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Abstract. Quantum groups have been studied within several areas of mathematics and math-
ematical physics. This has led to different approaches, each of them with their own techniques
and conventions.

Starting with Hopf algebras, where there is a general consensus, moving in the direction of
topological quantum groups, where there is no such consensus, it is easy to get lost. Not only
many difficulties have to be overcome, but also several choices must be made. The way this is
done is often confusing. Some choices even turn out to be rather annoying.

As an introductory lecture at the conference on Topological quantum groups and Hopf algebras
in 2016, we have explained these ‘choices, difficulties and annoyances’ encountered on the road
from Hopf algebras to topological quantum groups.

In these notes, we discuss more aspects of the development of locally compact quantum
groups. We not only explain some of these difficulties in greater detail, but we also give back-
ground information about the different steps, combined with some historical comments.

We start with finite quantum groups and continue with discrete quantum groups, compact
quantum groups and algebraic quantum groups. Multiplicative unitaries are an important side
track before we finally arrive at locally compact quantum groups.

Along the way, we also formulate some interesting remaining problems in the theory.

1. Introduction. Hopf algebras find their origin in algebraic topology ([H2], 1941). The
general theory was further developed by others, resulting in the standard reference books
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by Sweedler ([S], 1969) and Abe ([A], 1977). For a more recent treatment we refer to the
book by Radford ([R], 2012).

Quantum groups, as they were called by Drinfel′d, had a breakthrough in 1986 with
his work presented at the International Mathematical Congress in Berkeley ([D], 1986).
Independently, results of the same type were obtained by Jimbo ([J], 1987).

Parallel developments took place with the attempts to generalize Pontryagin duality
for abelian locally compact groups ([P1], 1939) to the non-abelian case. After many years
of research, with various partial, but important solutions, Kac and Vainerman on the
one hand ([KV], 1974) and Enock and Schwartz ([ES1], 1975 and [ES2], 1992) on the
other hand, developed the theory of Kac algebras. These are objects admitting a dual
of the same kind and their duality includes the Pontryagin duality of locally compact
abelian groups, as well as the intermediate results of this kind obtained earlier for non-
abelian locally compact groups. The first example of a finite-dimensional Kac algebra
was obtained by Kac and Paljutkin ([KP], 1966).

Unfortunately, as it turned out by the work of Woronowicz on compact quantum
groups ([W2], 1987 and [W4], 1998), in particular with his construction of the quantum
SUq(2) group ([W1], 1987), the theory of Kac algebras was found to be too restrictive.
The new examples are not Kac algebras because they have an antipode whose square is
not the identity map.

In the seventies, when the Kac algebras where developed, it seemed quite natural to
assume an antipode S satisfying S2 = ι. We use ι for the identity map. All the known
examples at that time did have this property. Recall that the antipode is for a Hopf algebra
what the inverse is for a group. So this condition was indeed very reasonable. On the other
hand, before this, examples of Hopf algebras with an antipode not satisfying S2 = ι were
already known. See e.g. [Tf], 1971. But the underlying algebras for these examples are
not operator algebras. The quantum SUq(2) was the first example, constructed in the
framework of operator algebras, with an antipode not satisfying S2 = ι. Remark in
passing that there was at that time very little mutual knowledge among the algebraists
and the analysts working with this type of abstract harmonic analysis.

These new discoveries initiated new research. The goal now was to find a more general
notion to replace the Kac algebras. It had to include the new examples. And preferably,
the concept had to be self-dual in the sense that again, the dual of the new object could
be constructed within the same category. The duality should generalize the duality of
Kac algebras (and so of course also the earlier forms of duality generalizing Pontryagin’s
duality for locally compact abelian groups).

It took many years before this goal was achieved. First there is the work of Masuda
and Nakagami ([MN], 1994), continued in collaboration with Woronowicz ([MNW], 2003).
It must be mentioned that the latter was available many years before it actually got pub-
lished. In the mean time, a theory of locally compact quantum groups was also developed
by Kustermans and Vaes ([KV1], 1999 and [KV2], 2000). In [MN] the underlying oper-
ator algebras are von Neumann algebras, whereas in [MNW], they are C∗-algebras. The
same is true for the locally compact quantum groups as treated by Kustermans and Vaes.
They studied locally compact quantum groups in the von Neumann algebra framework
in [KV3] (2003).
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Nowadays, it is generally accepted that locally compact quantum groups as in [KV2]
provide the best and strongest results.

Remark that, from a motivational point of view, it was more natural to search for
a notion of a locally compact quantum group within a C∗-algebra framework. After all
C∗-algebras are considered as quantized locally compact spaces. However, as we will see
in Section 6, the von Neumann algebraic theory is easier.

We would also like to mention here that, to our knowledge, it was Kirchberg, at a
conference in Kopenhagen ([Ki], 1992), who was the first to suggest a theory with an
antipode S, not satisfying S2 = ι, but with a polar decomposition.

It is somewhat remarkable and worthwhile to mention that before a satisfactory notion
of a locally compact quantum group was obtained, there was a focus on examples. Highly
sophisticated ones were mainly obtained by Woronowicz and some of his coworkers. The
study of multiplicative unitaries, as developed mainly by Baaj and Skandalis ([BS], 1993),
provided a framework for these examples. The Haar measures for some of them were only
considered later in unpublished work ([VD6], 2001). But it showed finally that these
examples complied with the later developed notion.

Above is only a short account of the different intermediate steps leading up to the
final notion of locally compact quantum groups. We will say a more about this further
in the paper. But the reader is also advised to compare it with the information given in
other comprehensive works on the theory.

Choices, difficulties and annoyances. As we see already with this limited introduc-
tion, many people from different schools were involved. On the way, many choices had
to be made. Therefore, it should not come as a surprise that this had led to a variety
of conventions. One of the reasons is that the final notion came only later, after partial
results had been found and examples of different kinds were constructed. This fact is
without any doubt also responsible for these differences.

The theory in itself is already quite complicated. It comes with many technical diffi-
culties. The problem with the different conventions is not only that it makes things even
more difficult, it also causes annoying situations.

Expository character of the paper. When we started to write these notes, in the first
place, we had the idea of discussing these problems. After all, the notes were intended
to expand the material presented at the conference in Warsaw where this topic was
chosen for our introductory talk. However, in the process of writing, we found that for
doing this, we needed to include various aspects of the development of locally compact
quantum groups and some historical comments. This turned out, not only to be necessary,
but also of some interest in its own right.

We strongly believe that this will be helpful mostly for young researchers who have
already some knowledge about the operator algebraic approach to quantum groups but
want to get a deeper understanding of the different steps leading to this theory, starting
from Hopf algebras and locally compact groups. Moreover, by discussing the passage
from Hopf algebras to locally compact quantum groups, in the end, when we briefly treat
locally compact quantum groups, we can illustrate some of the features there by similar
ones in the simpler cases.
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This paper is mostly expository and contains no new results. We omit many details
but we suggest to complete some of them as an exercise for the reader (cf. items marked
as Exercise).

Here and there we also propose possible research problems (cf. items marked as Prob-
lem). One of them, perhaps the most interesting and challenging one, is to develop a
theory of locally compact quantum groups where the existence of the Haar measure is
not part of the axioms, but a result, following from another set of natural axioms. We
include some ideas to attack this problem.

Let us also refer to the book of Timmermann, An Invitation to Quantum Groups and
Duality. From Hopf Algebras to Multiplicative Unitaries and Beyond ([Ti], 2008). In a
sense, it treats the same material, but from a different angle. Here we emphasize on other
aspects. The reader who wants to go deeper into this theory is advised to read his work
as well and compare the treatment of the various steps in his work with the way it is
presented in this more concise note.

Content of the paper. In Section 2 we start our discussion with finite quantum groups
and we see that even here, some choices have to be agreed upon. In this paper, we will
call a finite-dimensional Hopf ∗-algebra a finite quantum group only if the underlying
algebra is an operator algebra (see Definition 2.4 in Section 2). We motivate this choice
in detail, refer to the forthcoming more general case and use an example to make our
point. Finite groups fit into this framework, but again, also here a choice has to be made.

In Section 3 we proceed one step further in two different directions. We discuss the
possible notions of discrete quantum groups and of compact quantum groups. For histor-
ical reasons, we start with looking for the good notion of a compact quantum group and
arrive at the definition given by Woronowicz in [W4]. We formulate some of the main
results and use them to discuss other approaches to compact quantum groups.

Discrete quantum groups were in the first place studied as duals of compact quantum
groups, see [PW] (1990). Later the notion was defined without reference to a compact
quantum group, see e.g. [ER] (1994) and [VD3] (1996). Thereby it was shown that the
dual of a discrete quantum group is a compact quantum group as expected. It should
be mentioned that both the compact and discrete quantum groups can be studied in a
purely algebraic context, without reference to the operator algebras that they are part
of. This leads to the more general notion of an algebraic quantum groups.

This is what we treat in Section 4. There is some confusion about the terminology
here, but we will define an algebraic quantum group as a multiplier Hopf ∗-algebra with
positive integrals. Then the dual can be defined within the same category and the duality
includes the duality between compact and discrete groups. Indeed, any compact quantum
group is essentially a Hopf ∗-algebra with positive integrals. On the other hand, it is shown
that a discrete quantum group, as we define it in Section 3, is a multiplier Hopf ∗-algebra
with positive integrals, admitting a cointegral.

Algebraic quantum groups are nice objects from different perspectives. First, it is a
self-dual theory, including compact as well as discrete quantum groups. Secondly, it is
a purely algebraic theory still with many (though not all) features in common with the
general theory of locally compact quantum groups. Furthermore, it is far more easy to
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work with. We claim that first learning about algebraic quantum groups in the sense of
this paper will facilitate to a great extend the later study of locally compact quantum
groups. In fact, it is already useful to get a deeper understanding of discrete and compact
quantum groups with their duality.

In this section, we also include a discussion of the Larson–Sweedler theorem. Roughly
speaking, it says that the antipode exists and can be obtained from the existence of
integrals. This is a very important result in view of the theory of locally compact quantum
groups as it is known today. We include here some related results that are important for
understanding the development of locally compact quantum groups as we explain in
Section 6.

In the section on algebraic quantum groups, we also encounter the multiplicative
unitaries. There are various approaches. This is treated in Section 5. It is possible to
approach multiplicative unitaries from a purely algebraic point of view in the case of
algebraic quantum groups. We start this section by doing so. However, multiplicative
unitaries are mostly studied as unitary operators on Hilbert spaces. They appeared al-
ready a long time before the term itself was introduced by Baaj and Skandalis in [BS].
For this reason we spend some time to look at the history of this concept. Finally, we
discuss the notion of a manageable multiplicative unitary as introduced by Woronowicz
in [W3], see also [SW] and related concepts.

In Section 6 we arrive at the locally compact quantum groups, our goal for this paper.
There are two operator algebraic approaches. On the one hand, there is a C∗-algebraic
approach, while on the other hand, we have a von Neumann algebraic one. We begin the
section with the two definitions and the relation between them. Then we focus on the von
Neumann algebraic setting and we indicate how ideas from the purely algebraic theory
of algebraic quantum groups, are used to develop the theory as it is done in [VD8]. For
these ideas, we refer to Section 4 where we have included the relevant results for this
purpose already.

In this section, we also compare the notion of a von Neumann algebraic locally com-
pact quantum group with the earlier notion of a Kac algebra. And we formulate a problem
about this also.

We finish the paper with some concluding remarks in Section 7. We also formulate a
few suggestions about how to improve the theory and its presence in the literature.

Notation and conventions. In general, our algebras are not required to have an iden-
tity, but we need that the product is non-degenerate. We use 1 for the identity in an
algebra when it exists and for the identity in its multiplier algebra if not. As mentioned
already, we use ι to denote the identity map. The identity element in a group is denoted
by e. Most of our algebras will be algebras over the field of complex numbers and have
involutions.

In general we write A⊗B for the tensor product of two algebras A and B. In the case
of operator algebras, we will use A � B for the algebraic tensor product while we keep
using A⊗B for the adapted completed tensor product, depending on the context.

We will use the leg-numbering notation in various circumstances. See e.g. Section 5.
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A coproduct on a finite-dimensional algebra A is a homomorphism from A to the
tensor product A ⊗ A. When the algebra is no longer finite-dimensional we need an
adapted notion. Also for an operator algebra this is the case. So, whenever we talk about
a coproduct, it depends on the setting what is really meant.

For a coproduct we will use the Sweedler notation whenever this is convenient. This
presents no problem in the case of a Hopf algebra. Using the Sweedler notation for
multiplier Hopf algebras has been documented in the literature. See e.g. [DVD], [VD7]
and the forthcoming note [VD11]. In the case of an operator algebra however, it makes
little sense to use it, except possibly for motivational reasons.

If H is a Hilbert space, we will use B(H) for the von Neumann algebra of all bounded
linear operators on H. We denote the space of normal linear functionals on B(H), the
predual of this von Neumann algebra, by B(H)∗.
Basic references. For the theory of Hopf algebras we refer to the basic works of Abe [A]
and Sweedler [S], as well as to the more recent work by Radford [R]. For compact quantum
groups we have the work of Woronowicz [W1, W2, W4] and for discrete quantum groups
[PW] and [VD3]. Also the notes on compact quantum groups in [MVD1] should be helpful.
The basic reference for multiplier Hopf algebras is [VD1] and for algebraic quantum groups
(multiplier Hopf algebras with integrals), it is [VD5]. For locally compact quantum groups,
there is the work of Masuda, Nakagami and Woronowicz [MN, MNW] and the work of
Kustermans and Vaes [KV1, KV2, KV3].

For the general theory of C∗-algebras and von Neumann algebras, there are several
possible references. One can look at the books of Kadison and Ringrose [KR] and at the
books of Takesaki [Tk1, Tk2].

2. Finite quantum groups. What is a finite quantum group? Some people say that
any finite-dimensional Hopf algebra is a finite quantum group. Other people will insist to
have a finite-dimensional Hopf ∗-algebra. In fact, then it is quite common to only admit
operator algebras for the underlying ∗-algebra. In this section, we will make a clear choice
and motivate it.
2.1. Finite-dimensional Hopf algebras. First recall the following definition. Then
consider an example to illustrate the upcoming choice.
Definition 2.1. A Hopf algebra over a field k is a pair (A,∆) where A is a unital
k-algebra and ∆ a coproduct on A such that there is a counit ε and an antipode S.
When A is a ∗-algebra (over the field C) and ∆ is a ∗-homomorphism, we call it a Hopf
∗-algebra.

For the definition of a Hopf algebra we refer to the standard works [A, S] and also [R].
Usually, the counit and the antipode are included explicitly in the definition, but because
they are unique if they exist, this is not really necessary. We prefer to use the above
formulation as this is closer to the upcoming definitions in the framework of operator
algebras.

In the field of Hopf algebras, the study of Hopf ∗-algebras is not very common, but it
is of course very relevant when looking at the operator algebraic approach to quantum
groups.
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Next consider the following example originally due to Taft [Tf].

Example 2.2. Let A be the unital algebra over C generated by elements a, b satisfying
a4 = 1, ab = iba and b2 = 0. A coproduct ∆ on A can be defined by

∆(a) = a⊗ a and ∆(b) = a⊗ b+ b⊗ a−1.

The pair (A,∆) is a finite-dimensional Hopf algebra. It is a Hopf ∗-algebra if we let a
and b be self-adjoint.

The algebra is 8-dimensional. The counit satisfies ε(a) = 1 and ε(b) = 0. For the
antipode we have S(a) = a−1 and S(b) = ib. Also S2(b) = −b so that for this example,
we do not have S2 = ι. Instead we have S4 = ι. Also observe that S(b)∗ = −ib so that
S(S(b)∗)∗ = b as it should be for a Hopf ∗-algebra.

Consider the subalgebra B of A generated by a2 and ab. Put p = a2 and q = ab. Then
p2 = 1, still q2 = 0 and now pq = −qp. For the coproduct we find

∆(p) = p⊗ p and ∆(q) = p⊗ q + q ⊗ 1

and we see that ∆(B) ⊆ B ⊗ B. Still ε(p) = 1 and ε(q) = 0 while S(p) = p and S(q) =
iba−1 = −pq. Remark that q∗ = ba = −iab = −iq. The pair (B,∆) is a 4-dimensional
Hopf ∗-algebra. Again we have S4 = ι but not S2 = ι because S2(q) = S(pq) = pqp = −q.

Remark that we can endow this algebra with a different ∗-structure by letting q∗ = q

as well as p∗ = p. This comes down to multiplying q with a suitable number of modulus 1.
It is not essentially different.

The ∗-algebra A is not an operator algebra because we have a non-zero self-adjoint
element b with b2 = 0. Also the subalgebra B is not an operator algebra, essentially for the
same reason. As a matter of fact, a four-dimensional operator algebra has to be abelian
or equal to the algebra of two by two matrices. And in the latter case, we cannot have
a counit. Later we will see that S2 = ι is necessarily true if we have a finite-dimensional
Hopf ∗-algebra with an operator algebra, see Proposition 2.11.

Exercise 2.3. To get familiar with finite quantum groups it is instructive to take some
time to verify the above statements. Look also at the related examples in [VD4].

We see from these examples that, if we insist to have operator algebras, then not all
finite-dimensional Hopf ∗-algebras will be finite quantum groups.

Here, we agree on the following more restricted definition.

Definition 2.4. Let (A,∆) be a finite-dimensional Hopf ∗-algebra. We call it a finite
quantum group if the underlying ∗-algebra is an operator algebra.

This means that A has to be a direct sum of matrix algebras.

Remark 2.5. This is a first choice we have to make. It is a natural one. If we agree that
a finite group is also a locally compact group, we want that a finite quantum group is also
a locally compact quantum group. Then we need to assume that the underlying algebra
is an operator algebra.

This is not the end of the story about finite quantum groups as we will explain next.
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2.2. Finite groups and finite quantum groups. Clearly, we want any finite group
to be a finite quantum group. There are however, two ways to achieve this as we conclude
from the two following well-known results.

Proposition 2.6. Let G be a finite group. Consider the ∗-algebra C(G) of all complex
functions on G with pointwise operations. The product in G gives rise to a coproduct ∆
on C(G) defined by ∆(f)(p, q) = f(pq) where p, q ∈ G. The pair (C(G),∆) is a finite
quantum group.

Proposition 2.7. Let G be a finite group. Consider the group algebra CG and denote
by p 7→ λp the canonical embedding of G in CG. It is a ∗-algebra with λ∗p = λp−1 . There
is a coproduct ∆ on CG defined by ∆(λp) = λp ⊗ λp for all p ∈ G. The pair (CG,∆) is
again a finite quantum group.

Which one do we choose? There are different opinions about this.

Remark 2.8.
i) Drinfel′d developed quantum groups within a framework of deformations of univer-

sal enveloping algebras of Lie algebras. These are infinitesimal versions of group algebras.
From this point of view, it is more natural to associate the group algebra as in Proposi-
tion 2.7.

ii) On the other hand, within the theory of locally compact quantum groups, people
in general prefer to choose the pair (C(G),∆) as the finite quantum group associated to a
finite group. They see it as a quantization procedure in the following sense. One starts with
a space together with certain properties. One takes an (abelian) algebra of well-chosen
functions on this space with the induced properties. And then the algebra is deformed to
become a non-abelian one, while the properties on the deformed level are carried along.

Probably the best way to resolve this seems to be by strictly making a distinction
between the terms quantum group, the function algebra of a quantum group and the group
algebra of a quantum group.

In this note, we will follow the opinion that is most common among the operator
algebraists because after all, we plan to arrive at the notion of a locally compact quantum
group. That is typically an operator algebraic concept. But the reader should stay aware
of the choice made here. It is not always the choice made by the algebraists. And even
some operator algebraists in the past have considered the other possibility or have not
been consequent in their choices.

2.3. Integrals and cointegrals. We can illustrate the above ambiguity using the no-
tions of integrals and cointegrals.

The Haar measure on a finite group is the discrete measure and gives rise to the Haar
integral f 7→

∑
p f(p). It leads us to the notion of an integral on a Hopf algebra.

Definition 2.9. Let (A,∆) be a Hopf algebra. A non-zero linear functional ϕ on A is
called a left integral if (ι⊗ϕ)∆(a) = ϕ(a)1 for all a. A non-zero linear functional ψ on A
is called a right integral if (ψ ⊗ ι)∆(a) = ψ(a)1 for all a. Recall that we use ι for the
identity map.

There is also the notion of a cointegral in a Hopf algebra.
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Definition 2.10. Let (A,∆) be a Hopf algebra with counit ε. A non-zero element h in A
is called a left cointegral if ah = ε(a)h for all a in A. A non-zero element k in A is called
a right cointegral if ka = ε(a)k for all a.

The algebraists use a different terminology than the one above. They will use an
integral on in the first case and an integral in in the second case. This is clearly related
with the ambiguity in the choice of the finite quantum group associated to a group as we
discussed earlier. We claim that speaking about integrals and cointegrals as in Definitions
2.9 and 2.10 is better, given the choice of associating the pair (C(G),∆) to the group G

as we have done.
In the case of a finite quantum group (as we defined it), we get the following result.

Proposition 2.11. Let (A,∆) be a finite quantum group. The antipode satisfies S2 = ι.
The left integral ϕ is also right invariant and it is a trace. We have ϕ(1) 6= 0 and if we
normalize it so that ϕ(1) = 1, it is a positive linear functional.

For a simple proof of this result, we refer to Section 2 of [VD4].
In fact, if we have a finite-dimensional Hopf ∗-algebra with a positive integral, then

it is a finite quantum group. The reason is that integrals are automatically faithful and
if there is a faithful positive linear functional, the ∗-algebra is an operator algebra.

Example 2.12. Consider again the example with p and q and p2 = 1, q2 = 0 and
pq = −qp. Define ϕ on the algebra by ϕ(1) = ϕ(p) = ϕ(q) = 0, while ϕ(pq) = 1. This
is a left integral. If we put ψ(1) = ψ(p) = ψ(pq) = 0 while ψ(q) = 1, we get the right
integral. We see that ϕ 6= ψ and that ϕ(1) = ψ(1) = 0. This also shows that we do not
have a finite quantum group as defined in Definition 2.4.

The integrals cannot be positive as ϕ(1) = ψ(1) = 0. The integrals are not self-adjoint.
However, this is not a big deal. Indeed, given e.g. a left integral ϕ, we will have that ϕ,
defined by ϕ(a) = ϕ(a∗) for all a, will again be a left integral and so a scalar multiple of
the original ϕ. Hence, by multiplying ϕ with a well-chosen complex number, in this case
with i, we get a self-adjoint integral.

It also shows that for this example we cannot define another ∗-structure, compatible
with the coproduct, and so that the algebra is an operator algebra.

Remark 2.13. The property S2 = ι shows that the finite-dimensional case is not a good
model for the general theory. It is too restrictive. In fact, in finite dimensions, it is better
to look at the non-involutive Hopf algebras. The general locally compact quantum groups
have more common features with those.

An example as in Example 2.2 can be used to illustrate this statement. Indeed, in
infinite dimensions, it is possible to find locally compact quantum groups based on this
type of quantization of the ax+ b-group, see e.g. Remark 5.21 further in Section 5.

3. Discrete and compact quantum groups. The next questions are: What is a dis-
crete quantum group? What is a compact quantum group?

If we follow the spirit of quantization, a discrete quantum group should be a discrete
quantum space with a group-like structure while a compact quantum group is expected
to be a compact quantum space, again with an adapted group-like structure.
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In both cases, the quantum space should be an operator algebra of a certain kind and
the group-like structure a coproduct on this algebra with some extra conditions (like the
existence of a counit and an antipode). The notions should be such that, if a discrete
quantum group is also a compact one, it should be a finite quantum group (in the sense
of our Definition 2.4).

For historical reasons we begin the discussion with compact quantum groups.

3.1. Compact quantum groups. Preliminary considerations. We will see that
already several difficulties arise and again choices have to be made. This is what we
discuss first.

One aspect is easy. There is a wide consensus about the notion of a compact quantum
space. It is a unital C∗-algebra. For the correct notion of a coproduct on a C∗-algebra,
we get the inspiration from the group case.

Definition 3.1. Let G be a compact group. Denote by C(G) the C∗-algebra of continu-
ous complex functions on G. We identify C(G×G) with the C∗-tensor product A⊗A. The
product on G gives rise to a coproduct ∆ : A→ A⊗A by the formula ∆(f)(p, q) = f(pq)
where p, q ∈ G.

This naturally leads to the following notion.

Definition 3.2. A coproduct on a unital C∗-algebra A is a unital ∗-homomorphism
∆ : A→ A⊗A satisfying coassociativity (∆⊗ ι)∆ = (ι⊗∆)∆.

It is a common practice to use the minimal C∗-tensor product. This is motivated by
the examples. As before ι is the identity map. The maps ∆ ⊗ ι and ι ⊗ ∆, in the first
place defined on the algebraic tensor product A�A, stand here for the unique continuous
extensions to maps from the minimal C∗-tensor product A⊗A to the triple minimal tensor
product A⊗A⊗A.

The next question to answer is then the following. What kind of conditions do we
impose on the pair (A,∆) to call it a compact quantum group? In particular, what does
it mean here that the coproduct is group-like?

It would be most natural to require the existence of a suitable counit and antipode.
But this is less obvious than one might think. Indeed, here the difficulties already begin.

Remark 3.3.
i) In the motivating case of a compact group G as in Definition 3.1 the unit e in G

gives rise to a counit ε : C(G) → C given by ε(f) = f(e). This is a ∗-homomorphism.
However, from the examples we know, we cannot expect the existence of a counit that is an
everywhere defined bounded ∗-homomorphism from A to C. For the dual of C(G), where
the underlying algebra is the reduced group C∗-algebra C∗r (G), the obvious candidate for
the counit is (in general) not everywhere defined.

ii) Because of this problem, we have to be careful with formulas like (ι⊗ ε)∆(a) = a

and (ε⊗ ι)∆(a) = a for a in A. It is not immediately clear what they mean because we
have no standard procedure to extend the maps ι⊗ ε and ι⊗ ε to the completed tensor
product A⊗A.



FROM HOPF ALGEBRAS TO TOPOLOGICAL QUANTUM GROUPS 189

iii) Again in the group case, the inverse p 7→ p−1 gives rise to an antipode S : C(G)→
C(G) given by S(f)(p) = f(p−1) for all p ∈ G. In this case, it is a ∗-isomorphism. This
is even more problematic, for various reasons:

— From Hopf algebra theory, we know that we cannot expect the antipode to be a ho-
momorphism. It is an anti-homomorphism. This is not seen in the group case because
the algebra C(G) is abelian. There are also examples where the antipode is again not
everywhere defined and unbounded. Now the dual of C(G), the group algebra, is not
an example but one can look at the quantum SUq(2) of Woronowicz. Remark that
this problem was not existing for the earlier theory of Kac algebra.

— The antipode is not expected to be a ∗-map either but rather a bijective map that will
satisfy S(a)∗ = S−1(a∗) for elements a in the domain of the antipode. This behavior
with respect to the involution is rather natural as we know from Hopf ∗-algebra theory.

iv) Because of these problems, there is no way to get a straightforward interpretation
of the characterizing formulas

m(S ⊗ ι)∆(a) = ε(a)1 and m(ι⊗ S)∆(a) = ε(a)1

for all a in A. Here m stands for the multiplication map.

— The maps S⊗ ι and ι⊗S would only be defined on a subspace of the algebraic tensor
product A � A. They need not be continuous and so there is no standard way to
extend them to maps on the completed tensor product.

— The fact that the antipode is not a homomorphism, but an anti-homomorphism,
causes extra problems.

— Finally, whereas in the case of an abelian C∗-algebra A, the multiplication map m

is well-defined as a bounded map from A ⊗ A to A, this is no longer the case for
non-abelian C∗-algebras. One can see this by looking at the multiplication map on the
algebra Mn of n×n matrices over C. With increasing n, the norm of the multiplication
map tends to infinity.

One can say that the antipode is a fundamental, if not the problem for developing a theory
of locally compact quantum groups. Solutions exist but are not obvious and sometimes
rather annoying also.

Indeed, the problems with the antipode caused great difficulties in the development
of a suitable notion of a locally compact quantum group. They are greatly responsible
for the fact that it took so long before a good notion was found.

For Kac algebras, as developed in the 70s, independently by Kac and Vainerman on
the one hand and Enock and Schwartz on the other hand, the following choices were
made. We formulate them as part of the definition.

Definition 3.4 (Incomplete). A Kac algebra is a von Neumann algebra M with a co-
product ∆ : M → M ⊗M . The antipode, now called coinverse and denoted by κ, is a
∗-map with the property κ2 = ι. It is an anti-automorphism that flips the coproduct ∆.

For a precise definition of a Kac algebra we refer to Definition 6.2 in Section 6.
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The above is not the complete definition and so one should rather read it as a propo-
sition. But it contains enough information for the discussion here. The tensor product
M ⊗M considered is the von Neumann tensor product. We will comment later on the
use of von Neumann algebras instead of C∗-algebras (see Remark 6.6 in Section 6). Here
we focus on the properties of the antipode.

The following is an important remark.

Remark 3.5. The fact that the antipode is a ∗-anti-automorphism that flips the co-
product is by no means sufficient for characterizing the antipode. If e.g. the underlying
algebra is abelian and if moreover the coproduct is coabelian, the identity map will have
the same properties.

Within the theory of Kac algebras, this problem is overcome by a condition involving
the integrals. But this is far from a natural requirement for an object that needs to
replace the inverse in a group. Again see Definition 6.2. This solution to the problem is
not satisfactory.

3.2. Compact quantum groups. In the middle of the 80s, Woronowicz first developed
the theory of compact matrix pseudo-groups ([W2], 1987) and later compact quantum
groups ([W4], published in 1998 but developed earlier). Here is the definition.

Definition 3.6. Let A be a unital C∗-algebra and ∆ a coproduct on A. The pair (A,∆)
is called a compact quantum group if the sets ∆(A)(1⊗A) and ∆(A)(A⊗ 1) are dense in
A⊗A.

We use ∆(A)(1 ⊗ A) for the linear span of elements of the form ∆(a)(1 ⊗ b) where
a, b ∈ A. Similarly for ∆(A)(A⊗ 1).

Remark 3.7. We observe the following:

— There is no counit and no antipode in the definition.
— The density conditions reflect dual forms of the cancellation law in a group.
— And basically, the underlying idea is that a compact semigroup with cancellation is a

group. See [H1], also Proposition 3.2 in [MVD1].

Before continuing with the discussion, we formulate two of the main results in the
theory of compact quantum groups as defined above.

Theorem 3.8. Let (A,∆) be a compact quantum group. There is a unique (non-zero) pos-
itive linear functional ϕ, satisfying left and right invariance, normalized so that ϕ(1) = 1.

For the proof we refer to the original work by Woronowicz [W4]. See also [VD2] and
[MVD1] where the proof is given for a slightly more general case. Remark that with this
definition, the integral ϕ on the C∗-algebra is not necessarily faithful.

There is nice theory of (co)-representations which is very similar to the representation
theory of compact groups. The existence of the Haar state from the previous theorem is
essential to obtain these results. We can consider polynomial functions defined as matrix
elements of finite-dimensional representation. They form a ∗-subalgebra that we denote
as A. It has the following properties.
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Theorem 3.9. The algebra A is a dense ∗-subalgebra of A. It is invariant under the
coproduct and the pair (A,∆) is a Hopf ∗-algebra. It is the unique Hopf ∗-algebra that is
dense in (A,∆).

The results about corepresentations lead us naturally to the dual discrete quantum
group. We come back to this in a next subitem. First we focus on another result, formu-
lated below. We use it to discuss other approaches to compact quantum groups.

There are several. Among them, we have the work of Dijkhuizen and Koornwinder
([DK], 1994). Also Kirchberg presented an approach to compact quantum groups in
Oberwolfach (unpublished, 1994). They are essentially based on (or equivalent with)
the following property.

Proposition 3.10. Assume that (A,∆) is a Hopf ∗-algebra with a positive integral. The
GNS representation of A induced by this functional yields bounded operators. The norm
closure is a C∗-algebra A and A can be viewed as a ∗-subalgebra of A. The coproduct ∆
has a unique extension to A. The result is a compact quantum group (A,∆) in the sense
of Definition 3.6 of Woronowicz.

We will not consider these approaches further in these notes. We just learn from them
that it is possible to give simple characterizations of compact quantum groups within a
purely algebraic framework. This is a consequence of the two results Theorem 3.9 and
Proposition 3.10, formulated above.

3.3. Discrete quantum groups. As we mentioned before, discrete quantum groups
appear for the first time in the work of Podleś and Woronowicz ([PW], 1990). They study
discrete quantum groups as duals of compact quantum groups. In particular, properties
of discrete quantum groups are derived from properties of compact quantum groups.

A first independent approach to discrete quantum groups is found in the paper of
Effros and Ruan ([ER], 1994). Their approach is purely algebraic and the work is in
fact very similar to the work of Dijkhuizen and Koornwinder ([DK], 1994). From their
point of view, Effros and Ruan study discrete quantum groups, while Koornwinder and
Dijkhuizen think of their notion as compact quantum groups. The confusion illustrates
Remark 2.8 in Section 2. In the case of a finite group, we argued why the associated
quantum group should be the function algebra. The problem with the two approaches
here is precisely that properties of the algebra are formulated together with properties of
the dual for defining the notion. That is the real origin of the confusion.

In fact, the treatments of Effros and Ruan on the one hand and of Dijkhuizen and
Koornwinder on the other hand are close to viewing discrete quantum groups as duals of
compact quantum groups, as done by Podleś and Woronowicz. In our work on discrete
quantum groups ([VD3], 1996), obtained independently around the same time, we ap-
proach discrete quantum groups in a more consequent independent way. We first look for
a property of a discrete space that we can quantize so as to obtain a notion of a discrete
quantum space. We define an appropriate notion of a coproduct and finally we impose
conditions to make this coproduct group-like.

Before we give the definition found in [VD3] and comment on it, we need to recall the
notion of a multiplier Hopf ∗-algebra as found in [VD1].
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Definition 3.11. LetA be a non-degenerate ∗-algebra over the field of complex numbers.
Consider the tensor product A ⊗ A and its multiplier algebra M(A ⊗ A). A coproduct
∆ on A is a ∗-homomorphism from A to M(A⊗A) satisfying coassociativity. The pair
(A,∆) is a called a multiplier Hopf ∗-algebra if the linear maps T1 and T2, defined on
A⊗A by

T1(a⊗ b) = ∆(a)(1⊗ b) and T2(a⊗ b) = (a⊗ 1)∆(b),

have range in A⊗A and are bijective from this space to itself.

We refer to [VD1] for the notion of the multiplier algebra of a non-degenerate algebra,
as well as for the notion of coassociativity for coproducts with values in the multiplier
algebra.

Now we recall the definition of a discrete quantum group as given in [VD3].

Definition 3.12. Let A be a direct sum of finite-dimensional full matrix algebras over
the field of complex numbers. A coproduct is a non-degenerate ∗-homomorphism ∆
from A to the multiplier algebra M(A ⊗ A) of the tensor product A ⊗ A satisfying
coassociativity. The pair (A,∆) is called a discrete quantum group if it is a multiplier
Hopf ∗-algebra.

The direct sum here is in an algebraic sense, not a topological one. We add a couple
of important remarks about this definition.

Remark 3.13.
i) Strictly speaking, we should consider the C∗-algebraic direct sum A of these matrix

algebras, together with a coproduct ∆ from A to the multiplier algebra of the C∗-tensor
product A⊗A of A with itself.

ii) Then we can consider the maps T1 and T2 on the C∗-tensor product. They should
still be injective and now have dense range.

iii) It is easy to see that the (algebraic) direct sum and the C∗-algebraic direct sum
determine each other. The same is true for the conditions on the canonical maps T1
and T2 are the same. This is however slightly more difficult to show, but on the other
hand, intuitively clear.

iv) Although not completely in accordance with the main ideas formulated before,
we prefer the above definition because we have the notion of a multiplier Hopf algebra
available and well understood.

It is shown in [VD3] that integrals on discrete quantum groups exist and are unique.
This makes it possible to construct the dual. It turns out to be a compact quantum
group as discussed before. Moreover, the dual of this dual compact quantum group—now
defined as in the work of Podleś and Woronowicz—is the original discrete quantum group.

We want to emphasize that in [VD3], properties of discrete quantum groups are ob-
tained without the knowledge that they are the dual of a compact quantum group. The
same is of course true for the construction of the dual compact quantum group of a dis-
crete quantum group. In this sense, the treatment of discrete quantum groups in [VD3]
should be regarded as the right one of discrete quantum groups. We also claim that dis-
crete quantum groups are better understood if considered first in their own right, not
referring to the dual compact quantum groups.
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There are however different opinions about this.
The purely algebraic notions of a compact quantum group and a discrete quantum

group, as discussed above, fit very well into a more general class, the algebraic quantum
groups. They are discussed in a separate section for various reasons we will explain.

4. Algebraic quantum groups. In this note, we use the following terminology. We
will motivate our choice.
Definition 4.1. An algebraic quantum group is a multiplier Hopf ∗-algebra with positive
integrals.
Remark 4.2.

i) This notion should not be confused with another notion of algebraic quantum
groups. In [BG] the term is used for quantized coordinate rings of algebraic groups. The
idea in [BG] as well as here is that quantum groups are studied within an algebraic
framework. This in contrast with the locally compact quantum groups we discuss further
where we have operator algebraic concepts.

ii) Sometimes any multiplier Hopf algebra with integrals is called an algebraic quan-
tum group. But here it is quite natural to require the existence of an involution and
positive integrals. We will see later (see Proposition 4.13 below) that this implies that
the underlying algebra is an operator algebra. And of course, this is what we need on our
way to locally compact quantum groups.
4.1. Properties of algebraic quantum groups. Any compact quantum group is an
algebraic quantum group if we consider the underlying Hopf ∗-algebra with its integral.
We refer to Theorem 3.9 and Proposition 3.10. In fact, an algebraic quantum group is
a compact quantum group if and only if the algebra is unital. Similarly any discrete
quantum group is an algebraic quantum group if we consider the algebraic direct sum of
the building blocks. It has a cointegral. Conversely, an algebraic quantum group with a
cointegral is a discrete quantum group. These properties characterize the compact and
discrete quantum groups among the more general class of algebraic quantum groups.

The reader must be aware of the fact that the class of algebraic quantum groups,
although it contains compact and discrete quantum groups, and it is self-dual, is not
big enough to cover all locally compact quantum groups. If e.g. we think of a locally
compact group as a locally compact quantum group by associating the pair (C(G),∆) as
in Definition 3.1, then it is an algebraic quantum group if and only if G has a compact
open subgroup (see [LVD]).

Now we recall the main properties of algebraic quantum groups. This will help us to
move from algebraic quantum groups to locally compact quantum groups. First we have
the following result about integrals.
Proposition 4.3. If ϕ is a positive left integral, then ϕ ◦ S is a right integral and again
positive.

That ϕ is positive means ϕ(a∗a) ≥ 0 for all a ∈ A. The positivity of ϕ ◦ S is not a
trivial result because in general the antipode S is not a ∗-map. Integrals are unique up
to a scalar. We will in what follows choose a left integral ϕ and take ϕ ◦ S for the right
integral ψ.
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Proposition 4.4.

i) The integrals are faithful.
ii) There are automorphisms σϕ and σψ of A satisfying and characterized by

ϕ(ab) = ϕ(bσϕ(a)) and ψ(ab) = ψ(bσψ(a))

for all a, b ∈ A.
iii) There is an invertible group-like multiplier δ in M(A) satisfying and characterized by

ψ(a) = ϕ(aδ) for all a.

The automorphisms σϕ and σψ are called modular automorphisms and the property
is referred to as the KMS-condition (Kubo–Martin–Schwinger condition) in this context.
The terms find their origin in the operator algebra techniques used in mathematical
physics. If a finite-dimensional algebra has a faithful linear functional, these automor-
phisms automatically exist. And algebraists will use the term Nakayama automorphism
(see e.g. [Na]), in fact for the inverse of what we call the modular automorphism. Observe
however that for infinite-dimensional algebras, the existence of a faithful functional is not
sufficient to have modular automorphisms. So the above property ii) does not follow from
property i).

The element δ is called the modular element. Here the terminology comes from the
theory of locally compact groups. For a locally compact group, the modular function is
used to express the right Haar measure in terms of the left Haar measure. This is precisely
what appears in item iii) of the above proposition.

There are many relations between these objects and the counit and antipode, as well
as among these objects themselves. We refer to [VD5]. See also [VD1] for the general
theory of multiplier Hopf algebras.

Remark 4.5. In the non-involutive case, there is a scalar τ satisfying ϕ(S2(a)) = τϕ(a)
for all a. For multiplier Hopf ∗-algebras with positive integrals, it turns out that this
scalar is trivial. The problem was formulated in [KVD] and solved in Theorem 3.4 of
[DCVD]. It is the only feature where algebraic quantum groups lack the generality of the
structure of locally compact quantum groups where this scalar can be non-trivial. We
will come back to this later. See e.g. Subsection 5.4, in particular the remarks leading up
to Remark 5.21.

4.2. Duality for algebraic quantum groups. The dual of an algebraic quantum
group can be defined and turns out to be again an algebraic quantum group. More
precisely, we have the following duality.

Proposition 4.6. Let Â be the subspace of the linear dual space A′ of A of elements of
the form ϕ( · a) where a ∈ A. The coproduct on A yields a product on Â and if we define
ω∗ for ω ∈ Â by ω∗(a) = ω(S(a)∗), it is a ∗-algebra. The adjoint of the product defines
a coproduct ∆̂ on Â making it into a multiplier Hopf ∗-algebra. If we define ψ̂(ω) = ε(a)
when ω = ϕ( · a) we get a positive right integral on the dual Â. Hence (Â, ∆̂) is again an
algebraic quantum group.

The dual of (Â, ∆̂) is canonically identified with the original multiplier Hopf ∗-algebra.
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The duality of algebraic quantum groups includes the duality between compact and
discrete quantum groups. If e.g. for a compact quantum group, we consider the underlying
Hopf ∗-algebra as an algebraic quantum group, and if we take the dual in the sense of the
above proposition, we arrive at a discrete quantum group. And vice versa. Sometimes, it
is easier to deal with the duality between compact and discrete quantum groups when it
is considered as a special case of the duality of algebraic quantum groups.

Remark 4.7. By defining the dual as in the above proposition, we actually make a choice
that is different from what is common in the theory of locally compact quantum groups.
The point is that we define the coproduct on the dual by the formula

∆̂(ω)(a⊗ b) = ω(ab)

for ω ∈ Â and a, b ∈ A. This is most natural in Hopf algebra theory (and by extension also
for multiplier Hopf algebras) but in the operator algebra approach to quantum groups,
rather the flipped version of this coproduct is used. This has many consequences for the
concrete forms of the various formulas. One thing is that the antipode on the dual is
replaced by its inverse for this choice. Also the dual of the dual is no longer the same
as the original one. We have to repeat this procedure and we arrive at the original only
after taking the dual four times.

We will come back to this later and explain why people are using this convention. But
it should be said that it is one of the most annoying differences as many formulas get a
different appearance.

4.3. The Larson–Sweedler theorem. A source of inspiration. As we will see in
Section 6, the theory of locally compact quantum groups in the operator algebra setting
uses the existence of the Haar weights to develop the theory. This may seem somewhat
strange. However, a theorem by Larson and Sweedler [LS], that appeared already in 1969,
states, roughly speaking, that the existence of integrals implies the existence of the an-
tipode. This is precisely what happens also for locally compact quantum groups. For a
locally compact quantum group, the construction of the antipode is found in the paper by
Kustermans and Vaes [KV2]. The procedure is explained also in [VD8]. We will discuss
this in Section 6 because it is an important step in the theory.

Because of this, it is interesting to see what happens in the algebraic setting. After all,
the core of this note is to explain the road from Hopf algebras to locally compact quantum
groups. It helps to understand the treatment of locally compact quantum groups as given
e.g. in [VD8].

We formulate the result for multiplier Hopf algebras (see Theorem 2.3 in [VDW]).
We include a summary of the proof. In Section 6 we will see how these ideas are used to
develop the theory of locally compact quantum groups.

Theorem 4.8. Let A be an algebra with a non-degenerate product and assume that ∆ is
a full and regular comultiplication on A. If there exist a faithful left integral and a faithful
right integral, then (A,∆) is a regular multiplier Hopf algebra.

Recall that a coproduct on A is full if its legs are all of A. It is called regular if not only
the canonical maps T1 and T2 (see Definition 3.11) have range in A ⊗ A, but the same
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is true for the canonical maps associated with the opposite coproduct ζ∆ (where ζ is
the flip map). A multiplier Hopf algebra (A,∆) is regular if also (A, ζ∆) is a multiplier
Hopf algebra. Remember that regularity is automatic when A is a ∗-algebra and ∆ a
∗-homomorphism.

Proof. To prove the result, we have to show that the four canonical maps are bijective.
We only give the main ideas, for details we refer to [VDW].

Injectivity of the two canonical maps
T2 := a⊗ a′ 7→ (a⊗ 1)∆(a′) and T4 := a⊗ a′ 7→ ∆(a)(a′ ⊗ 1)

follows from the existence of a faithful left integral. To show this, multiply e.g. in the
first case with ∆(x) from the right and apply a left integral on the second leg. Similarly,
the injectivity of the other two maps

T1 := a⊗ a′ 7→ ∆(a)(1⊗ a′) and T3 := a⊗ a′ 7→ (1⊗ a)∆(a′)
is proven by using the faithful right integral.

For the surjectivity the idea is the following. Take elements a, a′, b in A. Then consider
(ι⊗ ι⊗ ϕ)

(
∆13(a)∆23(a′)(1⊗ b⊗ 1)

)
,

where ϕ is the left integral. If we apply the canonical map T1 to this element, we get
c⊗ b where c = (ι⊗ ϕ)(∆(a)(1⊗ a′)). Now we use the fullness of the coproduct and the
faithfulness of ϕ to obtain that all elements inA are a linear combination of elements like c.
This will eventually give the surjectivity of T1. Similarly for the three other maps, where in
one case, again the left integral is used and in the remaining two cases, the right integral.

Remark in passing that even for the case of finite-dimensional Hopf algebras, the
above result is slightly stronger than the original one in [LS] while the proof is simpler.

This result is not sufficient for our purposes. We know that the antipode exists when
the canonical maps are bijective from the general theory of multiplier Hopf algebras. But
in this case we want an explicit construction for the antipode.

Recall that for a multiplier Hopf algebra, the counit and the antipode are obtained
from the inverse of the canonical map T1 with the formulas

mT−1
1 (p⊗ q) = ε(p)q and (ε⊗ ι)T−1

1 (p⊗ q) = S(p)q
for all p, q ∈ A. As before, we use m for the multiplication map (see [VD1]). If we apply
this for the result obtained above, we recover the well-known formula

S
(
(ι⊗ ϕ)(∆(a)(1⊗ a′))

)
= (ι⊗ ϕ)((1⊗ a)∆(a′)) for all a, a′ ∈ A.

Now suppose that we try to use this formula to define the antipode. The first problem
then is to show that it is well-defined. Let us formulate it under the form of a proposition
below.

Proposition 4.9. Assume that we have finitely many elements ai, a′i such that∑
i

(ι⊗ ϕ)(∆(ai)(1⊗ a′i)) = 0.

Then ∑
i

(ι⊗ ϕ)((1⊗ ai)∆(a′i)) = 0.
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Proof. We have seen above that
(ι⊗ ϕ)(∆(ai)(1⊗ a′i))⊗ 1 = T1

(
(ι⊗ ι⊗ ϕ)∆13(ai)∆23(a′i)

)
for all i. Now we use the right integral to get the injectivity of T1 as before. Then∑

i

(ι⊗ ι⊗ ϕ)((∆13ai)∆23(a′i)) = 0

and if we apply ε on the first factor we get the desired result.

The faithfulness of the right integral is needed to have S well-defined while the faith-
fulness of the left integral is needed to have it everywhere defined. Similar arguments give
that S is also bijective.

There is still another characterization of the antipode. It is based on the following
result. Essentially, this appears already in the original paper on multiplier Hopf algebras,
see Lemmas 5.4 and 5.5 in [VD1].

Proposition 4.10. Let (A,∆) be a multiplier Hopf algebra. Given an element a ∈ A,
for all a′ ∈ A we write

a⊗ a′ =
∑
i

∆(pi)(1⊗ qi)

where pi, qi are in A. Then
(S(a)⊗ 1)∆(a′) =

∑
i

(1⊗ pi)∆(qi).

By the bijectivity of the canonical map T1 we know that we can write a⊗a′ as above.
Now we use the Sweedler notation to write
a⊗ a′ =

∑
(a)

a(1) ⊗ ε(a(2))a′ =
∑
(a)

a(1) ⊗ a(2)S(a(3))a′ =
∑
(a)

∆(a(1))(1⊗ S(a(2))a′).

Then ∑
(a)

(1⊗ a(1))∆(S(a(2))a′) =
∑
(a)

S(a(3))⊗ a(1)S(a(2))∆(a′)

=
∑
(a)

S(a(2) ⊗ ε(a(2)))∆(a′) = (S(a)⊗ 1)∆(a′).

One can use this formula to define the antipode. Again the integrals are needed to
show that it is well-defined and bijective. We leave the details to the reader and formulate
it as an exercise below. This is essentially the method used in [VD8]. We will say more
about this in a subitem on the treatment of locally compact quantum groups in Section 6.

For completeness, we refer also to [VVD1] where a similar method is used for C∗-Hopf
algebras.

Exercise 4.11.

i) Complete the proof of Theorem 4.8, using the ideas given above.
ii) Prove the existence and properties of the antipode, based on the result of Proposition

4.9.
iii) Finally, use the ideas from Proposition 4.10 to construct the antipode and again

obtain its properties with this method.
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Solving this exercise will help to understand what happens with the construction of
the antipode for locally compact quantum groups in Section 6.

4.4. The analytic structure of algebraic quantum groups. With algebraic quan-
tum groups, we get as close as possible to locally compact quantum groups within a
purely algebraic context. It is quite remarkable that there is an analytic structure. We
recall the following result (Theorem 3.5 from [DCVD]).

Theorem 4.12. Let (A,∆) be an algebraic quantum group. Then A is spanned by ele-
ments which are simultaneously eigenvectors for S2, σϕ, σψ and left and right multipli-
cation by δ. Moreover, the eigenvalues of these actions are all positive.

As a consequence, elements in A are all analytic for these actions. For example, there
exists a one-parameter group of ∗-automorphisms (σt)t∈R of A so that all elements of A
are analytic and have the property that σ−i = σϕ. Similarly, there is a one-parameter
group of ∗-automorphisms (τt)t∈R of A, again all elements of A are analytic and τ−i = S2.

Essentially, these results are already found in [Ku]. In that paper, they are obtained
via the passage from algebraic quantum groups to operator algebraic quantum groups. In
[DCVD], the results are proven directly, using purely algebraic methods. Along the way,
it is shown that the scaling constant ν, satisfying ϕ ◦S2 = νϕ when we have a multiplier
Hopf algebra with a left integral ϕ, is equal to 1 if it is an algebraic quantum group in the
sense of this note, i.e. if we have a multiplier Hopf ∗-algebra with a positive left integral.

At this level, we already have a polar decomposition of the antipode. Here it reads
as S = Rτ−i/2 where R is a ∗-anti-automorphism, called the unitary antipode. Remark
that again, implicitly, a choice is made. It complies with the notions used for locally
compact quantum groups in [KV2]. In the work of Masuda, Nakagami and Woronowicz
[MN, MNW] however a different choice for the scaling automorphism group is made and
consequently the polar decomposition of the antipode appears as S = Rτi/2.

4.5. From algebraic quantum groups to operator algebraic quantum groups.
Consider an algebraic quantum group (A,∆) and let ψ be a right integral. The GNS-space
associated with ψ is a Hilbert space, denoted by Hψ, together with an injective linear
map Λ : A → Hψ with dense range and such that 〈Λ(a),Λ(b)〉 = ψ(b∗a) for all a, b. For
the GNS-representation of A we find the following property.

Proposition 4.13. There is a non-degenerate ∗-representation πψ of A by bounded
operators on Hψ satisfying πψ(a)Λ(b) = Λ(ab) for all a, b.

Most of this is obvious, except for the fact that the map Λ(b) 7→ Λ(ab) is a bounded
map. The proof is not difficult but needs more than just the property of a positive linear
functional on the ∗-algebra A. It is indeed not difficult to find an example of a ∗-algebra
with a positive faithful linear functional on it so that the GNS representation is not by
bounded operators.

The proof needs the invariance of ψ and it is related with the following result. To
make the formulation somewhat easier, we let A act directly on the Hψ and so we write
aξ for πψ(a)ξ when ξ ∈ Hψ and a ∈ A.
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Proposition 4.14. There is a unitary operator V on Hψ ⊗Hψ satisfying

V (Λ(a)⊗ Λ(b)) = (Λ⊗ Λ)(∆(a)(1⊗ b))

for all a, b ∈ A.

Again the proof is easy. By definition the canonical map a ⊗ b 7→ ∆(a)(1 ⊗ b) is
a bijection from A ⊗ A to itself. So the map V is well-defined on the dense subspace
Λ(A) ⊗ Λ(A) of Hψ ⊗ Hψ. It is isometric because ψ is right invariant. Finally, because
the canonical map is a bijection, the isometric operator V will be a unitary.

Remark that we have a similar result for general locally compact quantum groups.
In that case, it is also easy to infer that this operator is isometric, but not that it is a
unitary. We will come back to this later. See Problem 6.11.

The unitary V is a multiplicative unitary and it is the basic ingredient that allows
us to pass from the algebraic quantum group to the associated locally compact quantum
group. This is done in [KVD] but a more recent approach to this procedure is found in a
forthcoming paper [VD9].

Remark 4.15.
i) It is also possible to use the left integral to produce a multiplicative unitary. For

this one considers the GNS space Hϕ and the map Λϕ : A → Hϕ associated with a left
integral ϕ. Then a unitary W is defined by its adjoint with the formula

W ∗(Λϕ(a)⊗ Λϕ(b) = (Λϕ ⊗ Λϕ)(∆(b)(a⊗ 1))

for a, b ∈ A.
ii) As the reader can notice, this definition is somewhat less natural. First there is the

map a⊗ b 7→ ∆(b)(a⊗1) that is different but derived from the basic canonical maps used
to define a multiplier Hopf algebras, see Definition 3.11. Secondly, the unitary is defined
in terms of the inverse of this map.

iii) These two different conventions are used in the theory. In their work on multi-
plicative unitaries [BS], Baaj and Skandalis prefer to use the one associated with the
right Haar measure. This is also the case e.g. in [SW].

iv) Moreover, in some cases W is used for the right regular representation instead of
for the left regular representation.

We will follow the convention as used in the work of Kustermans and Vaes [KV1,
KV2, KV3] and also in [VD8].

Again this is somewhat annoying, certainly because multiplicative unitaries play an
important role as an intermediate step towards locally compact quantum groups.

Indeed, before we start with the discussion of the general locally compact quantum
groups in Section 6, we include a larger section on multiplicative unitaries. We discuss
various aspects of these.

5. Multiplicative unitaries. As we saw in Proposition 4.14 at the end of the previous
section, multiplicative unitaries arise in a natural way when moving from the purely
algebraic setting to the operator algebraic approach to quantum groups. Indeed, they
play an important role in the theory of locally compact quantum groups as we will see in
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the next section. Therefore, it is of great importance to fully understand how they pop up
in the theory. The best way to do this, is to look first at the case of a finite-dimensional
Hopf ∗-algebra. Further it is interesting to consider algebraic quantum groups because
still for them it is possible to treat multiplicative unitaries in a purely algebraic manner.

5.1. Multiplicative unitaries in the algebraic setting. We begin with the case of a
finite-dimensional Hopf ∗-algebra A. Denote the dual by B and use the pairing notation.
So we write 〈a, b〉 for the value of a linear functional b on an element a in A. The tensor
product B ⊗ A is again a Hopf ∗-algebra. Its dual can be identified with A ⊗ B. We
consider the natural associated pairing of B ⊗A with A⊗B given by

〈b⊗ a, a′ ⊗ b′〉 = 〈a′, b〉〈a, b′〉
for a, a′ ∈ A and b, b′ ∈ B.

Because all spaces here are finite-dimensional, we can define V in B ⊗A by
〈V, a⊗ b〉 = 〈a, b〉 (5.1)

where a ∈ A and b ∈ B. We have the following properties.

Proposition 5.1. The element V is a unitary in the ∗-algebra B ⊗A. We have
(ε⊗ ι)V = 1 and (ι⊗ ε)V = 1 (5.2)

when we use ε for the counit on A as well as for the one on the dual B. For the antipode
we find

(S ⊗ ι)V = V ∗ and (ι⊗ S)V = V ∗ (5.3)
where again we use S both for the antipode on A and on B. Finally, using ∆ for the
coproduct on A as well as on B we find

(∆⊗ ι)V = V13V23 and (ι⊗∆)V = V12V13. (5.4)

We use the leg-numbering notation. We have V23 = 1⊗V in B⊗B⊗A and V12 = V ⊗1
in B⊗A⊗A. The element V13 belongs to B⊗B⊗A in the first equation and to B⊗A⊗A
in the second equation. It is obtained by inserting 1 in the middle factor, the identity
in B in the first case and in A for the second formula.

The element V is thought of as the duality. The formulas in Proposition 5.1 are nothing
more than reformulations of the properties of a pairing between Hopf ∗-algebras.

Exercise 5.2. Verify that the properties of a pairing of Hopf ∗algebras are reformulated
in terms of the duality V as in Proposition 5.1. To show that V is a unitary one uses the
basic properties of the antipode.

There is a similar result for algebraic quantum groups. In this case V is defined in
the multiplier algebra M(B ⊗ A) and the formulas stated in the proposition have to be
formulated in multiplier algebras.

Exercise 5.3.
i) Consider an algebraic quantum group A and denote also here its dual Â by B. First

one defines V as an element in the dual of A ⊗ B as above in equation (5.1). To show
that it actually is defined as an element in the multiplier algebra M(B⊗A), one first has
to extend the pairing. This has been done in various papers on multiplier Hopf algebras
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and algebraic quantum groups. See e.g. Section 3 in [DeVD] where this is done in detail
for algebraic quantum hypergroups.

ii) This is in fact the main issue. Once this is done, proving the formulas is similar as
for the case of finite-dimensional Hopf ∗-algebras.

iii) A new treatment will be found in [VD9].

In order to view V as a multiplicative unitary, we need the following result. We are
again in the finite-dimensional case and once more, we use the Sweedler notation in what
follows.

Proposition 5.4. Let A act on itself from the left by multiplication. We also let B act
from the left on A by the formula

(b, a) 7→ b . a :=
∑
(a)

〈a(2), b〉a(1).

Then B ⊗A acts from the left on A⊗A. Using . for all these different actions, we find

V . (a⊗ a′) = ∆(a)(1⊗ a′)

for all a, a′ ∈ A.

The proof is simple. If we write V =
∑
i vi ⊗ wi with vi ∈ B and wi ∈ A we find

V . (a⊗ a′) =
∑
i

vi . a⊗ wia′ =
∑
i,(a)

〈a(2), vi〉a(1) ⊗ wia′. (5.5)

Because V is the duality, we have
∑
i〈p, vi〉wi = p for all p ∈ A and hence the last

expression in (5.5) is equal to
∑

(a) a(1) ⊗ a(2)a
′. This proves the result.

Now we have V (a⊗ 1) = ∆(a)V and V (a⊗ 1)V ∗ = ∆(a) for all a ∈ A as equalities of
linear operators on A⊗A. These formulas however have also an interpretation using the
Heisenberg algebra. This is based on the following result.

Proposition 5.5. For a, a′ ∈ A and b ∈ B we have

ba =
∑

(a),(b)

〈a(2), b(1)〉a(1)b2.

Also this formula has to be viewed as an equation of linear maps on A.

Indeed, if also a′ ∈ A we find

b . (aa′) =
∑

(a),(a′)

〈a(2)a
′
(2), b〉a(1)a

′
(1)

=
∑

(a),(a′),(b)

〈a(2), b(1)〉〈a′(2), b(2)〉a(1)a
′
(1) =

∑
(a),(b)

〈a(2), b(1)〉a(1)(b(2) . a
′).

This leads us to the following definition.

Definition 5.6. The formula in the previous proposition is called the Heisenberg com-
mutation relation. The Heisenberg algebra is the algebra generated by A and B subject
to the Heisenberg commutation relations.

The terminology is justified because in the case of the group R and the locally compact
quantum group associated to it, the commutation rules in Proposition 5.5 will essentially



202 A. VAN DAELE

be the same as the Heisenberg commutation rules (or its Weyl equivalent forms) if inter-
preted in the right way.

We denote the Heisenberg algebra simply by AB. It has a faithful left action on A

induced by the actions of A and of B. That we have a left action is obvious. To show
that it is faithful requires an argument.

Remark 5.7. One should be careful with this terminology. Indeed, the Heisenberg alge-
bra in itself is trivial. For a finite-dimensional Hopf algebra it is a full matrix algebra.
And in the more general case of an algebraic quantum group, it is an infinite matrix
algebra. It only depends on the linear spaces A and B and their pairing, but not on the
algebra structures. See e.g. Proposition 6.6 in [DVDZ]. For this reason, it is better to
speak about the Heisenberg algebra AB as the algebra together with the embeddings of
A and of B in (the multiplier algebra of) AB.

Now the formula V (a⊗1)V ∗ = ∆(a) is valid in the algebra AB⊗A. And if we combine
this formula with the formulas involving the coproduct in Proposition 5.1 we naturally
arrive at the Pentagon equation

V12V13V23 = V23V12, (5.6)

a formula that holds here in the algebra B ⊗AB ⊗A.

All the above results are still valid for the duality of algebraic quantum groups (A,∆).
As we mentioned already, in that case the element V is an element in the multiplier
algebra M(B ⊗ A) where now B is the dual Â of A as in Proposition 4.6. Also the
Heisenberg commutation relations can be formulated and adapted forms of the results in
Propositions 5.4 and 5.5 are true. The Pentagon equation is now valid in the multiplier
algebra of B ⊗AB ⊗A. The results are present in [KVD] but a more direct and simpler
approach will appear in the forthcoming paper [VD9].

Remark 5.8.
i) If we take the other convention for defining the coproduct on the dual (by flipping

it), some of the formulas formulated in Proposition 5.1 will change. The formulas (5.2)
involving the counit will remain the same but the second formula of (5.3) will change
to (S−1 ⊗ ι)V = V ∗ because the antipode on B is replaced by its inverse. This means
e.g. that then we have (S ⊗ S)V = V . Also the first formula of (5.4) will be replaced
by (∆⊗ ι)V = V23V13. The Pentagon equation (5.6) remains unchanged. This is natural
because the definition of V does not depend on the definition of the coproduct on the
dual. Remark however that the Heisenberg commutation relations do change.

ii) One of the advantages of the operator algebraic convention over the algebraic one
is the formula (S ⊗ S)V = V . Also the multiplicative unitary for the dual has a nice
relation with the original.

iii) But still, this is a rather annoying difference if you approach locally compact
quantum groups from the Hopf algebra theory.

Exercise 5.9. Most of the previous statements are easy to verify in the case of a finite-
dimensional Hopf ∗-algebra. On the other hand, with a suitable reformulation, they are
also true for algebraic quantum groups. The arguments are essentially the same, but some
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care is needed. Indeed, generally speaking, if results are true for the Hopf algebras and
if the formulations make sense for multiplier Hopf algebras, they tend to also be true for
those. It only takes more careful work to translate the proofs. The above is an excellent
set of results to practice this.

We have seen how the canonical map a⊗a′ 7→ ∆(a)(1⊗a′) is related with the duality V
and that the Pentagon equation for V has an interpretation in the algebra B ⊗AB ⊗A
(or its multiplier algebra in the case of algebraic quantum groups). But of course, the
Pentagon equation satisfied by V can also be seen as a result of linear maps on A⊗A⊗A
with V now defined as the map a⊗ a′ 7→ ∆(a)(1⊗ a′) from A⊗A to itself.

However, in order to call it a unitary in that setting, we need the right integral and
its GNS space to lift V to a unitary operator as in Proposition 4.14. This is the more
common approach to multiplicative unitaries. We see this in the next subsection.

5.2. The origin of multiplicative unitaries. The first appearance of what is now
called a multiplicative unitary is the unitary operator V on L2(G × G) for a locally
compact group G. The Hilbert space is constructed using the right Haar measure on G

and the linear map is given by the formula

(V f)(p, q) = f(pq, q)

where f ∈ L2(G × G) and p, q ∈ G. This is indeed the analogue of the map a ⊗ a′ 7→
∆(a)(1 ⊗ a′) we considered before for (multiplier) Hopf algebras, now in terms of the
coproduct ∆ on C(G) as given in Definition 3.1 in the case of a compact group. In fact,
the unitary W on the Hilbert space L2(G × G) constructed with the left Haar measure
and defined by

(Wf)(p, q) = f(p, p−1q)

for f ∈ L2(G×G) and p, q ∈ G is a more familiar object. We recognize here the inverse
of the map a′ ⊗ a 7→ ∆(a)(a′ ⊗ 1) defined for (multiplier) Hopf algebras. See Proposition
4.14 and Remark 4.15.

Exercise 5.10. Verify these statements.

Remark 5.11.
i) The unitary V is thought of as the right regular representation whereas W is the

left regular representation from this point of view.
ii) In the literature, it is more common to work with the left Haar measure on a

group and consequently to use the unitary W as the multiplicative unitary for further
developing the results. On the other hand, we see that from the point of view of Hopf
algebra theory, it seems more natural to consider V .

iii) For this reason, some people will prefer to work with V instead. This is e.g. the
case in [BS], see item 1.2.2 in that paper.

iv) In the approach to locally compact quantum groups in the work of Kustermans
and Vaes [KV1, KV2], in the beginning of the development, the two are important. See
also the more recent treatment in [VD8].
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The unitary operator W has played an important role from the very beginning in
the search for a generalization of Pontryagin’s duality for non-abelian locally compact
groups. In that context, it is sometimes called the Kac–Takesaki operator. It also plays
an important role in the theory of Kac algebras, developed later.

Already as early as in 1979 an attempt was made to develop a theory starting from
a multiplicative unitary with some extra properties, see [VH]. The extra properties were
inspired by the results obtained for Kac algebras in the work of Enock and Schwartz [ES1,
ES2]. Remark that at that time, the term multiplicative unitary was not yet introduced.

This only happened in 1993 with the work of Baaj and Skandalis [BS]. In fact, their
work was available as a preprint (in different versions) several years before it actually
was published. The theory of multiplicative unitaries in [BS] is stronger than the earlier
one in [VH] and took advantage of the new developments at that time, with the theory
of compact quantum groups by Woronowicz.

Recently, another attempt was made to use multiplicative unitaries as a bases for
developing the theory ([MVD2], 2002). In a way, it is an update of the earlier work
of Vanheeswijck ([VH], 1979). This paper is only available on the arxiv. It was never
published, but it does contain some interesting results. We will say more about it later
in this section.

5.3. Regular multiplicative unitaries. Recall the definition of a multiplicative uni-
tary on Hilbert spaces (Definition 1.1 in [BS]).

Definition 5.12. Let H be a Hilbert space. Denote by H⊗H the Hilbert space tensor
product of H with itself. A unitary operator on H⊗H is called a multiplicative unitary
if it satisfies the Pentagon equation

V12V13V23 = V23V12.

We are now using the leg-numbering notation again. All the factors in this equation
are unitaries on the three-fold tensor product H⊗H⊗H.

By the left leg of V we mean the subspace of bounded operators on H of the form
(ι⊗ω)V where ω is an element in B(H)∗, the space of normal linear functionals on B(H).
The right leg is the space of operators of the form (ω ⊗ ι)V where again ω ∈ B(H)∗. It
is an immediate consequence of the Pentagon equation that these spaces are subalgebras
of B(H).

For reasons that will become clear later, we introduce the following notation.

Notation 5.13. We use A0 and Â0 for the right and the left leg of V respectively and
we denote their norm closures by A and Â. For the closures with respect to the σ-weak
operator topology, we write M and M̂ .

The spaces A and Â are normed algebras while the spaces M and M̂ are σ-weakly
closed subalgebras of B(H).

For a multiplicative unitary associated with a locally compact quantum group, these
algebras are the group algebras and the function algebras. They are obviously self-adjoint.
In general however, they are not self-adjoint. It is one of the main issues in the theory of
multiplicative unitaries to formulate conditions so that these spaces are self-adjoint.
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In the paper of Baaj and Skandalis, there is a result of this type based on the notion
of regularity of the multiplicative unitary. Regularity of V is formulated in terms of the
algebra C(V ), defined as the set of operators on H of the form (ι ⊗ ω)(ζV ) where we
use ζ here for the flip map on the tensor product H⊗H and with again ω any element of
B(H)∗. We refer to Definition 3.3 in [BS]. In Proposition 3.5 of [BS] it is shown that for
a regular multiplicative unitary, the algebras in Definition 5.12 are all self-adjoint. So A
and Â are C∗-algebras and M and M̂ are von Neumann algebras. It is also shown in [BS]
that V belongs to the multiplier algebra M(Â ⊗ A) of the minimal C∗-tensor product
Â⊗A (see Proposition 3.6 in [BS]). This implies that V also belongs to the von Neumann
algebra tensor product M̂ ⊗M , but that result is easier to obtain.

It is interesting to see the relation with the Heisenberg algebra as we discussed it in
the first subsection of this section. We formulate it as an example.

Example 5.14.
i) Let A be a finite-dimensional Hopf algebra. Consider the canonical map V on A⊗A

given as before by V (a⊗ a′) = ∆(a)(1⊗ a′). If ζ denotes the flip map on A⊗A then

(ζV )(a⊗ a′) = ζ
∑
(a)

a(1) ⊗ a(2)a
′ =

∑
(a)

a(2)a
′ ⊗ a(1)

and if we pair this with an element b of the dual in the second factor we get
((ι⊗ ω)(ζV ))a =

∑
(a)

a(2)a
′〈a(1), b〉

where ω = 〈 · a′, b〉. We can write the right hand side as (a / b)a′ where now

a / b :=
∑
(a)

a(2)〈a(1), b〉.

We immediately see that this is similar to the left action of the Heisenberg algebra we
had in Proposition 5.4. In fact, the antipode will convert this action precisely to what we
had in that proposition.

ii) We know that in the case of a finite-dimensional Hopf ∗-algebra the Heisenberg
algebra is the algebra all linear maps on A. And in the case of an algebraic quantum
group, it is an algebra of finite-rank operators build with the spaces from their pairing.
See a remark after Definition 5.6 earlier in this section.

iii) We see from this that the multiplicative unitary associated with an algebraic
quantum group as in Proposition 4.14 will automatically be regular.

Remark once more that various choices in the theory of multiplicative unitaries and
in particular in their relation with quantum groups are possible. We see this also here,
in the above example. This again is another annoyance due to the different approaches.

After the appearance of [BS], it was shown in [BSV] that there are locally compact
quantum groups with an associated multiplicative unitary that is not regular. This implied
the need for a notion beyond regularity, still sufficient to show that the associated algebras
are self-adjoint.

Also the antipode gets little attention in the paper of Baaj and Skandalis. Observe
that at the time they studied multiplicative unitaries, Kac algebras were known already
but locally compact quantum groups as defined more recently were not.
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There is another property of multiplicative unitaries that guarantees that the algebras
A and Â are C∗-algebras. It is found in the work of Woronowicz ([W3], (1996)) and
So ltan ([SW], 2007) on manageable multiplicative unitaries. We discuss this in the next
subsection.

5.4. Multiplicative unitaries and the antipode. From Proposition 5.1 in the alge-
braic context, it is clear what the relation is between the antipode and the multiplicative
unitary. The antipode on the left leg is determined by (S ⊗ ι)V = V ∗ while the antipode
on the right leg by (ι⊗S)V = V ∗. Hence we see that the antipode S on e.g. the right leg
of V will exist if and only if for any element ω ∈ B(H)∗ it is true that (ω ⊗ ι)V ∗ = 0 as
soon as (ω ⊗ ι)V = 0. This condition is necessary and allows us to define S on the right
leg of V by

S((ω ⊗ ι)V ) = (ω ⊗ ι)V ∗

for all ω ∈ B(H)∗. Similarly for the antipode on the left leg.
This however is of little use. But if we impose the requirement that not only these

maps exist, but also are well-behaved (in a sense we formulate in the definition below),
we get a useful property.

Definition 5.15. Let M be a von Neumann algebra. Assume that R is a linear in-
volutive ∗-anti-automorphism of M and that (τt)t∈R is a σ-weak operator continuous
one-parameter group of ∗-automorphisms of M . We define analytic extensions in an ap-
propriate way. We are particularly interested in the linear operator τ−i/2 on M . In general,
it is not everywhere defined, but a closed densely defined operator. We now look at the
composition R ◦ τ−i/2. It will again be a closed densely defined linear map which we will
denote by S. We say that S has a polar decomposition if it arises this way.

We will require that elements of the right leg of V belong to the domain D(S) of S
and that S((ω ⊗ ι)V ) = (ω ⊗ ι)V ∗ for all ω ∈ B(H)∗. This is now what we write as
(ι⊗ S)V = V ∗.

For an antipode S satisfying this property, it will automatically follow that S(x)∗
belongs to the domain of S for all x in that domain and that S(S(x)∗)∗ = x. We know
form Hopf ∗-algebra theory that this is a natural condition for the antipode. When S

has a polar decomposition as in Definition 5.15 above, we will have this property of the
antipode if and only if R and τt commute for all t. Therefore, it is natural to add this
condition above.

For convenience, we temporarily introduce the following notion.

Definition 5.16. Assume that V is a multiplicative unitary on H ⊗ H. Let Ŝ and S

be closed linear maps on B(H) that admit a polar decomposition as in Definition 5.15.
Assume that the right leg of V belongs to the domain of S and that (ι ⊗ S)V = V ∗.
Similarly assume that the left leg of V belongs to the domain of Ŝ and that (Ŝ⊗ι)V = V ∗.
Then we say that V is a multiplicative unitary with manageable antipodes.

It is proven by So ltan and Woronowicz in [SW] that a modular multiplicative unitary,
as in Definition 2.1 of [SW], is a multiplicative unitary with manageable antipodes as
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in the above definition, see Theorem 2.2 again in [SW]. This result generalizes the ear-
lier result by Woronowicz in [W3] for manageable multiplicative unitaries as defined in
Definition 1.2 of [W3].

Roughly speaking, the property of modularity for multiplicative unitary as given in
Definition 1.2 of [SW] is very close to the requirement that it has manageable antipodes
as in Definition 5.16 above.

It is also not so difficult to prove now the following result.

Proposition 5.17. Assume that V is a multiplicative unitary with manageable antipodes.
Then the norm and σ-weak operator closures of the legs are self-adjoint.

Proof. The idea to show this for the left leg is to use linear functionals ω in B(H)∗ that
are analytic for the one-parameter group (τt) that appears in the polar decomposition
of S. For such a linear functional ω, we have another element ω1 in B(H)∗ so that
ω1(x) = ω(τi/2(x)) for x in the domain of τi/2. Then by (ι⊗S)V = V ∗ a straightforward
calculation will give

((ι⊗ ω)V )∗ = (ι⊗ ω2)V

where ω2 is defined by ω2(x) = ω(R(x)∗) for all x ∈ B(H). We use the ∗-anti-automor-
phism R from the polar decomposition of S.

The result is found in Theorem 2.2 of [SW].

Remark 5.18.
i) As you can see, there is a fundamental difference in the two approaches. The condi-

tion of regularity in the work of Baaj and Skandalis [BS] is of a different nature than the
requirement of having manageable antipodes as in the work of So ltan and Woronowicz
[W3, SW] described above.

ii) The example in [BSV] shows that regularity is too restrictive for dealing with
locally compact quantum groups. One needs the other approach for that.

There is still another approach that is worthwhile mentioning. It builds further on the
ideas of the earlier paper [VH], but now taken into account the recent progress and the
new knowledge. It is found in the non-published work, available on the Arxiv ([MVD2],
2002).

The notion defined in that paper is the following. The condition in [MVD2] is for-
mulated in terms of the right regular representation W but we will translate it to the
framework we are using here.

Definition 5.19. Let V be a multiplicative unitary on H⊗H and let A0 and Â0 be the
right and left leg of V as in Definition 5.12. Then V is called trim if the set A0(Â0)∗ is
σ-weakly dense in B(H).

Remark that one can show that the σ-weak closure of A0(Â0)∗ is always a subalgebra
of B(H). See Proposition 3.1 and Definition 3.2 in [MVD2]. The main definition is now
Definition 3.4 in [MVD2]. With the notation used here, it reads as follows.

Definition 5.20. Let V be a multiplicative unitary and assume that it is trim as in
the above definition. Assume moreover that there are involutive, self-adjoint anti-linear
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operators J and Ĵ on H such that V ∗ = (J ⊗ Ĵ)V (J ⊗ Ĵ) and

JMJ ⊆M ′ and ĴM̂ Ĵ ⊆ M̂ ′.

Here we use M and M̂ for the von Neumann algebras generated by the legs A0 and Â0
respectively.

Then the triple (V, J, Ĵ) is called a quantum frame on the Hilbert space H.

Also for quantum frames, one can show that the σ-weak closures of the spaces A0
and Â0 are self-adjoint (see Theorem 3.10 in [MVD2]). Then the notation for M and M̂

used in Definition 5.20 is compatible with the one used earlier here in Definition 5.12.
For a multiplicative unitary of a quantum frame, the antipodes themselves are not

obtained, but the unitary antipodes R and R̂ do exist. They are implemented by the
involutions J and Ĵ . For a multiplicative unitary with manageable antipodes, we do have
the unitary antipode R and R̂ by definition, but they are not necessarily implemented
by elements J and Ĵ . This is the extra condition we then have for quantum frames.

In Proposition 3.13 of [MVD2] we find the relation with the Heisenberg algebra,
while in Proposition 3.14 of [MVD2] it is shown that there is a complex number λ with
modulus 1 satisfying JĴ = λĴJ .

Also observe that any locally compact quantum group gives rise to a quantum frame
(see Proposition 3.16 in [MVD2]). The factor λ is related with the scaling constant, see
Remark 3.17 in [MVD2]. It is somewhat remarkable that the scaling constant already
appears in the theory of quantum frames even though there are no Haar weights around.

In Section 4 of [MVD2], the whole theory is well-illustrated with one of the highly
non-trivial examples obtained by Woronowicz, namely the quantum az + b-group [W5].
This is an example where the scaling constant is non-trivial.

Remark 5.21. The quantum az + b-group is one of the many examples of this kind
obtained by Woronowicz. The general procedure is to construct the multiplicative unitary
and prove its properties. In order to fit these examples in the theory of locally compact
quantum groups however, one needs to have the Haar weights. Although there is no
general theory where the Haar weights are constructed from the axioms, in most of these
examples it is fairly obvious what the Haar weights have to be. It is also not a problem
to show that they are appropriate weights. The main difficulty lies in proving invariance.
The reason why this is not easy has to do with the fact that the algebras are defined
by a dense subalgebra and that invariance of the weight on this dense subalgebra is not
sufficient to have over all invariance. Recall that weights can be different even when they
agree on a dense subalgebra. For some of these examples, the Haar weights are found
in [VD6]. In that paper, a general technique is described for proving invariance in such
cases. We come back to this in the next subsection.

5.5. From multiplicative unitaries to locally compact quantum groups. The
papers by Woronowicz and So ltan [W3, SW] bear the title From multiplicative unitaries
to quantum groups. This is somewhat misleading. It all depends on what you consider to
be a quantum group. And as we have seen already, the notion is used for many different
things. Since in this paper, we are aiming at locally compact quantum groups, we insist
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on having the analogues of the Haar measures. Therefore we now address the problem of
finding the Haar weights from the properties of a multiplicative unitary.

In [VD6] we have used a procedure to obtain the Haar weights for the quantum
groups associated with some of the multiplicative unitaries as obtained by Woronowicz.
The underlying idea is very simple and we explain it below in the finite-dimensional
setting.

Proposition 5.22. Take a finite-dimensional Hopf ∗-algebra A, consider its dual B and
let V be the duality as in (5.1) in the beginning of this section. We have the equality
∆(a) = V (a ⊗ 1)V ∗ valid in AB ⊗ A where AB is the Heisenberg algebra. Now assume
that ψ is a linear functional on the Heisenberg algebra satisfying the KMS property

ψ(bx) = ψ(xS2(b))
for all b ∈ B and x ∈ AB. Then the restriction of ψ to A is right invariant.

Proof. We use a Sweedler type notation for one of the copies of V in the formulas below.
For any a in A we find

(ψ ⊗ ι)(∆(a)) = (ψ ⊗ ι)(V (a⊗ 1)V ∗)
= (ψ ⊗ ι)((v(1)a⊗ v(2))V ∗) = (ψ ⊗ ι)(a⊗ v(2))V ∗(S2(v(1))⊗ 1).

Now, since V ∗ = (S ⊗ ι)V (two times) and S is an anti-homomorphism, we get
(ψ ⊗ ι)(∆(a)) = (ψ ⊗ ι)

(
(a⊗ 1)(S ⊗ ι)((S(v(1))⊗ v(2))V )

)
= (ψ ⊗ ι)

(
(a⊗ 1)(S ⊗ ι)(V ∗V )

)
= ψ(a)1.

This completes the proof.

Before we continue, let us make a couple of remarks about this result.

Remark 5.23.
i) We have mentioned before that in finite dimensions, it is better to consider the

non-involutive case. The above property and its proof work equally well for that case. We
just have to replace V ∗ by V −1. It is in fact the underlying idea of the existence proof of
integrals on finite-dimensional Hopf algebras as given in [VD4].

ii) One has to be a little more careful though. In principle it could happen that the
restriction of ψ to A is trivially zero. This however can be overcome if we replace ψ by
ψ( · y) where y is an element in the Heisenberg algebra that commutes with all elements
of B. Such a functional will have the same KMS property. Remark that the Heisenberg
algebra is in fact a full matrix algebra here. So it is no problem to find enough such
elements.

iii) Assume that ψ0 is a right integral on A. By the uniqueness of integrals, we will
have a linear functional ρ on the commutant of B such that ψ(ay) = ψ0(a)ρ(y) for all
a ∈ A and y ∈ B. Therefore one can find a right integral for an element y such that
ρ(y) 6= 0.

iv) This property is intimately related with the result in Proposition 1.10 in [VVD2].

We finally formulate the following important problem. For the precise definitions of
Haar weights however, we need to refer to the next section. But we have included the
problem here already because after all, it is a problem about multiplicative unitaries.
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Problem 5.24. Assume that V is a multiplicative unitary. Assume that it has manage-
able antipodes. The σ-weak closures of the legs are von Neumann algebras M and M̂ .
They carry coproducts. On M we have ∆(x) = V (x⊗1)V ∗. Formulate conditions so that
it is possible to prove the existence of the Haar weights. Remark that it is sufficient to
have either the left or the right Haar weights as we have the unitary antipode R from
the polar decomposition S on M .

6. Locally compact quantum groups. We begin the discussion in this section with
formulating the definition of a locally compact quantum group in the setting of von
Neumann algebras as it is given in the work of Kustermans and Vaes [KV3].

Definition 6.1. Let M be a von Neumann algebra and ∆ a coproduct on M . The pair
(M,∆) is called a locally compact quantum group if there exists a left and a right Haar
weight.

A coproduct ∆ on the von Neumann algebra M is by definition a normal unital
∗-homomorphism from M to the von Neumann algebra tensor product M⊗M , satisfying
coassociativity (∆⊗ ι)∆ = (ι⊗∆)∆. A left Haar weight is a faithful normal semi-finite
weight on the von Neumann algebra that is left invariant and a right Haar weight is a
faithful normal semi-finite weight that is right invariant. A weight ϕ is called left invariant
if ϕ((ω ⊗ ι)∆(x)) = ω(1)ϕ(x) for all normal positive linear functionals ω on M and all
positive elements x in M with the property that ϕ(x) <∞. Similarly for right invariance
of a weight. We refer to [KV3] for details, see also [VD8].

The definition is found in [KV3] as well as in [VD8]. The advantage of the treatment
in [VD8] over [KV3] is that in the first paper, the theory is developed without reference
to the original C∗-approach. We will also discuss this later in the present section.

The Haar weights are unique (up to a scalar) if they exist. For this reason, it is not
necessary to include the symbols for the weights in the definition. This is what we have
done also for Hopf algebras and multiplier Hopf algebras (cf. Definitions 2.1 and 3.11).

For references on von Neumann algebras in general we refer to the item Basic refer-
ences in the introduction. For weights on von Neumann algebras and the related theory
of Hilbert algebras, we refer to Chapters VI and VII in the book of Takesaki [Tk2].

We will explain further in this section why we start with the definition in the frame-
work of von Neumann algebras and how to develop the theory from this. See Remarks
6.6 and 6.12. We first turn our attention to Kac algebras.

6.1. A special case: Kac algebras. Before we continue, let us compare this notion
with the one of a Kac algebra (see Definition 2.2.5 in [ES2]). We use a slightly different
terminology together with notation compatible with the ones used elsewhere in this note.

Definition 6.2. A Kac algebra is a pair (M,∆) of a von Neumann algebra with a
coproduct. It is assumed that there is a unitary antipode R, defined here as an involutive
∗-anti-automorphism that flips the coproduct. Furthermore there is a left Haar weight,
defined as a faithful normal semi-finite weight ϕ on the von Neumann algebra satisfying

(ι⊗ ϕ)((1⊗ y∗)∆(x)) = R((ι⊗ ϕ)(∆(y∗)(1⊗ x))) (6.1)
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for all x, y ∈ M satisfying ϕ(x∗x) < ∞ and ϕ(y∗y) < ∞. For this formula to have a
meaning, we need that ϕ((ω ⊗ ι)∆(x)) <∞ whenever ω is a positive element in M∗ and
x is a positive element in M satisfying ϕ(x) <∞. Finally it is assumed that Rσϕt = σϕ−tR

for all t ∈ R where σϕ is the modular automorphism group of ϕ.

Let us first comment on the last condition.

Remark 6.3.
i) Because the unitary antipode R flips the coproduct, the weight ψ, defined as the

composition ϕ ◦ R, is a right Haar weight when ϕ is a left Haar weight. The modular
automorphism groups are then related by the equation R(σϕt (x)) = σψ−t(R(x)) for all t
in R and all x in the von Neumann algebra. Therefore, the last condition implies that
the modular automorphism groups of the left and the right Haar weight coincide.

ii) The modular automorphism groups are also related by means of the modular
element δ that appears as the Radon–Nikodym derivative of the right Haar weight with
respect to the left Haar weight. The relation is σψt (x) = δitσϕt (x)δ−it for all t and all x.
So for a Kac algebra, the modular element is central.

If G is a locally compact group, both the function algebra L∞(G) and the group von
Neumann algebra VN(G) are Kac algebras. The last condition is obviously fulfilled in
both cases. The function algebra is abelian so that the modular automorphism groups
are trivial and the modular element is central. The group algebra is coabelian so that the
left and the right Haar weights are the same. Hence their modular automorphism groups
coincide and the modular element is trivial.

Also any finite quantum group is a Kac algebra because not only S2 = ι, but also
the left and right integrals coincide. In fact the integral is a trace so that the modular
automorphism group is trivial. See Proposition 2.11.

Any Kac algebra is a locally compact quantum group as in Definition 6.1 with the
extra property that the antipode is a ∗-map. The converse is probably not true because
of the above remarks.

Problem 6.4. Find examples of locally compact quantum groups with an involutive
antipode that are not Kac algebras.

6.2. Two equivalent approaches to locally compact quantum groups. There is
also a definition in the C∗-algebraic setting, but that is slightly more complicated. It is
found in the original work of Kustermans and Vaes [KV1, KV2].

Definition 6.5. Let A be a C∗-algebra and ∆ a coproduct on A. Assume that the linear
spans of elements of the form

(ω ⊗ ι)∆(a) and (ι⊗ ω)∆(a),

where a ∈ A and ω ∈ A∗, are both dense subsets of A. If there exist a faithful left and a
faithful right Haar weight, the pair (A,∆) is called a locally compact quantum group.

Here a coproduct is a non-degenerate ∗-homomorphism from A to the multiplier
algebra M(A⊗A) of the minimal C∗-tensor product A⊗A. The Haar weights are lower
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semi-continuous densely defined KMS-weights. A left Haar weight is such a weight ϕ that
is left invariance. This means that

ϕ((ω ⊗ ι)∆(a)) = ω(1)ϕ(a)

for all positive elements a in A such that ϕ(a) <∞ and all positive ω in A∗.
Observe the presence of these density conditions as part of the axioms. They do not

appear in the von Neumann algebraic definition. Similar properties are true also in that
case, but they follow from the other axioms. The requirement of having KMS-weights
can be weakened, but in the end, it turns out that the Haar weights have this property.

There is a standard procedure to associate a C∗-algebraic locally compact quantum
group to a von Neumann algebraic one and vice versa. The two procedures are inverses
of each other in the sense that, if you apply them one after the other, you get back to
the original locally compact quantum group.

It is relatively easy to pass from a C∗-algebraic locally compact quantum group to
a von Neumann algebraic one, without first developing the full theory in that setting.
This has been argued in an appendix of [VD8]. One of the main results achieving this is
Proposition A.6 of that appendix. The indications given for the proof of that proposition
are not completely correct. It is the intention to give a better and more complete argument
in a newer version of these notes [VD10]. This is related with Problem 6.11 formulated
further.

The other direction is more involved. Given a von Neumann algebraic locally compact
quantum group (M,∆) as in Definition 6.1, it is relatively easy to get the associated
C∗-algebra A. It is the norm closure of the right leg of the multiplicative unitary V

constructed from the right Haar weight on M . It requires some work to show that this
norm closure is self-adjoint. The antipodes must be constructed and one has to show that
they are manageable as in Definition 5.16. Then one can use Proposition 5.17. The next
step is to show that the restriction of the coproduct to A is indeed a coproduct on the
C∗-algebra. Finally it is needed that the restrictions to A of the original Haar weights on
the von Neumann algebra M are still densely defined. Some aspects are standard but not
all of them. The results are found in [KV3], see also a remark in Appendix A of [VD8].
In [VD10] we plan to cover this aspect in detail.

Because of this, it is correct to say that the two approaches to locally compact quan-
tum groups yield the same objects.

Remark 6.6.
i) The development of the theory is easier in the von Neumann algebraic framework.

There are several reasons for this. We collect them here.

— The notion of a coproduct on a von Neumann algebra is easier than the one on a
C∗-algebra.

— The theory of weights on von Neumann algebras is easier and better documented in
the literature.

— The set of axioms in Definition 6.1 is simpler than in Definition 6.5.
— When using von Neumann algebras, one can use Hilbert space techniques.
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ii) On the other hand, it is more natural to formulate the notion with C∗-algebras.
Indeed, we think of a C∗-algebra as a locally compact quantum space while we use von
Neumann algebras for quantized measure spaces.

The earlier theory of Kac algebras is a von Neumann algebraic one. This inspired
Masuda and Nakagami to develop a theory of locally compact quantum groups with
von Neumann algebras in [MN] (1994). On the other hand, the quantum SUq(2) as
introduced by Woronowicz in [W1] (1987), is formulated in C∗-algebraic terms. The
same is true for the compact quantum groups in [W2, W4]. Following the consensus here,
the search for a good theory of locally compact quantum groups was further done in the
C∗-algebraic setting. This led to the work of Masuda, Nakagami and Woronowicz [MNW]
that appeared in 2003 (but with preliminary versions available many years before that)
and simultaneously the work of Kustermans and Vaes [KV1, KV2] (in 1999 and 2000).

Later, Kustermans and Vaes also treated their locally compact quantum groups in
the von Neumann algebraic framework ([KV3], 2003). The approach heavily depends
on their original paper [KV2] where the theory is developed in the C∗-algebraic setting.
This is different in [VD8] where the von Neumann algebraic approach is obtained without
reference to the C∗-algebraic one of [KV2].

Before we continue, we need to say a few more words about the comparison of the
work by Masuda, Nakagami and Woronowicz [MN, MNW] on the one hand and that of
Kustermans and Vaes [KV2, KV3] on the other hand.

Remark 6.7. The main difference between the two approaches is that in the first work,
the antipode with its polar decomposition is assumed while in the second one, it is proven
to exist from the axioms. To do this, it is necessary to assume both the existence of a left
and a right Haar weight while in the first work, only a left Haar weight is used. There
the right Haar weight is obtained by composing the left Haar weight with the unitary
antipode that appears in the polar decomposition of the antipode.

It is now generally accepted that the theory of Kustermans and Vaes is stronger.
Indeed, the right Haar weight is easy to obtain from the existence of the antipode with
its polar decomposition.

6.3. The theory of locally compact quantum groups. We will finally discuss some
aspects of the treatment of locally compact quantum groups in the von Neumann alge-
braic framework. In particular, we will show how the knowledge of the algebraic quantum
groups, recalled in Section 4, inspires this treatment. We also will formulate some prob-
lems on the way.

We will not cover other aspects of the theory here. They are found in the literature.
Moreover, once the antipode is obtained, much of the other steps are now more or less
standard. The approach in [VD8] is most adapted to the discussion here. We also plan a
new expanded version of these notes (cf. [VD10]).

The starting point is a von Neumann algebraic quantum group as in Definition 6.1.
We denote a left Haar weight with ϕ and a right Haar weight with ψ.
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As should be clear from the remarks made earlier, the crucial step is the construction
of the antipode. In our approach, the underlying idea is taken from Proposition 4.10,
characterizing the antipode in a multiplier Hopf algebra. We reformulate it for a Hopf
∗-algebra (A,∆) where the property reads as follows.

Proposition 6.8. If a ∈ A we can write a⊗ 1 =
∑
i ∆(pi)(1⊗ q∗i ) and then we have

S(a)∗ ⊗ 1 =
∑
i

∆(qi)(1⊗ p∗i ).

It is possible to formulate the result for multiplier Hopf ∗-algebras if we allow some
kind of approximation of a⊗ 1 by elements of the type

∑
i ∆(pi)(1⊗ q∗i ). Then we get an

approximation of S(a)∗ ⊗ 1.
We can illustrate the same phenomenon in the case of a locally compact group G where

we take the ∗-algebra Cc(G) of continuous complex functions with compact support.
Indeed, if f ∈ Cc(G) we can approximate

f(r) = f(rs · s−1) '
∑
i

pi(rs)qi(s−1),

and we get
f(r−1) = f(s · (rs)−1) =

∑
i

qi(rs)pi(s).

This idea is now used in [VD8] to obtain the following candidate for the antipode
on the von Neumann algebra M (see Definition 1.2 in [VD8]). We assume that the von
Neumann algebra acts on the Hilbert space H.

Definition 6.9. For an element x ∈M we say that x ∈ D if there is an element x1 ∈M
satisfying the following condition. For all ε > 0 and vectors ξ1, ξ2, . . . , ξn, η1, η2, . . . , ηn
in H, there exist elements p1, p2, . . . , pm, q1, q2, . . . , qm in M such that∥∥∥xξk ⊗ ηk −∑

j

∆(pj)(ξk ⊗ q∗j ηk)
∥∥∥ < ε (6.2)∥∥∥x1ξk ⊗ ηk −

∑
j

∆(qj)(ξk ⊗ p∗jηk)
∥∥∥ < ε (6.3)

for all k.

In order to use this to obtain the antipode we first need to prove that the element
x1 is unique if it exists. Then we can define S on D by S(x)∗ = x1. Next we must show
there exist elements x with this property and that in fact the set D is dense in M .

We know from the algebraic theory discussed in Section 4 that we expect to need the
right Haar weight for the first problem. Recall that the canonical map p⊗q 7→ ∆(p)(1⊗q)
is shown to be injective using the faithful right integral. We need a similar result here to
get uniqueness of the element x1 if it exists. On the other hand, we also know from the
algebraic theory that it is expected to get enough elements in D by the existence of the
left integral. See the discussion in Subsection 4.3 on the Larson–Sweedler theorem.

It is not hard to imagine that the case here is far more complicated than in the
algebraic setting, mainly due to the fact that we are working with approximations.
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It can be done to define the antipode in this way, but it turns out to be better to first
define the map x 7→ S(x)∗ on the Hilbert space level.

The idea is as follows. Consider the GNS Hilbert space Hψ constructed from the
right Haar weight. The canonical map, defined from the subset Nψ of elements x in M

satisfying ψ(x∗x) <∞ to the Hilbert space is denoted by Λψ. We now define the canonical
map T1 on the Hilbert space level with the formula inspired by the one in Proposition
4.14 in the case of an algebraic quantum group. It yields an isometric linear map V from
the Hilbert space tensor product Hψ ⊗Hψ to itself. The map V turns out to be unitary,
but this is not immediately clear. We refer to Problem 6.11. Still one can now define an
operator K with domain D(K) on Hψ, along the lines of Definition 6.9.

Definition 6.10. Let ξ ∈ Hψ. We say that ξ ∈ D(K) if there is a vector ξ1 ∈ Hψ
satisfying the following condition: For all ε > 0 and vectors η1, η2, . . . , ηn in Hψ, there
exist elements p1, p2, . . . , pm, q1, q2, . . . , qm in Nψ such that∥∥∥ξ ⊗ ηk − V (∑

j

Λψ(pj)⊗ q∗j ηk
)∥∥∥ < ε (6.4)∥∥∥ξ1 ⊗ ηk − V

(∑
j

Λψ(qj)⊗ p∗jηk
)∥∥∥ < ε (6.5)

for all k.

It is now shown that the vector ξ1 is unique if it exists in Lemma 1.7 of [VD8] by
techniques well-established in the theory of normal weights on von Neumann algebra.
Just observe that, as expected, the right Haar weight is used here.

This allows us to define the linear operator K on D(K) by Kξ = ξ1. It is immediately
clear from the definition that it is a closed conjugate linear involutive operator. For
the density of the domain D(K), again as expected, the left Haar weight is used. See
Lemma 1.12 of [VD7] and compare the proof of that lemma with the arguments used in
Subsection 4.3 on the Larson–Sweedler theorem. Remark in passing that the density of
the domain of K is proven simultaneously with the argument that the operator V is not
just isometric, but unitary.

Before we continue, we formulate the following related problem.

Problem 6.11. Given the right invariant Haar weight ψ on the pair (M,∆), it uses
standard techniques to define the canonical map V on the Hilbert space Hψ ⊗ Hψ and
to show that it is an isometry. However, it is not trivial to show that it is actually a
unitary. This is easy in the algebraic setting using the surjectivity of the canonical map
a⊗ a′ 7→ ∆(a)(1⊗ a′). But it is not so in the topological setting. In the original work of
Kustermans and Vaes [KV2] it is ‘Kusterman’s trick’ that does the job (see the remarks
above). This is also how it is done in [VD8]. It would be nice to find a more direct
and more natural way to prove this property. A good solution here is also important
for the passage from C∗-algebras to von Neumann algebra (see [VD10]). At a workshop
in Marseille some years ago, an elegant solution to this problem has been presented by
P. Kasprzak, but there are no traces of his proof unfortunately.
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Once it is shown that the operator K is well and densely defined, we can proceed to
complete the construction of the antipode. It is in fact done by redefining the domain
of S. We say that x ∈ D(S) if ξ ∈ D(K) implies that xξ ∈ D(K) and K(xξ) = S(x)∗Kξ.
The idea behind this definition is that S is an anti-homomorphism so that S(xy)∗ =
S(x)∗S(y)∗ and if we look at this equation on the Hilbert space level where K stands for
x 7→ S(x)∗, this formula reads as K(xξ) = S(x)∗K(ξ). It is not clear if this new definition
of the domain D(S) is the same as the one D, defined earlier in Definition 6.9 but this
is not important for the further development of the antipode and the remaining of the
theory.

By defining the antipode via the operator K, we can take advantage of the polar
decomposition of the closed linear operator K to get the polar decomposition of the
antipode. Further Hilbert space methods are used to proceed.

For details about the construction of the antipode and how to obtain the polar de-
composition of it, we refer to Section 1 of [VD8].

This is the core of the further development of the theory.

Remark 6.12. In Remark 6.6 we formulated several reasons for the fact that the von
Neumann algebraic theory is easier than the C∗-algebraic one. One of them was the
possibility to use Hilbert space techniques. This is indeed a great advantage for treating
the antipode further. It is done via the polar decomposition of the closed operator K.

It is however not completely correct to use this argument because Hilbert space tech-
niques and the polar decomposition of the operator K are also used in the C∗-algebraic
development. But still, they are more natural in the development of the von Neumann
algebraic theory.

It would take us now too far to comment more on the further development of the
theory of locally compact quantum groups. But we have made our point. We have shown
how the algebraic theory is a source of inspiration to develop the analytical one. This
is illustrated with the construction of the antipode above. And as it is well-known, this
step is the crucial one making further results with their proofs possible. We refer again
to [VD8] and [VD10].

7. Conclusions. In this paper we discussed the passage from the theory of Hopf algebras
to locally compact quantum groups. This starts with finite quantum groups. They are
defined as finite-dimensional Hopf ∗-algebras with an operator algebra as the underlying
algebra. It then moves via discrete and compact quantum groups to algebraic quantum
groups. Algebraic quantum groups are defined as multiplier Hopf ∗-algebras with positive
integrals. Discrete and compact quantum groups are in the first place considered as special
cases of algebraic quantum groups. The positivity of the integrals allows a Hilbert space
realization using multiplicative unitaries. These are first studied from a purely algebraic
point of view to clarify the link between the algebraic theory and the operator algebraic
one. Finally we arrive at locally compact quantum groups, both in the C∗-algebraic setting
as well as in the von Neumann algebra framework.
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Along the way, we have indicated what kind of choices have to be made and how this
has led to different and sometimes annoying conventions with different notations and
formulas. We have included some historical information about the development of the
theory.

Also some remaining problems have been mentioned. Among them, the most chal-
lenging one is the existence problem of the Haar weights. There are satisfactory theorems
for finite, discrete and compact quantum groups, but not beyond that. It seems to be a
difficult problem and we have provided some ideas in Section 5 on multiplicative unitaries
(see Problem 5.24). Another problem of interest is to find examples of locally compact
quantum groups with involutive antipode that are not Kac algebras (see Problem 6.4).

It is my opinion that a comprehensive textbook or lecture notes on the following two
topics would be most welcome.

First there is a need for a complete work on the theory of algebraic quantum groups,
as understood in this paper. It should include all features, earlier obtained for (finite-
dimensional) Hopf algebras and also true for multiplier Hopf algebras and algebraic quan-
tum groups. At this moment, many results are spread over various papers, dealing with
multiplier Hopf algebra, algebraic quantum groups and beyond. Moreover these more
general theories sometimes gave new insights of known aspects of the original papers and
should be included as such in the development.

There is a need for a work on locally compact quantum groups as well. The writing
of it should be used to settle the terminology and conventions and where needed, with
comparison to the literature when different conventions are used.

There exist articles of this type. We have a survey paper on multiplier Hopf algebras
(see [VDZ], 2000), but that certainly should be updated with more recent results and
new approaches on earlier results. There is also the book of Timmermann (see [Ti], 2008).
This also contains a survey on multiplier Hopf algebras and algebraic quantum groups
and duality but this is very concise and contains almost no proofs. Moreover since then
new research has been done.

Finally, I believe it is desirable for analysts working with the operator algebra ap-
proach to quantum groups to keep in contact with the algebraists in the field of Hopf
algebras. And vice versa. We can learn from each other.

Acknowledgments. I would like to thank the organizers of the conference Topological
quantum groups and Hopf algebras (Warsaw, November 2016), for the opportunity to give
the introductory lecture of the conference.
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