counit ε, both of which are algebra morphisms. Finally, ∗-structures come
along for the ride for Hopf ∗-algebras (i.e. if α is a ∗-algebra endomorphism then so is
χ : H → C, and conversely).

Notation 2.5. In order to indicate the dependence of α and χ on each other in (5), we
will sometimes denote them by αχ and χα respectively.

Now, if H = C(G) is a Hopf C∗-algebra as we have been assuming and α ∈ T (G) is a
translation, then the preceding discussion applies to the dense Hopf ∗-subalgebra Pol(H)
(which is automatically preserved by α). This means that the restriction of α to Pol(H)
is of the form αχ (see Notation 2.5) for a unique character χ of the ∗-algebra Pol(H), or
equivalently, of the full Hopf C∗-algebra Hu with Pol(Hu) = Pol(H).

Notation 2.6. For a CQG H = C(G) we denote by pt(G) (for ‘points of G’) the space of
characters H → C, or equivalently, the space of characters of the abelianization H → Hcl
of H.

To summarize:

Proposition 2.7. Let H = C(G) for a CQG G. Then, the map

T (G) 3 α 7→ χα

is an embedding of T (G) as a closed subgroup of the compact group Gcl.

Conversely, for every character χ : H → C we can define the translation αχ via the
left hand half of (5). We thus obtain the following version of Proposition 2.3.

Proposition 2.8. The map
pt(G) 3 χ 7→ αχ

is an embedding of pt(G) as a closed sub-semigroup of the compact group T (G).

Moreover, since for full CQGs we have G = Gu and hence the sandwich

pt(G) ⊆ T (G) ⊆ Gcl

provided by Propositions 2.7 and 2.8 collapses, we obtain
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Theorem 2.9. If G is a full compact quantum group, T (G) is isomorphic to the maximal
classical subgroup pt(G) ⊆ G.

We have an analogous result for reduced compact quantum groups:
Theorem 2.10. If G is a reduced compact quantum group then the embedding T (G)→ Gcl
from Proposition 2.7 is an isomorphism.
Proof. Let H = C(G). We have to argue that every element χ ∈ Gcl, acting as an
automorphism of the CQG algebra Pol(H), lifts to an automorphism of the reduced C∗
closure H of Pol(H). This follows from the fact that H is the GNS closure with respect
to the Haar state h on Pol(H), and h is preserved by χ.

2.2. The locally compact case. We write H = C0(G) and Hu = Cu0 (G). The present
subsection is the reason why we have chosen to work with left comodule morphisms α: it
allows better agreement with the literature on LCQGs that we reference here.

We can define the group T (Gu) = T (Hu) of translations of Gu as in Definition 2.1;
it consists of non-degenerate endomorphisms α of Hu that preserve the right regular
coaction of Hu, in the sense that the diagram

Hu

M(Hu ⊗Hu)

M(Hu)
M(Hu ⊗Hu)

∆

α

α⊗id

∆

(6)

analogous to (3) commutes.
We again equip T (Gu) with its standard topology: as before, this is the pointwise-norm

topology when regarded as a space of C∗-algebra morphisms Hu →M(Hu).
Remark 2.11. It is easy to see that with its standard topology, T (Gu) is a locally
compact group.

As in the discussion at the beginning of Section 2, we denote by Gcl the maximal clas-
sical closed subgroup of Gu; it is the spectrum of the abelianization (Hu)cl, i.e. the space
of characters of Hu. The version of (5) relevant to universal locally compact quantum
groups is

Hu

M(Hu ⊗Hu)
M(Hu) k,

∆ χ⊗id

α

ε

χ

(7)

and defines back-and-forth mutually inverse maps

T (Gu) Gcl,
α 7→ χα

αχ ← [ χ
(8)

where the fact that χ is not the zero map follows from the non-degeneracy of α. We thus
arrive at
Theorem 2.12. The rightward map in (8) defines an isomorphism

T (Gu) ∼= Gcl.
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Proof. We already have mutually inverse bijections preserving the group structures, so
the only claim still to be verified is that these bijections are both continuous.

It is immediate from the definition of the pointwise-norm topology that for a fixed
morphism f of (non-unital) C∗-algebras the map g 7→ g ◦ f is continuous. Since both
α 7→ χα and χ 7→ αχ are of this form, this identifies T (Gu) topologically with the space
of characters Hu → C equipped with the pointwise-norm topology.

Since characters Hu → C coincide with characters of the abelianization C0(Gcl) of Hu

again topologized via the pointwise-norm topology, the claim amounts to the fact that
the locally compact topology of Gcl can be recovered as the pointwise-norm topology on

characters C0(Gcl)→ C.

This, however, is nothing but the Gelfand–Naimark theorem.

We can now define T (H) = T (G) as in the universal case. The analogue, in this case,
of Corollary 2.4 is Theorem 2.13 below. It is analogous to [6, Theorems 3.7, 3.9 and 3.11],
being a C∗ (as opposed to von Neumann) variant of that material. In fact, we will apply
the results of [6] directly once we transport the problem to GNS von Neumann algebras.

Theorem 2.13. Every translation of Hu = Cu0 (G) descends to one of H = C0(G), and
this correspondence induces an isomorphism

T (G) ∼= Gcl.

Proof. We already know from Theorem 2.12 that translations of Hu are actual left trans-
lations by elements in the classical locally compact group Gcl. These preserve the left-
invariant Haar weight ϕ on Hu and hence descend to the quotient H of Hu on which ϕ
is faithful.

It now remains to show that every translation of H arises in this fashion, as a left
translation by some element in Gcl. We fix a translation α ∈ T (H) throughout the rest
of the proof.

Claim. α lifts to a normal self-map L∞(G).

The goal here is to show that α sends M+
ϕ to M+

ϕ and ϕ ◦ α = ϕ. To that end, recall
that (2) is valid for all positive elements in H (or indeed even M(H)). For that reason,
applying ω ⊗ ϕ to the image of x ∈M+

ϕ through (6) we obtain

ω(1)ϕ(α(x)) = ϕ
(
(ω ⊗ id)∆α(x)

)
= ϕ

(
(ω ◦ α⊗ id)∆x

)
for all positive x ∈M+

ϕ and positive functionals ω ∈ H∗+, where the second equality uses
the commutativity of (6). In turn, this equals

ω(α(1))ϕ(x) = ω(1)ϕ(x).

This does indeed prove the desired conclusion ϕ◦α = ϕ and hence the claim because then
α lifts to the closure L∞(G) of H in the GNS representation of the α-invariant weight ϕ.

As explained before, once we have lifted α to L∞ we can conclude by [6, Theorems
3.7, 3.9 and 3.11], with 3.7 and 3.11 applied to G and 3.9 applied to the dual Ĝ.

As a consequence, we have the analogue of Corollary 2.4 in the locally compact setting,
albeit only in the universal and reduced cases:
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Corollary 2.14. Every translation of a reduced or universal locally compact quantum
group is an isomorphism of the respective C∗-algebra C0(G) or Cu0 (G).

Proof. It is immediate from the characterization of translations given in Theorems 2.12
and 2.13: they are all translations by elements of the classical group Gcl, and each such
map admits an inverse (namely translation by the inverse of said element).

Remark 2.15. There is a more general approach to locally compact quantum groups,
based around the notion of a manageable multiplicative unitary (see e.g. [16, 19, 17]).

Theorem 2.13 holds in the more general setting as well (i.e. translations are in bijection
with the elements of the maximal classical subgroup) because [3, Proposition 3.2], which
in turn [15, Theorem 6] paraphrases, holds in the more general setup.
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