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Abstract. We show that the (even and odd) index cocycles for theta-summable Fredholm
modules are in the image of the Connes–Moscovici characteristic map. To show this, we first
define a new range of asymptotic cohomologies, and then we extend the Connes–Moscovici
characteristic map to our setting. The ordinary periodic cyclic cohomology and the entire cyclic
cohomology appear as two instances of this setup. We then construct an asymptotic characteristic
class, defined independently from the underlying Fredholm module. Paired with the K-theory,
the image of this class under the characteristic map yields a non-zero scalar multiple of the index
in the even case, and the spectral flow in the odd case.

Introduction. We continue investigating the Connes–Moscovici characteristic map [5, 6]
in relation to more geometric invariants of noncommutative spaces. This time, our target
is the entire cyclic cohomology of Banach algebras, or more generally of mixed complexes
and (co)cyclic objects in the category of Banach spaces [2].

Using Connes’ fundamental idea in defining the entire cyclic cohomology [2], we ob-
serve a new range of cyclic cohomologies whose cocycles determined by their asymptotic
growth. The ordinary periodic and entire cyclic cohomologies are but two specific ex-
amples of these asymptotic invariants. Then we observe that the non-trivial asymptotic
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invariants of noncommutative spaces different from the ordinary periodic cyclic cohomol-
ogy are beyond the reach of cohomological δ-functors [22, Section 2.1], or more appropri-
ately, cohomological functors defined on the triangulated category of mixed complexes.
We refer reader to Proposition 3.3 for the exact statement. This fact has two impor-
tant consequences. Firstly, asymptotic cohomologies are finer invariants. Secondly, these
asymptotic invariants are different from Higson’s E-theory [11] or Puschnigg’s asymp-
totic cohomology [19], since both of these invariants come from specific cohomological
bifunctors on two different derived categories of Banach spaces using the Connes–Higson
asymptotic morphisms [4]. Curiously, we also observe that if one were to construct similar
asymptotic invariants on Tsygan’s cyclic bicomplex, one would obtain drastically different
results. We refer the reader to Proposition 3.6 for the details.

Entire cyclic cohomology is crucially useful for the Chern character of the theta-
summable Fredholm modules [12, 10, 2]. Our main results in this paper are Theorem 6.7
and Theorem 6.11, where we show that the even and the odd index cocycles of theta-
summable Fredholm modules are in the image of an asymptotic analogue of the Connes–
Moscovici characteristic map. More explicitly, in Proposition 5.2 we show that there
is an asymptotic class, defined independently from the underlying Fredholm module,
whose image under a Connes–Moscovici type characteristic homomorphism pairs with
K0 (resp. K1) and yields a non-zero scalar multiple of the index (resp. the spectral flow).

The plan of the article. In Section 1 we set the notation and list the basic objects and
tools we are going to need in the sequel. In Section 2 we define a range of asymptotic coho-
mologies, an example of which is the entire cyclic cohomology. In Section 3 we investigate
what happens if asymptotic cohomology were to come from a cohomological functor in
two cases: first for asymptotic cohomology of mixed complexes, and then for asymptotic
cohomology of cyclic bicomplexes. We observe that the results diverge dramatically. The
proper context for Connes–Moscovici characteristic map is an appropriate version of the
cup product in cohomology. So, we develop such a cup product for asymptotic cohomolo-
gies in Section 4. In Section 5 we construct an asymptotic complex out of the geometric
n-simplices, for n > 0, and show that this complex contains a non-trivial cocycle. Finally,
in Section 6 we construct an asymptotic analogue of the Connes–Moscovici characteris-
tic homomorphism explicitly for both the even and the odd theta-summable Fredholm
modules. We then apply our machinery to the asymptotic class of Section 5 to obtain the
index in the even case, and the spectral flow in the odd case.

Notation and conventions. Throughout the article, we work with complete normed
vector spaces over the field of complex numbers C, and the completed tensor product
⊗̂ over C. Since we crucially use norm estimates and their growth, the results of this
paper do not immediately generalize to Fréchet spaces, or to more general topological
spaces. All (co)cyclic modules are normalized in the sense that the operator norms of
the (co)face and (co)degeneracy operators grow at most linearly with respect to their
simplicial degree, i.e. they are of asymptotic order O(n) where n indicates the simplicial
degree. The mixed complex of a (co)cyclic module C• is referred as the (b, B)-complex
of C• while Tsygan’s bicomplex is simply referred as the cyclic bicomplex of C•.
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1. Preliminaries

1.1. The monoidal category of normed (complete) vector spaces. Consider the
category of (small) normed vector spaces VectnC over C. Each object (V, ‖ · ‖) consists of
a (small) vector space V endowed with a norm ‖ · ‖. The underlying metric spaces are
not expected to be complete.

There is a full and faithful subcategory BanC of VectnC that consists of complete
normed vector spaces.

The usual algebraic tensor product ⊗ over C gives a monoidal product on VectnC. For
a given pair (V, ‖ · ‖V ) and (W, ‖ · ‖W ) of normed vector spaces, we endow V ⊗W with
the norm

‖u‖ = inf
{∑

i

‖vi‖V ‖wi‖W
∣∣ u =

∑
i

vi ⊗ wi
}
.

Notice that C, with its standard complex norm, is the unit object in this category.
We note also that since the product of two normed vector spaces has a norm, but

is not required to be complete, the subcategory BanC is not a monoidal subcategory.
However, one can complete such a product V ⊗W to obtain a complete normed vector
space denoted by V ⊗̂W . This construction defines a monoidal product on BanC which
is different than that of VectnC. For details, see for instance [21, Chapter 2].

In this paper we are going to work with the monoidal category (BanC, ⊗̂). We can
define algebras, coalgebras, bialgebras and Hopf algebras in the strict monoidal cate-
gory (BanC, ⊗̂). All such objects are assumed to be norm complete and the structure
maps (multiplications, comultiplications, units, counits and antipodes) are all bounded
(continuous).

1.2. Simplicial and (para)(co)cyclic objects. Let ∆, ∆C and ∆Z respectively be
the simplicial, the cyclic and the paracyclic categories [3, 18]. A simplicial object S• is
a functor of the form S• : ∆op → BanC, and a cyclic object C• in BanC is a similar
functor of the form C• : ∆Cop → BanC. Paracyclic objects are defined similarly to be
the functors of the form ∆Zop → BanC. The “co” versions are obtained by replacing
∆op, ∆Cop and ∆Zop with their categorical duals ∆, ∆C and ∆Z, respectively. As such,
again, all structure maps are bounded.

1.3. Mixed complexes. A N-graded vector space X∗ is called a mixed complex if it is
equipped with two different differentials bn : Xn → Xn+1 and Bn : Xn → Xn−1 such that
for every n ∈ N,

bn+1bn = 0, Bn−1Bn = 0, and bn−1Bn +Bn+1bn = 0.
Given two mixed complexes (X∗, b∗, B∗) and (X ′∗, b′∗, B′∗), a morphism of mixed com-

plexes f∗ : X∗ → X ′∗ is a graded morphism f∗ of complexes that yields morphisms of differ-
ential graded modules of the form f∗ : (X∗, b∗)→ (X ′∗, b′∗) and f∗ : (X∗, B∗)→ (X ′∗, B′∗).
The (small) category of mixed complexes is denoted by MixC. The category MixC is a
C-linear abelian exact category [20].
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1.4. Mixed complex of a cocyclic module. Let C• be a cocyclic object in VectC,
with the cocyclic structure given by

di : Cn −→ Cn+1, 0 6 i 6 n+ 1,
sj : Cn −→ Cn−1, 0 6 j 6 n− 1, (1.1)
tn : Cn −→ Cn.

Then, (C•, b∗, B∗) with two differentials

bn :=
n+1∑
i=0

(−1)idni and Bn := Nn−1s
n
n−1tn(Id−(−1)ntn),

where

Nn−1 :=
n−1∑
i=0

(−1)i(n−1)tin−1

is a mixed complex.
The following proposition is well-known. We refer the reader to [13] for a proof.

Proposition 1.1. Given a cocyclic module C•, let M(C•) := (C∗, b∗, B∗). Then the
assignment C• 7→ M(C•) defines an exact functor from ∆C-Mod, the category of cocyclic
modules, to MixC, the category of mixed complexes.

1.5. Periodic cyclic cohomology of cocyclic objects. Let C• be a cocyclic object
in VectC, whose cocyclic structure is given as in (1.1). The periodic cyclic cohomology
of C• is the direct sum total homology of the cyclic bicomplex, i.e. the upper half plane
bicomplex CCp,q := Cq with p, q ∈ Z, q > 0,

...
...

...
...

· · · N // C2

b

OO

1−t // C2

b′

OO

N // C2

b

OO

1−t // C2

b′

OO

N // · · ·

· · · N // C1

b

OO

1−t // C1

b′

OO

N // C1

b

OO

1−t // C1

b′

OO

N // · · ·

· · · N // C0

b

OO

1−t // C0

b′

OO

N // C0

b

OO

1−t // C0

b′

OO

N // · · ·

(1.2)

where

b :=
n+1∑
i=0

(−1)idni , b′ :=
n∑
i=0

(−1)idni , Nn :=
n∑
i=0

(−1)nitin,

In other words,
HP ∗(C•) := H∗(Tot⊕ CC•,•)

is given by the periodic differential graded complex
Toti⊕ CC•,• :=

⊕
n>0
Cn with ∂i : Toti⊕ CC•,• → Tot1−i

⊕ CC•,• (1.3)

for i ∈ {0, 1}, which are called the even and the odd cochain groups respectively.
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Allowing the direct products in (1.3) rather than the direct sums, one defines the
spaces

Toti∞ CC•,• :=
∏
n>0
Cn, i ∈ {0, 1}, (1.4)

of even and odd cochains with infinite support, and hence the direct product total

. . . // Tot0
∞ CC

•,• ∂0 // Tot1
∞ CC

•,• ∂1 // Tot0
∞ CC

•,• ∂0 // Tot1
∞ CC

•,• ∂1 // . . .

The homology of the latter is called the periodic cyclic cohomology with infinite support

HP ∗∞(C•) := H∗(Tot∞ CC•,•).

We note from [2, 14] that this homology is trivial for every cocyclic module C•.

1.6. Periodic cyclic cohomology of mixed complexes. Let (C∗, b∗, B∗) be a mixed
complex. We can construct a bicomplex CCp,q := Cq+p with p, q ∈ Z such that q > −p,
given by

...
...

...
...

· · · B // C3

b

OO

B // C2

b

OO

B // C1

b

OO

B // C0

b

OO

· · · B // C2

b

OO

b // C1

b

OO

B // C0

b

OO

· · · B // C1

b

OO

B // C0

b

OO

· · · B // C0

b

OO

(1.5)

Similar to the bicomplexes defined in Subsection 1.5 we again have

Toti⊕ CC•,• :=
⊕
n>0
Cn and Toti∞ CC•,• :=

∏
n>0
Cn, i ∈ {0, 1},

together with the differentials ∂i = b+B with i = 0, 1. These complexes give us HP ∗(C∗)
and HP ∗∞(C∗), respectively.

In case C• is a cocyclic object such that the corresponding bar complex (C∗, b′) is
acyclic, then the double complex given in (1.2) and the double complex given in (1.5) are
quasi-isomorphic in both direct sum and direct product versions. See [14] for details.

2. Asymptotic hierarchy and cohomology. As is observed in [2, 12, 14, 16], the
cohomology of the subcomplex of cochains of infinite support satisfying certain growth
conditions might be nontrivial. In the following section, we are going to consider the
subcomplexes of cochains with specific growth conditions.



226 A. KAYGUN AND S. SÜTLÜ

2.1. Asymptotic hierarchy of sequences. Given two sequences (xn)n>0 and (yn)n>0
of real numbers in (0,∞), we define

E(yn) :=
{

(xn)n>0 | (xn)n>0 ≺ (yn)n>0
}
,

where we write (xn)n>0 ≺ (yn)n>0 if

lim sup
n→∞

rnxn
yn

= 0, (2.1)

for every r ∈ (0,∞).
We leave the proof of the following simple lemmas to the reader.

Lemma 2.1. Let (xn)n>0 and (yn)n>0 be two sequences in (0,∞). Then (xn)n>0 ≺
(yn)n>0 if and only if

lim sup
n→∞

n

√
xn
yn

= 0. (2.2)

Lemma 2.2. Let (xn)n>0 and (yn)n>0 be two sequences in (0,∞). Then the radius of
convergence of the power series

∑
n>0

xn
yn
zn is infinite if and only if (xn) ≺ (yn).

Remark 2.3. The asymptotic decay condition (2.1) is quite strong. For example, E(λn) =
E(1) and E(na) = E(1) for every a, λ ∈ [0,∞).

2.2. Asymptotic cohomology of cocyclic objects. Assume C• is a cocyclic object
in BanC. We define a graded subspace of C∗∞(C•) by letting

CiE(xn)(C•) :=
{

(ϕ2n+i)n>0 ∈ Ci∞(C•) | (‖ϕ2n+i‖)n>0 ∈ E(xn)
}
, i = 0, 1. (2.3)

On the other extreme, setting Ci⊕(C•) := Toti⊕ CC•,• ⊆ Toti∞ CC•,• the direct sum total
computing the usual (algebraic) periodic cyclic cohomology of C•, we get Ci⊕(C•) ⊆
CiE(xn)(C•) for any (xn)n>0, and i = 0, 1.

Now, given a sequence (xn)n>0, we wish CiE(xn)(C•) to be a subcomplex of C∗∞(C•).
Then we need to show that the graded space (2.3) is closed under the differentials b and B
which, in turn, requires an estimate for the operator norm of these operators.

We first note that since the cyclic operators tn satisfy tn+1
n = Id, it follows at once

that ‖tn‖n = 1, and hence ‖tn‖ = 1. Also, since the norm operator is defined as Nn =∑n
i=0(−1)nitin, we have ‖Nn‖ 6 n+1. On the other hand, if C• were the standard cocyclic

object associated to a unital Banach algebra, see for instance [2, 14], the coface operators
di : Cn → Cn+1 would be given by

diϕn(a0, . . . , an+1) = ϕn(a0, . . . , aiai+1, . . . , an+1)

and hence we would have ‖diϕn‖ = ‖ϕn‖, for any ϕn ∈ Cn. Since bn :=
∑n+1
i=0 (−1)idi

and b′n :=
∑n
i=0(−1)idi, we would have obtained the estimates

‖bnϕn‖ 6 (n+ 2)‖ϕn‖ and ‖b′nϕn‖ 6 (n+ 1)‖ϕn‖

for any ϕn ∈ Cn [14, Lemma 2.1.2]. However, we do not have these bounds on the norms
of the coface operators for an arbitrary cocyclic module C•. Nevertheless, the coface
maps dni , the codegeneracy maps snj and the cyclic maps tn satisfy the relations

dni = tin+1d
n
0 t
−i
n , and snj = t−in sn0 t

i
n+1
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since C• is a cocyclic object [18, 3]. As a result, we can control the norms of the coface
and codegeneracy operators by controlling only the norm of the 0-th coface and 0-th
codegeneracy operators on each grade. Accordingly, we give the following definition.

Definition 2.4. A cocyclic object C• with coface maps dni and codegeneracy maps snj
for 0 6 i 6 n and 0 6 j 6 n− 1, is called asymptotically normalized if ‖dn0‖ = 1 = ‖sn0‖
for any n > 0.

Let (C•, dni , snj , tn) be a cocyclic object. Then (C•, dni
‖dn0 ‖

,
snj
‖sn0 ‖

, tn) satisfies all cocyclic
identities except

σn+1
j δni = Id, for i = j or i = j + 1.

Instead, setting δni := dni
‖dn0 ‖

and σnj := snj
‖sn0 ‖

, we get

σn+1
j δni = 1

‖dn0‖‖sn0‖
Id, for i = j or i = j + 1.

However, the automorphism ψn : Cn −→ Cn defined as ψn := ‖dn0‖ ‖sn0‖ Id commutes with
all structure maps:

ψn+1 ◦ δni = δni ◦ ψn, ψn−1 ◦ σnj = σnj ◦ ψn, ψn−1 ◦ tn = tn ◦ ψn.

Hence, the associated mixed complex(
C•, b :=

n+1∑
i=0

(−1)idni , B := Nn−1s
n
n−1tn(Id−(−1)ntn)

)
is isomorphic to the mixed complex(

C•, b̃ :=
n+1∑
i=0

(−1)iδni , B̃ := Nn−1σ
n
n−1tn(Id−(−1)ntn)

)
.

As a result, from this point on we assume that all (co)cyclic modules are asymptotically
normalized.

Proposition 2.5. Given a cocyclic object C• in BanC, and a sequence (xn)n>0 in (0,∞),
the graded space C∗E(xn)(C•) is a differential graded subspace of the periodic cyclic complex
with infinite support C∗∞(C•).

Proof. Let ϕ = (ϕ2n+i)n>0 ∈ CiE(xn) i.e. (‖ϕ2n+i‖)n>0 ∈ E(xn). Then for any r ∈ (0,∞),

lim sup
n→∞

‖b2n+iϕ2n+i‖rn

xn
6 lim sup

n→∞

‖b2n+i‖ ‖ϕ2n+i‖rn

xn
6 lim sup

n→∞

(2n+ 1 + i)‖ϕ2n+i‖rn

xn

6 lim sup
n→∞

2n‖ϕ2n+i‖rn

xn
= lim sup

n→∞

‖ϕ2n+i‖(2r)n

xn
= 0.

In other words, bϕ ∈ C1−i
E(xn). The proof works for the operator B mutatis mutandis.

We are going to use HP ∗E(xn)(C•) to denote the cohomology of this subcomplex.

2.3. Asymptotic cohomology of mixed complexes. There is an analogous asymp-
totic cohomology for mixed complexes. For a more detailed treatment on the subject, for
the specific case of the entire cohomology, we refer the reader to [16].
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Given a mixed complex (X∗, b∗, B∗) one has the differential complexes

Ci∞(X∗) =
∞∏
n=0

Xn and Ci(X∗) =
∞⊕
n=0

Xn

together with the differential b + B. Similar to the asymptotic differential complex
C∗E(xn)(C•) associated to a cocyclic module C•, for any sequence of non-negative real
numbers (xn)n>0 one can also define the differential subcomplex

CiE(xn)(X∗) :=
{

(ϕ2n+i)n>0 ∈ Ci∞(X∗) | ‖ϕ2n+i‖ ≺ (xn)
}
.

2.4. Entire cyclic cohomology as asymptotic cohomology. As is indicated in
Proposition 2.5, now there is a whole gamut of asymptotic subcomplexes between C∗⊕(C•)
and C∗∞(C•) for a given cocyclic object C•.

We recall from [14], see also [2], that given a cocyclic object C• in BanC, an even
(resp. odd) infinite cochain (ϕ2n)n>0 ∈ C0

∞(C•) (resp. (ϕ2n+1)n>0 ∈ C1
∞(C•)) is called

entire if the radius of convergence of the power series∑
n>0

(2n)! ‖ϕ2n‖
n! zn

(
resp.

∑
n>0

(2n+ 1)! ‖ϕ2n+1‖
n! zn

)
is infinite. Following the common notation of Ciε(C•), i = 0, 1, for the space of (even, and
odd) entire cochains, we have

Ciε(C•) = CiE(n!/(2n)!)(C•) ⊂ CiE(1)(C•).

In particular, if C• is the standard cocyclic object associated to a unital Banach
algebra A, then C∗ε (C•) is precisely the Connes’ entire subcomplex C∗ε (A), and HP ∗ε (C•)
is nothing but the entire cyclic cohomology HPε(A) of the algebra A.

In case C• is the cocyclic object associated to a (Banach–)Hopf algebra H, together
with a modular pair (δ, σ) in involution, [5], then we shall call C∗ε (C•) the entire Hopf-
cyclic complex of H, and HP ∗ε (C•) the entire Hopf-cyclic cohomology of H. More gener-
ally, we will use the notation C∗E(xn)(H, δ, σ) to denote the asymptotic Hopf-cyclic complex
associated with the sequence (xn)n>0, and HP ∗E(xn)(H, δ, σ) for the cohomology of this
complex.

3. Cohomological functors and asymptotic cohomology

3.1. Cohomological functors on the category of mixed complexes. A Z-graded
functor of the form F∗ : MixC → VectC is called a cohomological δ-functor [22] if every
short exact sequence of mixed complexes

0→ (X∗, b∗, B∗)→ (X ′∗, b′∗, B′∗)→ (X ′′∗ , b′′∗ , B′′∗ )→ 0

is sent to a long exact sequence of C-modules

· · · → Fn(X∗, b∗, B∗)→ Fn(X ′∗, b′∗, B′∗)→ Fn(X ′′∗ , b′′∗ , B′′∗ )→ Fn+1(X∗, b∗, B∗)→ · · · .

Given a cohomological δ-functor F∗ : MixC → VectC, a mixed complex (X∗, b∗, B∗)
is called F -acyclic if Fn(X∗, b∗, B∗) = 0 for every n ∈ Z. Similarly, we are going to
call a morphism of mixed complexes f∗ : (X∗, b∗, B∗) → (X ′∗, b′∗, B′∗) a F -equivalence if
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the induced morphisms of C-modules Fn(f∗) : Fn(X∗, b∗, B∗) → Fn(X ′∗, b′∗, B′∗) are all
isomorphisms.

Proposition 3.1. Let (X∗, b∗, B∗) be a mixed complex such that (X∗, b∗) is acyclic. Then
(X∗, b∗, B∗) is F -acyclic for any cohomological δ-functor F∗ : MixC → VectC.

Proof. There is a short exact sequence of mixed complexes of the form

0→ (ker(b∗), 0, B∗)→ (X∗, b∗, B∗)
±b∗−−→ (im(b∗), 0, B∗)→ 0.

Then for a cohomological δ-functor F∗ : MixC → VectC we get a long exact sequence of
the form

· · · → Fn−1(im(b∗), 0, B∗)→Fn(ker(b∗), 0, B∗)→ Fn(X∗, b∗, B∗)→
→ Fn(im(b∗), 0, B∗)→ Fn+1(ker(b∗), 0, B∗)→ · · · .

By acyclicity of (X∗, b∗), the natural embedding im(b∗)→ ker(b∗)[+1] is bijective. Thus
we get Fn(X∗, b∗, B∗) = 0 for every n ∈ Z.

Proposition 3.2. Let f∗ : (X∗, b∗, B∗)→ (X ′∗, b′∗, B′∗) be a morphism of mixed complexes
such that f∗ : (X∗, b∗) → (X ′∗, b′∗) is a quasi-isomorphism. Then f∗ is an F -equivalence
for every cohomological δ-functor F : MixC → VectC.

Proof. The abelian C-linear category of mixed complexes MixC is isomorphic to the
abelian C-linear category of differential graded modules over the quotient polynomial
C-algebra B := C[B]/(B2). Given a morphism f∗ : X∗ → X ′∗ of differential graded
B-modules, the fact that f∗ is a quasi-isomorphism in the b∗-direction is equivalent to
the fact that f∗ is an ordinary quasi-isomorphism of differential graded B-modules. Now,
we form the mapping cone C(f∗) and consider

0→ (X∗, b∗)→ C(f∗)→ K(f∗)→ 0

where K(f∗) is the cokernel of the embedding (X∗, b∗) → C(f∗). Since f∗ is a quasi-
isomorphism, K(f∗) is acyclic. Then the result follows from Proposition 3.1.

3.2. Bounded mixed complexes. For a given index n ∈ Z and a mixed complex
(X∗, b∗, B∗), the good truncations (X∗6n, b∗, B∗) and (X∗>n, b∗, B∗) of X∗ are defined to
be

Xm6n =


Xm if m 6 n

im(bm) if m = n+ 1
0 otherwise

and Xm>n =


0 if m 6 n

Xm+1/im(bm) if m = n+ 1
Xm otherwise.

These mixed complexes fit into a short exact sequence of the form

0→ (X∗6n, b∗, B∗)→ (X∗, b∗, B∗)→ (X∗>n, b∗, B∗)→ 0. (3.1)

For the homology in the b∗ direction, we get

Hm(X∗6n, b∗) =
{
Hm(X∗, b∗) if m 6 n,

0 otherwise,
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and

Hm(X∗>n, b∗) =
{
Hm(X∗, b∗) if m > n

0 otherwise.

A mixed complex (X∗, b∗, B∗) is called bounded if there is an index N such that the
good truncation (X∗>N , b∗) is acyclic. Similarly, a (co)cyclic object C• is called bounded
if its associated mixed complexM(C•) is bounded.

Proposition 3.3. If HP ∗E(xn) is a cohomological δ-functor on the category of mixed
complexes, then HP ∗E(xn) must be the same as the algebraic periodic cohomology HP ∗ on
the subcategory of bounded mixed complexes.

Proof. Assume we have a bounded mixed complex (X∗, b∗, B∗). Then for n large enough,
the natural embedding of mixed complexes (X∗6n, b∗, B∗)→ (X∗, b∗, B∗) induces a homo-
topy equivalence of mixed complexes since (X∗6n, b∗)→ (X∗, b∗) is a quasi-isomorphism.
On the other hand, in view of the assumption, replacing (X∗, b∗, B∗) with its good trun-
cation (X∗6n, b∗, B∗) for a large enough n, we obtain a homotopical equivalence of the
form

C∗E(xn)(X∗6n, b∗, B∗)
'−−→ C∗E(xn)(X∗, b∗, B∗).

However, the bicomplex computing C∗E(xn)(X∗6n, b∗, B∗) is confined within a bounded
strip along the p = q line. This means C∗E(xn)(X∗6n, b∗, B∗) is equal to the algebraic peri-
odic complex C∗(X∗6n, b∗, B∗) for large enough n. On the other hand, C∗(X∗6n, b∗, B∗)
is homotopy equivalent to C∗(X∗, b∗, B∗) since the algebraic periodic cyclic cohomology
HP ∗ is a cohomological δ-functor on bounded mixed complexes. This follows from the
fact that the ordinary cyclic cohomology HC∗ of cocyclic modules is a cohomological
δ-functor [13, Proposition 1.3], and that the periodic cyclic cohomology is the stabiliza-
tion of HC∗ under the periodicity operator S. Then for large enough m, HCm(X∗) and
HPm (mod 2)(X∗) are the same for bounded mixed complexes. The result follows.

3.3. The cyclic bicomplex and the stability phenomenon. Instead of using the
(b, B)-complex of Connes, one can use the cyclic bicomplex in studying cyclic cohomology.
In this subsection, we will follow this route.

Let C• be a asymptotically normalized cocyclic object in BanC, and consider the
cyclic bicomplex

Cp,q = Cq, dp,qv =
{
bq if p is even,
b′q if p is odd,

dp,qh =
{

(1− tq) if p is even,
Nq if p is odd.

One can similarly define the product total complex

TotnΠ(C•) =
∞∏
m=0

Cm

together with the differential dn : TotnΠ → Totn+1
Π coming from d∗,∗v and d∗,∗h . We now

define asymptotic subcomplexes by imposing a growth condition:

TotnE(xn)(C•) =
{

(ϕn)n>0 ∈
∞∏
m=0

Cm
∣∣ (‖ϕn‖)n>0 ∈ E(xn)

}
.
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The cohomology of this new complex yields a different asymptotic cohomology theory for
cocyclic objects. We shall reserve the notation HS∗E(xn) to this new cohomology theory.

Let us consider the following definition.

Definition 3.4. A morphism of cocyclic modules f• : C• → D• is called a stable isomor-
phism if there is an index N > 0 such that the induced morphism Hn(f•) : Hn(C•) →
Hn(D•) on the Hochschild cohomology is an isomorphism for every n > N .

Proposition 3.5. Let f• : C• → D• be a stable isomorphism of cocyclic objects. If
HS∗E(xn) is a cohomological functor, then f• induces an isomorphism in cohomology

HS∗E(xn)(f•) : HS∗E(xn)(C•)→ HS∗E(xn)(D•).

Proof. For every p > 0 let

L∗>p(C•, E(xn)) =
{

(ϕn)n>p ∈
∞∏
m=p

Cm
∣∣ (‖ϕn‖)n>p ∈ E(xn)

}
.

Then we have a short exact sequence of complexes of the form

0→ L∗>p(C•, E(xn))→ Tot∗E(xn)(C•)→ L∗<p(C•)→ 0

where

L∗<p(C•) =
{

(ϕn)n>0 ∈
∞∏
m=0

Cm
∣∣ ϕn = 0 for every n > p

}
.

Notice that the subcomplex L∗<p(C•) is the same for every sequence (xn)n>0, and there-
fore, is independent of the given sequence. Since L∗<p(C•) is a bounded double complex
whose rows are exact, it is acyclic. In other words, there is a natural quasi-isomorphism
of the form

lim
←−p

L∗>p(C•, E(xn))→ Tot∗E(xn)(C•).

Proposition 3.6. If HS∗E(xn) is a cohomological δ-functor then HS∗E(xn) must be trivial
on the subcategory of bounded cocyclic objects.

Proof. By definition, bounded objects are stably isomorphic to the ground field.

Remark 3.7. We observe that the well-behaved asymptotic analogues of the (b, B) and
the cyclic bicomplexes diverge substantially: the former collapses onto the algebraic pe-
riodic cohomology as shown in Proposition 3.3 while the latter becomes trivial as shown
in Proposition 3.5, on the subcategory of bounded cocyclic objects.

Remark 3.8. Recall that in passing from the ordinary cyclic cohomology to the periodic
cyclic cohomology, we replace the group cohomologies of cyclic groups with the Tate
cohomology of the cyclic groups along the rows. The net effect is that we kill zero-divisors
in the group cohomology of cyclic groups, or equivalently, we use a cohomology theory
which is stable in that direction using the periodicity operator S. Now, as we show in
Proposition 3.5, we need a cohomology theory which is stable also in the Hochschild
direction. Moreover, we also see that all such well-behaved asymptotic cohomologies
of cocyclic objects are determined up to stable isomorphisms, as opposed to ordinary
quasi-isomorphisms of cocyclic objects.
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4. Products in asymptotic cyclic cohomology

4.1. Products of (co)cyclic modules, and mixed complexes. The category of
cocyclic objects is a strict monoidal category with the monoidal product of two cocyclic
modules defined diagonally. Namely, if C• and D• are two cocyclic modules, their product
Diag(C• ⊗̂ D•) is defined to be the graded module

⊕
n∈N Cn ⊗̂ Dn together with

dCi ⊗̂ dDi : Cn ⊗̂ Dn −→ Cn+1 ⊗̂ Dn+1, 0 6 i 6 n+ 1,
sCj ⊗̂ sDj : Cn ⊗̂ Dn −→ Cn−1 ⊗̂ Dn−1, 0 6 j 6 n− 1,
tCn ⊗̂ tDn : Cn ⊗̂ Dn −→ Cn ⊗̂ Dn.

Similarly, the category of mixed complexes has their own strict monoidal product
defined as follows: Given two mixed complexes (C∗, bC∗ , BC∗ ) and (D∗, bD∗ , BD∗ ), the product
complex is the graded product of these mixed complexes

(C ⊗̂ D)n =
⊕
p+q=n

Cp ⊗̂ Dq

together with the differentials
bn =

∑
p+q=n

(bCp ⊗̂ idq) + (−1)p(idp ⊗̂ bDq ), Bn =
∑

p+q=n
(BCp ⊗̂ idq) + (−1)p(idp ⊗̂ BDq ).

We shall denote the first summands by
→
b and

→
B, and the second summands by ↑b and

↑B, respectively.

4.2. Cup product in asymptotic cyclic cohomology. The functor that sends a
cocyclic object C• to its mixed complex M(C•) is weakly monoidal. In other words, for
every pair of cocyclic objects C• and D•, there are natural quasi-isomorphisms of the
form

ShC•,D• : M(Diag(C• ⊗̂ D•)) −→M(C•) ⊗̂ M(D•)
implemented by the cyclic shuffle maps. This follows from the cyclic Eilenberg–Zilber
Theorem. See [18, Theorem 4.3.8], [9], [15], or [17].

Next, we show that the functor which sends a cocyclic Banach module to an asymp-
totic complex is weakly monoidal in the following sense.

Proposition 4.1. Assume C• and D• are two cocyclic objects, and let (xn)n>0 and
(yn)n>0 be two non-decreasing sequences of positive real numbers. Then there is a natural
morphism of differential graded C-vector spaces of the form

C∗E(xn)(C•) ⊗̂ C∗E(yn)(D•) −→ C∗E(xnyn)(Diag(C• ⊗̂ D•)). (4.1)
Proof. The given map is the usual external cup product in cyclic cohomology. Thus its
compatibility with the differential maps is immediate. So, we only need to show that it
does land in the right subcomplex in the target. To this end we observe that

uk ∪ vn−k =
∑

µ∈Sh(k,n−k)

dµ(n) . . . dµ(k+1)uk ⊗ dµ(k) . . . dµ(1)vn−k

and that ∥∥∥ n∑
k=0

uk ∪ vn−k
∥∥∥ 6

n∑
k=0
‖uk ∪ vn−k‖ 6

n∑
k=0

(
n

k

)
‖uk‖ ‖vn−k‖.
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The second inequality follows from the normalization of the cyclic objects. As a result,
we get

‖
∑m
k=0 uk ∪ vm−k‖rm

xmym
6

m∑
k=0

(
m

k

)
‖uk‖ ‖vm−k‖rm

xmym
6

m∑
k=0

‖uk‖ ‖vm−k‖(2r)m

xmym
.

On the other hand, since the sequences (xn)n>0 and (yn)n>0 are non-decreasing,
xkyn−k 6 xnyn, 0 6 k 6 n,

thus we get
‖
∑m
k=0 uk ∪ vm−k‖rm

xmym
6

m∑
k=0

‖uk‖ ‖vm−k‖(2r)m

xkym−k
.

In total, we have

sup
m>n

‖
∑m
k=0 uk ∪ vm−k‖rm

xmym
6 sup
m>n

m∑
k=0

‖uk‖(
√

2r)k

xk
· sup
m>n

m∑
k=0

‖vk‖(
√

2r)k

yk
,

from which the claim follows by applying the limit n→∞.

4.3. Cup product in asymptotic Hopf-cyclic cohomology. Let B be a (Banach–)
Hopf algebra with a fixed MPI (δ, σ), and let C be a Banach B-module coalgebra. In
other words,

∆(h(c)) = h(1)(c(1))h(2)(c(2)), ε(h(c)) = ε(h)ε(c), ‖h(c)‖ 6 ‖h‖ ‖c‖,
for every h ∈ B and c ∈ C. Now, assume A is a Banach B-module algebra which means
that we have

h(ab) = h(1)(a)h(2)(b), h(1) = ε(h)1, ‖h(a)‖ 6 ‖h‖ ‖a‖, (4.2)
for any h ∈ B, and any a, b ∈ A. We are going to say that A admits an B-equivariant
action of C if there is a map C ⊗A→ A satisfying
c(ab) = c(1)(a)c(2)(b), (S−1(h)(c))(a) = c(h(a)), c(1) = ε(c)1, ‖c(a)‖ 6 ‖c‖‖a‖ (4.3)

for any c ∈ C, and any a, b ∈ A. Now, let
(i) C•B(A; δ, σ) be the standard Hopf-cocyclic object associated with the B-module alge-

bra A with coefficients in the MPI (δ, σ),
(ii) C•B(C; δ, σ) be the standard Hopf-cocyclic object associated with the B-module coal-

gebra C with coefficients in the MPI (δ, σ),
(iii) and C•(A) be the standard cocyclic object associated with the algebra A.

The proof of the following lemma is a straightforward but tedious check of the com-
patibility conditions between the cocyclic structure maps, and therefore is omitted.
Lemma 4.2. If A admits a B-equivariant action of C, then there is a well-defined mor-
phism of cocyclic objects of the form

Γ• : Diag
(
C•B(C; δ, σ) ⊗̂ C•B(A; δ, σ)

)
→ C•(A)

where the range is the standard cocyclic object associated with an algebra A where we
define

Γn(c0 ⊗ · · · ⊗ cn |ϕ)(a0 ⊗ · · · ⊗ an) = ϕ(c0(a0), . . . , cn(an)) (4.4)
for every c0 ⊗ · · · ⊗ cn ∈ CnB(C; δ, σ) and ϕ ∈ CnB(A; δ, σ).



234 A. KAYGUN AND S. SÜTLÜ

Using Lemma 4.2, in combination with Proposition 4.1, we get the following.

Theorem 4.3. Let B be a (Banach–)Hopf algebra with an MPI (δ, σ), A a unital Banach
B-module algebra, and C a Banach B-module coalgebra such that A admits a B-equivariant
action of C. Assume also that (xn)n>0 and (yn)n>0 are two non-decreasing sequences in
(0,∞). Then there is a cup product of the form

∪ : HP iB,E(xn)(C)⊗HP jB,E(yn)(A)→ HP i+jE(xnyn)(A)

where HP iB,E(xn)(C) and HP iB,E(xn)(A) respectively denote the asymptotic Hopf-cyclic
cohomologies of C and A, while HP iE(xn)(A) denotes the asymptotic cyclic cohomology
of A.

5. Asymptotic cyclic cohomology of the simplex. Let ∆n denote the geometric
n-simplex, and let

∆• :=
⊕
n>0

C[∆n]. (5.1)

In this section we are going to introduce a non-trivial cocycle in the E(1)-asymptotic
cyclic cohomology of the cocyclic module (5.1).

We recall from [9] that the geometric n-simplex can be described in two different
coordinate systems

(t0, . . . , tn+1) where 0 = t0 6 t1 6 . . . 6 tn 6 tn+1 = 1, (5.2)

and

(t0, . . . , tn) where ti ∈ [0, 1] and 1 =
n∑
i=0

ti. (5.3)

Notice that the 0-simplex contains one single point. In the first coordinate system this
is represented by the sequence (0, 1) while in the second it is simply 1. We will denote
this point by ∗ independent of the coordinate system chosen. We will prefer the first
coordinate system for our calculations below. Also, in writing an element (t0, . . . , tn+1)
we will drop t0 = 0 and tn+1 = 1 from the coordinates for convenience.

We leave the proof of the following fact to the reader:

Lemma 5.1. The graded space (5.1) has a cocyclic structure determined by the coface
operators δni : ∆n −→ ∆n+1

δi(t1, . . . , tn) =


(0, t1, . . . , tn) if i = 0,
(t1, . . . , ti, ti, . . . , tn) if 0 6 i 6 n,

(t1, . . . , tn, 1) if i = n+ 1,

the codegeneracy operators σnj : δn −→ δn−1

σnj (t1, . . . , tn) = (t1, . . . , t̂j+1, . . . , tn),

and the cyclic operators τn : ∆n −→ ∆n

τn(t1, . . . , tn) = (t2 − t1, t3 − t1, . . . , tn − t1, 1− t1),

defined for 0 6 i 6 n+ 1 and 0 6 j 6 n− 1.
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Given any sequence of positive numbers (xn)n>0, in the construction of the asymptotic
complex

· · · // C0
E(xn)(∆•)

b+B // C1
E(xn)(∆•)

b+B // C0
E(xn)(∆•) // · · ·

we endow the n-simplex ∆n with the norm ‖(t1, . . . , tn)‖ := max{ti | i = 1, . . . , n}.

Proposition 5.2. The cochain ϕ = (ϕ2n)n>0 ∈ C0
∞(∆•) of infinite support, given by

ϕ2n =


∗ if n = 0,
(−1)n

2nn!

n∑
r=0

τ2r
2nδ

2n
0 (∗) if n > 1,

(5.4)

is a non-trivial E(1)-asymptotic cocycle.

Proof. Let us first note that

n
√
‖ϕ2n‖ 6 n

√
n+ 1
2nn! =

n
√
n+ 1

2 n
√
n!

.

Then from Stirling’s approximation we get

lim sup
n→∞

‖ϕ2n‖ = 0,

which implies (ϕ2n)n>0 ∈ C0
E(1)(∆•).

For n > 1, we see that

B(δ2n
0 (∗)) = N2n−1σ2n−1τ2n(Id−τ2n)δ2n

0 (∗)
= N2n−1σ2n−1(( 0, . . . , 0︸ ︷︷ ︸

2n−1 times

, 1)− ( 0, . . . , 0︸ ︷︷ ︸
2n−2 times

, 1, 1))

= (Id−τ2n−1 + τ2
2n−1 − . . .− τ2n−1

2n−1 )(( 0, . . . , 0︸ ︷︷ ︸
2n−1 times

)− ( 0, . . . , 0︸ ︷︷ ︸
2n−2 times

, 1))

= (Id−τ2n−1 + τ2
2n−1 − . . .− τ2n−1

2n−1 )(Id−τ2n−1)δ2n−1
0 (∗) = 2N2n−1δ

2n−1
0 (∗).

Similarly, we get

B(τ2r
2nδ

2n
0 (∗)) = N2n−1σ2n−1τ2n(Id−τ2n)τ2r

2nδ
2n
0 (∗)

= N2n−1(τ2r
2n−1 − τ2r+1

2n−1)δ2n−1
0 (∗) = 2N2n−1δ

2n−1
0 (∗),

and

B(τ2n
2n δ

2n
0 (∗)) = N2n−1σ2n−1τ2n(Id−τ2n)τ2n

2n δ
2n
0 (∗)

= N2n−1σ2n−1(Id−τ2n)δ2n
0 (∗) = N2n−1(Id−τ2n)δ2n

0 (∗) = 0.

On the other hand, we have

b(τ2r
2nδ

2n
0 (∗)) = τ2r

2nδ
2n
0 (∗)− τ2r−1

2n δ2n
0 (∗).
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As a result, we see the following picture:

...

1
2nn!

∑n
r=0 τ

2r
2nδ

2n
0 (∗)

b

OO

B // N2n−1δ
2n−1
0 (∗)

1
2n−1(n−1)!

∑n−1
r=0 τ

2r
2n−2δ

2n−2
0 (∗)

b

OO

B // · · ·

As for the non-triviality, we observe that for any 0 6 s 6 2n+ 1,

B2n+1τ
s
2nδ

2n+1
0 (∗) = N2nσ2nτ2n(Id +τ2n) τs2nδ2n+1

0 (∗)
= N2n(τs2n + τs+1

2n )δ2n+1
0 (∗) = 2N2nδ

2n+1
0 (∗),

whereas

b2n−1τ
s
2nδ

2n−1
0 (∗) = τs2nδ

2n−1
0 (∗) =

{
τs+1
2n δ2n

0 (∗), if s is even,
τs2nδ

2n
0 (∗), if s is odd.

The claim then follows.

Remark 5.3. Note that the cocycle (ϕ2n)n>0 ∈ C0
E(1)(∆•) is not entire, that is, (ϕ2n)n>0

is not in C0
ε (∆•). Indeed,∑

n>0

(2n)!‖ϕ2n‖
n! |z|n >

∑
n>0

(2n)!
2nn!n! |z|

n,

where the latter has radius of convergence 1
2 .

6. Asymptotic characteristic map and the index cocycles

6.1. Theta-summable Fredholm modules and the Chern character. We are go-
ing to recall the construction of the Chern character formula of a theta-summable Fred-
holm module from [12, 10], see also [2].

Definition 6.1. A theta-summable Fredholm module over a unital Banach algebra A
is a pair (H, /D) consisting of a Z2-graded Hilbert space H = H+ ⊕ H−, admitting a
continuous representation of A, and an odd self-adjoint operator /D : H± → H∓, such
that

(i) for any a ∈ A, the operator [ /D, a] is densely defined, extends to a bounded operator
on H, and there is N( /D) > 0 with ‖a‖+ ‖[ /D, a]‖ 6 N( /D)‖a‖,

(ii) Tr e−(1−ε) /D2
is finite for some ε > 0.

In order to define the Chern character of a Fredholm module, let e(t) := e−t /D
2
, and

〈a0, . . . , an〉n

:=
∫

∆n

Str
(
a0e(t1)a1e(t2 − t1)a2 . . . e(tn − tn−1)ane(1− tn)

)
dt1 . . . dtn, (6.1)
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where ∆n denotes the n-simplex given by (t1, . . . , tn) with 0 6 t1 6 . . . 6 tn 6 1, and
Str(a) := Tr(a|H+)− Tr(a|H−) is the supertrace of an operator a : H → H.

The even entire cochain Ch( /D) ∈ C0
ε (A) given by

Ch2n( /D)(a0, . . . , a2n) := 〈a0, [ /D, a1], . . . , [ /D, a2n]〉2n, n > 0

is called the Chern character of a theta-summable Fredholm module (H, /D) over a unital
Banach algebra A. It is proved in [12] that [(Ch2n( /D))n>0] ∈ HP 0

ε (A) represents a
nontrivial even entire class. This cocycle is usually referred as the JLO-cocycle in the
literature.

Following [8], we recall also the odd theta-summable Fredholm module.

Definition 6.2. Given a Banach ∗-algebra A, an odd theta-summable Fredholm module
is also a pair (H, /D) consisting of a Hilbert space H as a continuous ∗-representation of A,
and a self-adjoint operator /D : H → H so that

(i) there is c > 0 such that ‖[ /D, a]‖ 6 c‖a‖, for all a ∈ A,
(ii) if t > 0, then Tr e−t /D

2
is finite.

Given two self-adjoint operators A0 and A1 on H, the integer sf(A0, A1), called the
spectral flow from A0 to A1, is introduced in [1, Section 7]. In particular, for an odd
theta-summable Fredholm module (H, /D) on A, and a unitary g ∈ UN (A), the spectral
flow defines a pairing

K1(A)×K1(A) −→ Z, 〈D, g〉 := sf(D, g−1Dg)

between theK-theory and theK-homology ofA. Furthermore, it is shown in [8, Section 2]
that

sf(D, g−1Dg) = 1√
π

∫ 1

0
Tr( /̇Due

− /D2
u) du,

where /Du := (1− u) /D + ug−1 /Dg, and /̇Du := g−1[ /D, g].

6.2. JLO-cocycle revisited. Let C[R] be the polynomial commutative and cocommu-
tative Hopf algebra generated by e(t) where t ∈ R subject to the relations

e(t)e(s) = e(t+ s) and ∆(e(t)) = e(t)⊗ e(t)

for every t, s ∈ R. We set 1 = e(0). This is the group ring C[R] of the group (R,+, 0).
Let Z be the two-dimensional coalgebra 〈1, D〉, where 1 is group-like and D is primi-

tive. Consider the operator ϕn : A⊗n+1 → Hom(Z⊗n+1 ×∆n,C) defined by

ϕn(a0 ⊗ · · · an)(Dε0 ⊗ · · · ⊗Dεn | t0, . . . , tn)

= Str(a0e
−t0 /Dε0 [ /D, a1]e−t1 /D

ε1 · · · [ /D, an]e−tn /D
εn ),

and let us restrict the arguments in C[R]⊗n+1 to ∆n. In the next step we split the space of
continuous functionals Hom(Z⊗n+1 ×∆n,C) as Hom(Z⊗n+1,C) ⊗̂ Hom(∆n,C). Using
the restriction function rest : γn 7→ γn|1⊗···⊗1 on Hom(Z⊗n+1,C), and the integral on
Hom(∆n,C), we get a trace on the product. The JLO-cocycle is the composition

A⊗n+1 ϕn−−→ Hom(Z⊗n+1 ×∆n,C)
∼=−→ Hom(Z⊗n+1,C) ⊗̂ Hom(∆n,C)

rest⊗
∫

−−−−−→ C.
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In the next subsections we are going to construct a new cocycle in the image of a
Connes–Moscovici type characteristic map which behaves in the same way as the JLO-
cocycle in terms of the Chern pairing with the K-theory.

6.3. Characteristic map. In this subsection we are going to construct a characteristic
map from the asymptotic cyclic cohomology of the simplex we calculated in Subsection 5
to the entire cohomology of the algebra A. Then we are going to observe that the image
of the cocycle (5.4) yields the index of the theta-summable Fredholm module (H, /D) after
paired with the K-theory.

Proposition 6.3. Let A be a B-module algebra for a Hopf-algebra B with the modular
pair in involution (ε, 1). Assume also that B acts on e(t) trivially, for all t > 0, and the
supertrace Str is invariant under the B-action. There is a characteristic homomorphism
of cocyclic objects given by χ : Diag•(C•B(B; ε, 1)⊗∆•) −→ C•(A)

χ(h1 ⊗ · · · ⊗ hn | t1, . . . , tn)(a0, . . . , an)
:= Str

(
a0e(t1)h1(a1)e(t2 − t1) . . . e(tn − tn−1)hn(an)e(1− tn)

)
,

where C•B(B; ε, 1) is the standard Hopf cocyclic object associated to B with coefficients in
the MPI (ε, 1).

Proof. We are going to see the compatibility of the characteristic homomorphism with
the cocyclic structure. To begin with,

χ(d0(h1 ⊗ · · · ⊗ hn) | δ0(t1, . . . , tn))(a0, . . . , an+1)
= χ(1⊗ h1 ⊗ · · · ⊗ hn |0, t1, . . . , tn)(a0, . . . , an+1)
= Str

(
a0a1e(t1)h1(a2)e(t2 − t1) · · ·hn(an+1)e(1− tn)

)
= d0χ(h1 ⊗ · · · ⊗ hn | t1, . . . , tn)(a0, . . . , an+1).

Similarly, for 1 6 i 6 n, we have

χ(di(h1 ⊗ · · · ⊗ hn) | δi(t0, . . . , tn))(a0, . . . , an+1)
= χ(h1 ⊗ · · · ⊗ hi(1) ⊗ h

i
(2) ⊗ · · · ⊗ h

n | t1, . . . , ti, ti, . . . , tn)(a0, . . . , an+1)

= Str
(
a0e(t1)h1(a1)e(t2 − t1) · · · e(ti − ti−1)hi(1)(ai)e(ti − ti)hi(2)(ai+1)e(ti+1 − ti)

· · ·hn(an+1)e(1− tn)
)

= Str
(
a0e(t1)h1(a1)e(t2 − t1) · · · e(ti − ti−1)hi(aiai+1)e(ti+1 − ti) · · ·hn(an+1)e(1− tn)

)
= diχ(h1 ⊗ · · · ⊗ hn | t1, . . . , tn)(a0, . . . , an+1).

For the last coface operator, we have

χ(dn+1(h1 ⊗ · · · ⊗ hn) | δn+1(t1, . . . , tn))(a0, . . . , an+1)
= χ(h1 ⊗ · · · ⊗ hn ⊗ 1 | t1, . . . , tn, 1)(a0, . . . , an+1)
= Str

(
a0e(t1)h1(a1)e(t2 − t1) · · ·hn(an)e(tn − tn−1)an+1

)
= Str

(
an+1a0e(t1)h1(a1)e(t2 − t1) · · ·hn(an)e(tn − tn+1)

)
= dn+1χ(h1 ⊗ · · · ⊗ hn | t1, . . . , tn)(a0, . . . , an+1).
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We proceed to the compatibility with the codegeneracies. For 0 6 j 6 n− 1,

χ(sj(h1 ⊗ · · · ⊗ hn) |σj(t1, . . . , tn))(a0, . . . , an+1)
= χ(h1 ⊗ · · · ⊗ ε(hj+1)⊗ · · · ⊗ hn | t1, . . . , tj , tj+2, . . . , tn)(a0, . . . , an−1)
= Str

(
a0e(t1)h1(a1)e(t2 − t1) · · ·hj(aj)e(tj+1 − tj)hj+1(1)e(tj+2 − tj+1)
· hj+2(aj+1) · · ·hn(an−1)e(1− tn)

)
= χ(h1 ⊗ · · · ⊗ hn | t1, . . . , tn)(a0, . . . , aj , 1, . . . , an−1)
= sjχ(h1 ⊗ · · · ⊗ hn | t1, . . . , tn)(a0, . . . , an−1).

Finally, the compatibility with the cyclic operator goes as follows:

χ(tn(h1 ⊗ · · · ⊗ hn) | τn(t1, . . . , tn))(a0, . . . , an)
= χ(S(h1) · (h2 ⊗ · · · ⊗ hn ⊗ 1) | t2 − t1, . . . , tn − t1, 1− t1)(a0, . . . , an)
= Str

(
a0e(t2 − t1)S(h1) · (h2(a1)e(t3 − t2) · · ·hn(an−1)e(1− tn)1(an)e(t1))

)
= Str

(
h1(a0)e(t2 − t1)h2(a1)e(t3 − t2) · · ·hn(an−1)e(1− tn)1(an)e(t1)

)
= Str

(
ane(t1)h1(a0)e(t2 − t1)h2(a1)e(t3 − t2) · · ·hn(an−1)e(1− tn)

)
= χ(h1 ⊗ · · · ⊗ hn | t1, . . . , tn)(an, a0, . . . , an−1)
= tnχ(h1 ⊗ · · · ⊗ hn | t1, . . . , tn)(a0, . . . , an),

where we used the triviality of the B-action on e(t), and the invariance of Str under the
B-action.

6.4. Even index cocycle. We note that, the morphism of cocyclic objects we defined
in Proposition 6.3 induces a map on the asymptotic complexes if B is a Hopf algebra in
BanC:

χ : CiE(xn)
(
Diag(C•B(B; ε, 1)⊗∆•)

)
−→ CiE(xn)(C•(A)).

On the other hand by Proposition 4.1 we have a cup product, and therefore, we get

CiE(xn)(C•B(B; ε, 1))⊗CjE(1)(∆
•) ∪−−→ Ci+jE(xn)

(
Diag(C•B(B; ε, 1)⊗∆•)

) χ−−→ Ci+jE(xn)(C
•(A)).

We are going to use this setup to define an index cocycle.
Now, let P be the polynomial Hopf algebra C[X], and let us define

I0 := 1 ∈ C0(P) and Ir := I ∪ . . . ∪ I︸ ︷︷ ︸
r times

∈ C2r(P), (6.2)

for any r > 1 where I := 1⊗ 1 ∈ C2(P). For this Hopf algebra we record the following.

Proposition 6.4. We have a morphism of differential graded C-vector spaces of the form

ι : C∗E(1)(∆•) −→ C0
E(1)(C•(P)) ⊗̂ C∗E(1)(∆•), (6.3)

given by

(t2n)n>0 7→
( n∑
r=0

αr(Ir | t2n−2r)
)
n>0

and (t2n+1)n>0 7→
( n∑
r=0

αr(Ir | t2n+1−2r)
)
n>0

,
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where (αr)r>0 is a sequence of real numbers defined as

αr =
{

1 if r = 0
1

(2r)! −
1

(2r−2)! if r > 0.

Proof. We note that since I = b(1) we have b(I) = 0, hence a commutative square of the
form

(t2n)n>0_

b

��

� ι // (
∑n
r=0 αr (Ir | t2n−2r))n>0_

→
b+↑b
��

(bt2n)n>0
�
ι
// (
∑n
r=0 αr (Ir | bt2n−2r))n>0 .

Thus (6.3) commutes with the Hochschild coboundary maps. Similarly, we have

τ2(I) = S(1) · (1⊗ 1) = I.

Therefore, we also have B2(I) = 0. As a result, we have another commutative square of
the form

(t2n)
_

B

��

� ι // (
∑n
r=0 αr (Ir | t2n−2r))n>0_

→
B+↑B
��

(Bt2n) �
ι
// (
∑n
r=0 αr (Ir |Bt2n−2r))n>0 .

This means (6.3) also commutes with the Connes boundary maps.

We now have the characteristic map

χ ◦ ∪ ◦ ι : CiE(1)(∆•) −→ CiE(1)(C•(A)).

In fact, following the estimation given in [10, Lemma 2.1], it is not difficult to see that

χ ◦ ∪ ◦ ι(ϕ) ∈ Ciε(C•(A)) ⊂ CiE(1)(C•(A)).

In the next step, we are going to consider the image of the cocycle (5.4) under this
characteristic map. Explicitly, we are going to observe that the pairing between the image
of the cocycle (5.4) and the (topological) K-theory of the algebra A yields the index of the
Fredholm module (H, /D) up to a non-zero constant. The pairing between the entire cyclic
cohomology and the K-theory is established in [2, Theorem 8] which we recall below.

Theorem 6.5. Let φ := (φ2n)n>0 ∈ C0
ε (A), and

Fφ(x) :=
∑
n>0

(−1)n(2n)!
n! φ2n(x, x, . . . , x)

be the corresponding entire function on M∞(A). Then the additive map

〈φ, 〉 : K0(A) −→ C, [p] 7→ 〈φ, [p]〉 := Fφ(p)

depends only the class [φ] ∈ HP 0
ε (A).

We now present the main result of this subsection in the discussion below.
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Let us introduce the element v = (vn)n∈N ∈ C0
E(1)(∆•),

vn := δ2n
0 (∗) = (0, . . . , 0︸ ︷︷ ︸

2n times

). (6.4)

We do not claim that v is a cocycle, but it will be useful nonetheless.

Lemma 6.6. For any idempotent [p] ∈ K0(A) that acts on the Hilbert space H as a
self-adjoint operator, and [ /D, p] = 0, we have〈

χ ◦ ∪ ◦ ι(v), [p]
〉

=
∑
n∈N

(−1)n

n! ind( /Dp).

Proof. From the definition of the characteristic homomorphisms, and Theorem 6.5, it
follows that〈

χ ◦ ∪ ◦ ι(v), [p]
〉

=
∑
n∈N

(−1)n(2n)!
n!

( n∑
r=0

αr

)
Str(pe(0)pe(0) · · · e(0)pe(1))

=
∑
n∈N

(−1)n

n! Str(pe− /D
2
). (6.5)

On the other hand,

Str(pe− /D
2
) = Str(pe− /D

2
p) = Str(pe− /D

2
pp),

where /Dp = p /Dp, and thus the claim follows from the McKean–Singer formula [10,
Lemma 3.1].

We are ready to state our main result.

Theorem 6.7. Let (H, /D) be a Fredholm module over A, and ϕ ∈ C0
E(1)(∆•) be the

E(1)-asymptotic cyclic cocycle given by (5.4). Furthermore, let φ ∈ C0
ε (A) be given by

φ = χ ◦ ∪ ◦ ι(ϕ), and /Dp := p /Dp. Then

〈[φ], [p]〉 =
(∑
n∈N

n+ 1
2n(n!)2

)
ind( /Dp).

Proof. Along the lines of [10] we may choose the idempotent [p] ∈ K0(A) as in Lemma
6.6. Then using (5.4), (6.5), Lemma 6.6 and Theorem 6.5, we get

〈φ, [p]〉 =
〈
χ ◦ ∪ ◦ ι(ϕ), [p]

〉
=
∑
n∈N

(−1)n(2n)!
n!

(−1)n

2nn! (n+ 1)
( n∑
r=0

αr

)
ind( /Dp)

=
(∑
n∈N

n+ 1
2n(n!)2

)
ind( /Dp).

as we wanted to show.

6.5. Odd index cocycle. Given an odd theta-summable Fredholm module (H, /D) over
an algebra A, we shall construct an odd asymptotic cocycle on A, using once again the
cocycle (5.4), such that the pairing with a unitary g ∈ K1(A) yields the spectral flow
sf( /D, g−1 /Dg).
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Since (5.4) is an even cocycle, while we need an odd one, we have to begin with the
following embedding.
Proposition 6.8. We have a morphism of differential graded C-vector spaces of the form

η : C∗E(1)(∆•) −→ C1
E(1)(C•(P)) ⊗̂ C∗E(1)(∆•), (6.6)

given by
(t2n)n>0 7→ (X | t2n)n>0 and (t2n+1)n>0 7→ (X | t2n+1)n>0.

Proof. The claim follows, similar to Proposition 6.4, from X ∈ HC1
E(1)(P; ε, 1) being a

cyclic 1-cocycle.
On the next move, we transform this cocycle to an odd cocycle on the algebra via a

characteristic homomorphism similar to the one given by Proposition 6.3.
Proposition 6.9. Let (H, /D) be an odd theta-summable Fredholm module over an al-
gebra A, let g ∈ K1(A) be a unitary, and /Du := (1 − u) /D + ug−1 /Dg. Let also A be a
P-module algebra for a Hopf-algebra P with the modular pair in involution (ε, 1). Assume
further that the trace Tr is invariant under the P-action, and that P acts on e(t) := e−t /D

2
u

trivially, for all t > 0. Then there is a characteristic homomorphism of cocyclic objects
given by χ : Diag•(C•B(B; ε, 1) ⊗̂ ∆•) −→ C•(A)

χ(h1 ⊗ · · · ⊗ hn | t1, . . . , tn)(a0, . . . , an)
:= Tr

(
a0e(t1)h1(a1)e(t2 − t1) . . . e(tn − tn−1)hn(an)e(1− tn)

)
.

Combining with Proposition 4.1, we obtain the odd asymptotic cocycle
(χ ◦ ∪ ◦ η)(ϕ) ∈ C1

ε (A) ⊂ C1
E(1)(A). (6.7)

We now need to pair (6.7) with the unitary g ∈ K1(A). To this end, we recall the odd
analogue of the pairing given by Theorem 6.5 from [7]. See also [8] and [3, Section 4.7].
Theorem 6.10. Given any φ := (φ2n+1)n>0 ∈ C1

ε (A), the additive map

〈φ, 〉 : K1(A) −→ C, [g] 7→ 〈φ, g〉 := 1√
2πi

∞∑
n=0

(−1)n n!φ2n+1(g−1, g, . . . , g−1, g)

depends only on the class [φ] ∈ HP 1
ε (A).

We have now all the machinery we need.
Theorem 6.11. Let (H, /D) be an odd theta-summable Fredholm module over an alge-
bra A, g ∈ K1(A) be a unitary, and /Du := (1− u) /D + ug−1 /Dg. Then,

〈(χ ◦ ∪ ◦ η)(ϕ), g〉 =
(

1√
2i

∞∑
n=1

n+ 1
2n

)
Tr(g−1X(g)e(1)).

Proof. We observe that〈
(χ ◦ ∪ ◦ η)(ϕ), g

〉
= 1√

2πi
Tr(g−1X(g)e(1)) + 1√

2πi

∞∑
n=1

n∑
r=0

(−1)n

2nn! (−1)n n! Tr(g−1X(g)e(1)),
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since

Tr
(
g−1e(0)X(1)(g) . . . e(0)X(2(n−r)+1)(g)e(1)X(2(n−r)+2)(g−1)e(0) . . . X(2n+1)(g)e(0)

)
= Tr(g−1X(g)e(1))

for any 0 6 r 6 n.

Finally, integrating on u ∈ [0, 1],∫ 1

0

〈
χ ◦ ∪ ◦ η(ϕ), g

〉
du = 1√

2πi

∞∑
n=1

n+ 1
2n

∫ 1

0
Tr
(
/̇Due

− /D2
u
)
du

=
(

1√
2i

∞∑
n=1

n+ 1
2n

)
sf( /D, g−1 /Dg)

we obtain the spectral flow sf( /D, g−1 /Dg), up to a constant multiple.
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