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Abstract. We show that primes of any global function field (of characteristic 6= 2 and containing
a square root of −1) form a connected graph of diameter 2. This fact generalizes our earlier result
concerning the graph of even points.

Let us begin with an elementary example that motivates our further considerations.
Take two irreducible polynomials f, g ∈ Fq[t] with coordinates in a finite field of odd
characteristic. The quadratic reciprocity law asserts that(

f

g

)(
g

f

)
= (−1)(q−1)(deg f deg g)/2.

This leads to a definition of a relation on the set of irreducible polynomials. Write f ^ g if(
f
g

)
= 1. By the quadratic reciprocity law this relation is symmetric unless q ≡ 3 (mod 4)

and f, g have odd degrees. In this case, ^ is antisymmetric. Anyway, in general this
relation is not transitive. Take for instance Fq = F11 and three polynomials

f = t3 + t2 + 2, g = t3 + t2 + 3t+ 1, h = t3 + 2t+ 2.

Then f ^ g and g ^ h but f 6^ h. Thus it is natural to ask about the transitive closure
of ^.

Assume that q ≡ 1 (mod 4) so the relation is symmetric. One can show that for every
two polynomials f, g ∈ Fq[t], if f 6^ g, then there is a polynomial h ∈ Fq[t] such that
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f ^ h and h ^ g. In other words, the set of irreducible polynomials with relation ^

forms a connected graph of diameter 2.
Let K = Fq(X) be an arbitrary global function field of characteristic 6= 2. A general-

ization of the relation ^ to the set of points (primes) of K, whose classes are 2-divisible
in the Picard group PicX, was introduced in [2] and further investigated in [3, 1]. We
should emphasize the fact that on such points the relation^ is defined canonically. In [1]
we show that for every global function field (of odd characteristic) the corresponding
graph is connected and has diameter 2. The purpose of the present note is to show that
one may generalize the relation ^ to all points of K, not only those whose classes in
PicX are 2-divisible. Thus this paper may be viewed as an addendum to [1]. Unfortu-
nately the generalized relation is no longer canonical. It depends on a choice of a certain
system of parameters π1, . . . , πk, where k is the dimension of PicX/2 PicX, treated as a
F2-vector space. In case of the field K = Fq(t) of rational functions, this choice corre-
sponds to the selection of the ‘variable’: an element transcendental over the ground field
and generating K.

Throughout this paperK denotes a global function field of odd characteristic and Fq is
its full field of constants. Further, X is the set of primes (equivalent classes of valuations)
on K. From a geometric point of view, X is a smooth complete algebraic curve over Fq.
If Y is a nonempty Zariski-open subset of X, then Y is an affine curve and by PicY we
denote the Picard group of Y , i.e. the quotient of the group Div Y of Y -divisors modulo
the principal divisors. Given a point p ∈ X, by [p] we denote its class in PicX, by Kp

the completion of K with respect to p and by ordp the associated discrete valuation
K → Z ∪ {∞}. Moreover, with every open subset Y ⊆ X we associate two subgroups of
the square-class group of K:

EY :=
{
λ ∈ K

×/K×2 | ordp λ ≡ 0 (mod 2) for every p ∈ Y
}
,

∆Y :=
{
λ ∈ EY | λ ∈ K×2

p for every p ∈ X \ Y
}
.

Definition. A finite set {π1, . . . , πk} ⊂ K will be called a system of parameters for ^
if there are points b1, . . . , bk ∈ X such that:

• ordbi
πi = 1 for every i ≤ k,

• {[b1] + 2 PicX, . . . , [bk] + 2 PicX} is a basis of PicX/2 PicX.

We need the following three facts from [1]:

Proposition 1 ([1, Lemma 2]). Let {π1, . . . , πk} be a system of parameters for ^

and B = {b1, . . . , bk} a corresponding set of points of X. Then there is a basis B =
{β1, . . . , βk} of EX such that (

βi
bj

)
=
{

1 if i 6= j,

−1 if i = j

for all i, j ≤ k.
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Proposition 2 ([1, Proposition 7]). Let b1, . . . , bk and β1, . . . , βk be as in the previous
proposition. Further let p ∈ X, then

[p] ≡
∑
i≤k

εi · [bi] (mod 2 Pic X)

if and only if (
βi
p

)
= (−1)εi for every i ≤ k.

Proposition 3 ([1, Proposition 6]). If p, q ∈ X are two points whose classes are con-
gruent modulo 2 PicX, then ∆X\{p} = ∆X\{q}.

For the rest of this paper we will work under the following assumptions:

(AS1) −1 ∈ K×2,
(AS2) Π = {π1, . . . , πk} ⊂ K is a fixed system of parameters for ^,
(AS3) B = {b1, . . . , bk} ⊂ X is the corresponding set of points such that ordbi

πi = 1
and

{
[bi] + 2 PicX | i ≤ k

}
is a basis of PicX/2 PicX,

(AS4) B = {β1, . . . , βk} is a basis of EX such that
(
βi

bj

)
= −1 if and only if i = j.

In addition we denote the affine curve X \B by Z.

Remark. Take a finite field Fq such that −1 ∈ F×2
q and let ζ ∈ Fq be a fixed non-square.

Consider the field K = Fq(t) of rational functions and take π := 1/t. Finally, let b be
the “point at infinity”, i.e. b = {f/g ∈ K | deg g > deg f}. Then Π = {π}, B = {b} and
B = {ζ} satisfy conditions AS1–AS4.

Proposition 4. For every p ∈ Z one has

(1) EZ = EX

(2) [EZ\{p} : EX ] = 2.

Proof. The first assertion follows immediately from [3, Lemma 2.3]. We shall prove the
other one. By [2, Proposition 2.3] we have

rk2 EZ = rk2 PicZ + |B|,
rk2 EZ\{p} = rk2 Pic

(
Z \ {p}

)
+ |B|+ 1.

(1)

On the other hand, [3, Proposition 2.4] yields

rk2 PicZ = rk2 Pic0 X − |B|+ 1 = rk2 Pic
(
Z \ {p}

)
. (2)

Combining Eq. (1) with Eq. (2) we obtain

rk2 EZ\{p} = rk2 Pic0 X + 2 = rk2 EZ + 1

and this concludes the proof.

Proposition 5. Let p ∈ X be a point.

(1) If [p] ∈ 2 PicX, then
[
EZ\{p} : ∆X\{p}

]
= 2.

(2) If [p] /∈ 2 PicX, then
[
EZ\{p} : ∆X\{p}

]
= 4.
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Proof. By [2, Proposition 3.4] the class of p is 2-divisible in PicX if and only if EX =
∆X\{p}. Hence the first assertion follows immediately from the preceding proposition.
Now assume that [p] /∈ 2 PicX. Therefore

rk2 ∆X\{p} = rk2 Pic(X \ {p})

by [2, Proposition 2.3] and

rk2 Pic(X \ {p}) = rk2 Pic0 X

by [2, Proposition 2.7]. Finally [2, Lemma 2.4] asserts that rk2 EX = 1 + rk2 Pic0 X.
Consequently we have [EX : ∆X\{p}] = 2 and so Proposition 4 implies the second
assertion, as well.

Assume that p ∈ X and [p] /∈ 2 PicX. The group EZ\{p}/∆X\{p} is isomorphic to the
Klein 4-group since EZ\{p} and ∆X\{p} are both elementary 2-groups. We are going to
explicitly describe the four cosets of ∆X\{p}.

Lemma 6. Let q ∈ Z be a point (not necessarily distinct from p). Assume that the classes
of p and q are congruent modulo 2 PicX. Then the cosets of ∆X\{p} are contained in
square classes of Kq.

Proof. Assume that λ, µ ∈ EZ\{p} and λ ≡ µ (mod ∆X\{p}). It follows from Proposition 3
that λµ ∈∆X\{p} = ∆X\{q} ⊂ K×2

q .

Lemma 7. Let p ∈ Z be a point. Assume that

[p] ≡
∑
i≤k

εi · [bi] (mod 2 Pic X)

for some ε1, . . . , εk ∈ F2. Then there is a square class λp ∈ EZ\{p} such that

(1) ordp λp ≡ 1 (mod 2),
(2) λp ∈ K×2

bi
for i ≤ k such that εi = 0,

(3) λp ∈ πiK×2
bi

for i ≤ k such that εi = 1.

Proof. By the assumption there is µ ∈ K× and D ∈ DivX such that

divX µ = p +
∑
i≤k

εibi + 2D.

Define
A :=

{
i ≤ k | µ /∈ K×2

bi
∪ πiK×2

bi

}
and set

λp := µ ·
∏
i∈A

βi.

It is clear that λp satisfies conditions (1)–(3).

Remark. Let K = Fq(t) be the field of rational functions and π, b, ζ be defined in the
same way as in the previous remark. If p ∈ Z is generated (as an ideal) by some monic
irreducible polynomial f , then λp = f .
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Proposition 8. Let p ∈ Z be a point such that [p] /∈ 2 PicX. Assume that

[p] ≡
∑
i≤k

εi[bi] (mod 2 Pic X)

for some ε1, . . . , εk ∈ F2. Further let j be the least index of a nonzero coordinate εj. Set
µp := βj and let λp be defined as in the preceding lemma. Then the group EZ\{p}/∆X\{p}

consists of the following four cosets of ∆X\{p}:
∆X\{p}, µp ·∆X\{p}, λp ·∆X\{p} and µpλp ·∆X\{p}.

Proof. By Proposition 2 we have(
µp

p

)
=
(
βj
p

)
= (−1)εj = −1,

hence µp /∈ K×2
p . Consequently ∆X\{p} 6= µp ·∆X\{p} and λp ·∆X\{p} 6= µpλp ·∆X\{p}.

Further we have ordp λp ≡ 1 (mod 2) and ordp µp ≡ 0 (mod 2). It follows that the cosets
λp ·∆X\{p}, µpλp ·∆X\{p} differ from ∆X\{p} and µp ·∆X\{p}.

Recall (see [1]) that points p, q ∈ X, whose classes are 2-divisible in PicX, are related
(denoted p ^ q) if EX\{p} ⊂ K×2

q . By [1, Proposition 13] this happens if and only if
λp ∈ K×2

q . We will use the last property to define the relation ^ on the whole Z.
Definition. Let p, q ∈ Z be two points, we write p^ q when λp ∈ K×2

q .
Remark. Again let K = Fq(t) and π, b, ζ be defined in the same way as in the previous
remarks. Take p, q ∈ Z and assume that p is generated by a polynomial f and q by g,
where f, g ∈ Fq[t] are monic and irreducible.Then p^ q if and only if λp = f is either a
quadratic residue (when at least one of the degrees deg f, deg g is even) or a non-residue
(when both degrees are odd) modulo g. This shows that our definition of ^ generalizes
the one discussed in the introduction.
Proposition 9. The relation ^ is symmetric.

Proof. Take two points p, q ∈ Z and assume that p ^ q, hence λp ∈ K×2
q and conse-

quently the Hilbert symbol (λp, λq)q vanishes. We are going to prove that λq is a local
square at p. To this end we will show that (λp, λq)p = 1. Take a point r ∈ Z distinct
from p and q. Then ordr λp ≡ ordr λq ≡ 0 (mod 2) and so we have

(λp, λq)r = 1 for every r ∈ Z \ {p, q}.

Now take any bi ∈ B. Let
[p] ≡

∑
i≤k

εi[bi] and [q] ≡
∑
i≤k

εi[bi] (mod 2 Pic X).

Now Lemma 7 yields

(λp, λq)bi
=


(1, 1)bi

if εi = εi = 0,
(1, πi)bi

if εi = 0 and εi = 1,
(πi, 1)bi if εi = 1 and εi = 0,
(πi, πi)bi

if εi = εi = 1.
In all four cases the Hilbert symbol (λp, λq)bi

vanishes.
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Using the Hilbert reciprocity law we compute

1 =
∏
r∈X

(λp, λq)r =
∏
r∈Z
r6=p,q

(λp, λq)r ·
∏
i≤k

(λp, λq)bi · (λp, λq)q · (λp, λq)p.

It follows from the preceding discussion that all the above factors—except possibly the
last one—vanish. But then also (λp, λq)p = 1. Now λp has an odd valuation so the only
way the Hilbert symbol can vanish is λq ∈ K×2

p . This shows that q^ p.

For the points whose classes are 2-divisible in the Picard group of X, the relation ^
was defined canonically, by inclusion of certain groups (see [1]). Here, for general points,
the relation is defined using a (bit esoteric) element λp, that depends not only on the
point p but also on the specified system of parameters π1, . . . , πk. While the dependence
on the system of parameters is unavoidable (see the remark below), we may still replace
a single square class λp by a certain subgroup of K×/K×2. Let p ∈ Z be a point, write Λp

for the subgroup of EZ\{p}/∆X\{p} generated by the class of λp. If [p] ∈ 2 PicX, then it
follows from Proposition 4 and Proposition 5 that Λp = EX\{p} = EZ\{p}. On the other
hand, if [p] /∈ 2 PicX, then Proposition 8 asserts that

Λp = ∆X\{p} ∪̇λp∆X\{p}.

Lemma 6 yields:

Observation 10. Let p, q ∈ Z be two square classes congruent modulo 2 PicX, then
p^ q if and only if Λp is contained in K×2

q .

Remark. As in the previous remarks, let K = Fq(t), b be the point at infinity, π = 1/t

and ζ ∈ Fq be a fixed non-square. Take two polynomials of degree 1: f = t− a, g = t− b
and set p := 〈f〉, q := 〈g〉. Then p is related to q with respect to π, b, ζ if and only if
(b− a) ∈ F×2

q . Now perform a change of variables. Set x := ζt and π′ := 1/x. Then π′, b, ζ
also satisfy (AS1)–(AS4). The field has not changed, we have K(x) = K(t). The primes
p, q stay intact. But the change of the parameter alters the square classes λp, λq. Now,
we have λ′p = ζf and λ′q = ζg. Consequently p is related to q with respect to π′, b, ζ if
and only ζ · (b − a) ∈ F×2

q if and only if b − a /∈ F×2
q . This shows that the dependence

on the selected system of parameters is inherent to the very nature of the relation ^. It
can be avoided only for points whose classes sit in 2 PicX, since such classes have zero
coordinates with respect to every basis of PicX/2 PicX.

The set Z equipped with the relation ^ (with respect to some fixed system of pa-
rameters) forms an undirected graph. Denote this graph by Z . First we prove that Z

does not contain a vertex adjacent to all other vertices. The next proposition generalizes
[1, Proposition 15].

Proposition 11. For every point p ∈ Z there is a point q ∈ Z congruent to p modulo
2 PicX and such that p 6^ q.

Proof. Let ε1, . . . , εk be the coordinates of [p] + 2 PicX with respect to the basis
{

[bi] +
2 PicX | i ≤ k

}
. Fix an element µ ∈ K× such that ordp µ = 0 and µ /∈ K×2. Then [4,

Lemma 2.1] asserts that there is λ ∈ K× and q ∈ Z \ {p} satisfying:
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• ordq λ = 1,
• ordp(λ− µ) ≥ 1,
• ordbi

(λ− 1) ≥ 1 for i ≤ k if εi = 0,
• ordbi

(λ− πi) ≥ 1 for i ≤ k if εi = 1,
• ordr λ ≡ 0 (mod 2) for every r ∈ Z \ {q}.
It follows that the divisor of λ has a form

divX λ = q +
∑
i≤k

εibi + 2D

for some D ∈ DivX. This means that [q] ≡ [p] (mod 2 Pic X). Moreover λ ·K×2 = λq and
since λ is congruent to µ modulo K×2

p we obtain q 6^ p.
Corollary 12. The graph Z is not complete.

Finally we compute the diameter of Z . The following theorem is analogous to a
similar result for points whose classes are 2-divisible in PicX (see [1, Theorem 16]), but
the proof presented here uses different techniques.
Theorem 13. The graph Z is connected and its diameter equals 2.
Proof. It follows from the previous proposition that the diameter of Z cannot be equal
to 1. Thus we must show that for every two points p1, p2 ∈ Z, there is another point q such
that p1 ^ q^ p2. To this end, as in the proof of Proposition 11, we use [4, Lemma 2.1].
It asserts that there is λ ∈ K× and q ∈ Z \ {p1, p2} such that
(1) ordq λ = 1,
(2) ordp1(λ− λp1) ≥ 1, ordp2(λ− λp2) ≥ 1,
(3) ordb(λ− 1) ≥ 1 for every b ∈ B,
(4) ordr λ ≡ 0 (mod 2) for every r ∈ Z \ {p1, p2, q}.
Therefore q is the unique point of X, where λ has an odd valuation. It follows from [2,
Proposition 3.2] that [q] ∈ 2 PicX. Thus the coordinates of [q] + 2 PicX with respect to
the basis

{
[b] + 2 PicX | b ∈ B

}
are all zero. Consequently points (1) and (3) imply that

λ · K×2 = λq. It follows from (2) that λ is a local square simultaneously at p1 and p2.
Hence q^ p1 and q^ p2.
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