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Abstract. This article is a continuation of our previous paper [Bull. Pol. Acad. Sci. Math. 67
(2019)] concerning elliptic curves Ep,m : y2 = x(x − 2m)(x + p), where p and p + 2m are primes.
There we proved inter alia that Ep,1 has at most two non-torsion integral points, and Ep,2 has
no such points. Now by using completely different methods, namely an analysis of local height
functions, we try to get upper bounds for the number of integral points and for the number of
multiples of such points on our curves for any m. In particular, we show that no even multiples
of an integral point on Ep,m are also integral, and if Ep,m has rank 1 and p ≡ 3 (mod 4) then
there are at most twelve non-torsion integral points in the union of the non-identity component
and the certain subset of the identity component.

1. Introduction. It is believed that there exist infinitely many twin primes (this is a
famous Twin Prime Conjecture). More generally, one expects that (for a fixed positive
even integer k) there exist infinitely many primes p such that p + k is also a prime (cf.
first part of Conjecture B in [7]). These conjectures are still open and hard to prove.
One well known result is Chen’s theorem [2] stating that there are infinitely many
primes p such that p + 2 is a prime or a product of two primes. However, in the re-
lated problem (the so called Bounded Gap Conjecture) Zhang [19] showed that there are
bounded gaps between consecutive primes infinitely often. More precisely, he proved that
lim infn→∞(pn+1 − pn) ≤ 7 × 107 where pn denotes the nth prime (note that the Twin
Prime Conjecture says that lim infn→∞(pn+1−pn) = 2). Nowadays, this bound has been
reduced to 246 unconditionally, and to 6 under the assumption of the generalized Elliott–
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Halberstam conjecture (see [12]). Consequently, there is at least one positive even integer
(less than 247) which can be written infinitely often as the difference of two consecutive
primes. We also mention the classical result due to Romanoff [13] that the set of integers
of the form p + 2m, where p is a prime and m is a positive integer, has positive lower
density in N. On the other hand, there are infinitely many primes p such that p+ 2m is a
composite number for any m [17]; one of them is p = 47867742232066880047611079 [3].

By the well known Siegel Theorem [14], any elliptic curve E over Q has only finitely
many integral points. However, searching for the number of integral points in families of
elliptic curves is not easy in general. Another question related to this subject is to ask
which multiples of a non-torsion integral point P may be integral. It is widely expected
(for instance, because it is implied by the ABC conjecture) that there is a uniform bound
on the number of integers n such that nP is integral. Many authors have dealt with
these problems. For example, Ingram [8] proved that there is a uniform constant C and
a quantity M(P ) bounded above by the global Tamagawa number of E such that nP
is integral for at most one value of n > CM(P )16. Moreover, he showed that if N is
square-free and E is the congruent number curve y2 = x3 − N2x then there is at most
one value n > 1 such that nP is integral. Subsequently, Fujita and Terai [6] proved that
if the congruent number curve has rank one then it contains at most 17 integral points.
Next, Fujita and Nara [5] showed that if the Fermat elliptic curve x3 + y3 = m (m is
cube-free integer) has rank one then it has at most two integral points, and if has rank
two then it contains at most six such points. They also proved that the Fermat elliptic
curve of rank r has ≤ 3r − 1 integral points.

In this paper, we consider elliptic curves associated to the generalized twin primes,
i.e., the family of elliptic curves over Q given by

Ep,m : y2 = x(x− 2m)(x+ p), (1.1)
where p, q are odd primes such that q − p = 2m, m ≥ 1. Such curves were considered
for the first time by Dąbrowski and Wieczorek in [4]. Here we give some information
concerning this family. Note that Ep,m(Q)tors = Ep,m[2] = {∞, (0, 0), (2m, 0), (−p, 0)}
(see [11, Main Theorem 1]) and rp,m := rankEp,m(Q) ≤ 2 (see [10, Proposition 4.19]).
Moreover, this bound can only be obtained for m = 3 or m > 4 and certain special
primes q ≡ 1 (mod 8). Clearly, Ep,m(R) has two connected components: the non-identity
component consisting of the points with x-coordinates in the interval [−p, 0], and the
identity component consisting of the affine points with x-coordinates ≥ 2m and the point
at infinity. Note also that under the assumption of the Parity Conjecture rp,m = 1 if
(m = 3 and p ≡ 5 (mod 8)) or m = 4 or (m ≥ 5 and p ≡ 3, 5, 7 (mod 8)) (see [4,
Corollary 2]). Consequently, we have Ep,m(Q) ' (Z/2Z)2 × Zr where r ∈ {0, 1, 2}. We
also know that the reduction at p and q is multiplicative.

Suppose that we have a solution of y2 = x(x−2m)(x+p) in nonzero integers x and y.
Then the point (x, y) is non-torsion and we call it a non-torsion integral point on Ep,m
(however note that equation (1.1) is not minimal in general). If Ep,m has a non-torsion
integral point then, by the consideration above, we have rankEp,m(Q) ∈ {1, 2}. Clearly,
two non-torsion integral points on Ep,m may differ by the torsion point. For example,
E5,3 has rank one and its non-torsion integral points (−1, 6) and (40, 240) differ by the
torsion point (0, 0) (notice that E5,3 has only four non-torsion integral points).
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2. Results. In this section, we state the main results of this paper. In [9] we considered
the same family, and proved among others that Ep,1 has at most two non-torsion integral
points, and Ep,2 has no such points. We have also listed all possible integral points as
solutions of certain systems of Pell-like equations. The purpose of this paper is to describe
the upper bounds for the number of integral points (at least in certain subsets) in this
family for m > 3. We are also interested in multiples of non-torsion integral points on
Ep,m. For instance, we show that no even multiples of an integral point on Ep,m are also
integral, and if Ep,m has rank 1 and p ≡ 3 (mod 4) then there is at most twelve non-torsion
integral points with x-coordinates ≤ 2m152p. If moreover Conjecture 1 is true, then this
number reduces to eight. Our main method are an analysis of the local height functions
and estimations of the Nèron–Tate height on elliptic curves.
Theorem 1. Let p ≡ 3 (mod 4) or (p ≡ 1 (mod 4) and m = 3) or m ≤ 2. Assume that
the subgroup Γ of Ep,m(Q) which contains Ep,m[2] is generated (modulo torsion) by the
single non-torsion point P ∈ Ep,m(Q) and (without loss of generality) x(P ) > 0. Let Q
be an integral point in Γ.
1) If Q belongs to the non-identity component of Ep,m(R) then Q = nP+T , where |n| ≤ 1

and T ∈ {(0, 0), (−p, 0)}.
2) If Q has x-coordinate in the interval [2m, 2m152p] then Q = nP + T , where |n| ≤ 3

and T ∈ {∞, (2m, 0)}.
Corollary 1. Let p ≡ 3 (mod 4) or (p ≡ 1 (mod 4) and m = 3) or m ≤ 2. If Ep,m(Q)
has rank one then there are at most twelve non-torsion integral points with x-coordinate
≤ 2m152p.
Theorem 2. Assume that P is a non-torsion point in Ep,m(Q) and n is an integer. If nP
is an integral point then n is odd. Assume moreover that p ≡ 3 (mod 4) or (p ≡ 1 (mod 4)
and m = 3) or m ≤ 2.
1) If nP belongs to the non-identity component then n = ±1.
2) If x(nP ) ∈ [2m, 2m152p] then n ∈ {±1,±3}.

3. Proofs. In this section, we prove our main results. The proofs split in a natural way
into several lemmata. We start with two lemmata concerning multiples of integral points
which are of independent interest.
Lemma 1. If E is an elliptic curve over Q and a point P ∈ E(Q) is not integral (with
respect to a given Weierstrass equation of E) then for any nonzero integer n a point nP
is not integral too.
Proof. See [15, Exercise 9.12].
Lemma 2. If P ∈ Ep,m(Q) is a non-torsion point then x(2P ) /∈ Z. In consequence, nP
is not integral for any even n.
Proof. By Lemma 1 we may assume that P = (x, y), where x, y are nonzero integers. By
the duplication formula, we obtain

x(2P ) = (x2 + 2mp)2

4x(x− 2m)(x+ p) .
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Clearly, if x is odd then x(2P ) is not an integer, so assume that x = 2αx1 where x1 is
odd, and α is a positive integer. Substituting, we get

x(2P ) = (22α−1x2
1 + 2m−1p)2

2αx1(2αx1 − 2m)(2αx1 + p) , (3.1)

so if α ≥ m then

ord2((22α−1x2
1 + 2m−1p)2) = 2m− 2 < α+m = ord2(2αx1(2αx1 − 2m)(2αx1 + p)),

and consequently x(2P ) /∈ Z, hence we assume that α < m, in particular m > 1. Now
suppose that x(2P ) ∈ Z. Then x1 divides (22α−1x2

1+2m−1p)2, hence any prime factor of x1
divides 2m−1p. Thus x1 = ±pβ where β ≥ 0. If β > 1 then ordp

(
(22α−1x2

1 + 2m−1p)2) = 2
but ordp

(
2αx1(2αx1 − 2m)(2αx1 + p)

)
= 1 + β > 2, so β ≤ 1. The cases x1 = 1 or −p

are impossible since they imply 0 < x = 2α < 2m or x = −2αp < −p. First consider
the case x1 = −1, i.e., x = −2α. By [9, Theorem 2.4] we obtain, α = m − 3 (so in
particular m ≥ 4) and p − 2m−3 is a square, say c2 (c is a positive integer). Hence
the denominator of (3.1) equals 22m−69(p − 2m−3) = 22m−6(3c)2, and the numerator
of (3.1) equals 22µ−2(22m−6−µ + 2m−µp)2 = 22µ−2(22m−6−µ9 + 2m−µc2)2 where µ =
min(2m − 6,m). Since x(2P ) ∈ Z, we have c = 3 or c = 9. In any case c = 3c′ but then
the prime q = p+2m = 9c′2+2m−3+2m = 9(c′2+2m−3) which is a contradiction. Now let
x1 = p, i.e., x = 2αp (0 < α < m). Again by [9, Theorem 2.4] we getm ≥ 4, 3 ≤ α ≤ m−1,
2 - α, and p = b2 + 2m−α, q = pc2 − 2αb2, c2 = 2α + 1 where b, c are positive relatively
prime odd integers. In this case the denominator and the numerator of (3.1) are equal to
22αp2(p−2m−α)(2α+1) = 22αp2(bc)2 and 22µ−2p2(22α−µp+2m−µ)2 = 22µ−2p2(22α−µb2+
2m−µc2)2 respectively (µ = min(2α,m)). Since bc divides 22α−µb2 + 2m−µc2, we get
b = c = 1, and consequently p + 2m = q = p − 2α which is an absurd. Therefore always
x(2P ) /∈ Z, and nP = 2(kP ) is not an integral point for n = 2k. This finishes the proof.

Our next proofs involve estimations of the canonical height and an analysis of lo-
cal height function. Now we introduce some notation and facts about height functions.
Further details may be found for example in Silverman’s books [15, 16].

Let E be an elliptic curve over Q. For P ∈ E(Q) with x(P ) = a/b where a and b

are relatively prime integers, the naive height h : E(Q) → R is defined by h(P ) =
log max

(
|a|, |b|

)
(we put also h(∞) = 0). The canonical height (or Nèron–Tate height)

ĥ : E(Q)→ R is defined by

ĥ(P ) = lim
n→∞

h(2nP )
4n .

The canonical height is a quadratic form on E(Q) modulo torsion. In particular, ĥ(nP ) =
n2ĥ(P ), and ĥ(P ) = 0 if and only if P is a torsion point. Nèron and Tate (see e.g. [16])
showed that ĥ decomposes into the sum of the local height functions ĥp : E(Qp) → R
where p is a place in Q, i.e., p is a prime or infinity. Hence for any P ∈ E(Q) we have

ĥ(P ) =
∑
p≤∞

ĥp(P ).

In fact this sum is finite since ĥp(P ) = 0 for any point P and for almost all p. For example,
if p is a prime of the good reduction of E then ĥp(P ) = 1/2 max

(
0,−vp(x(P ))

)
where
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vp(x) = ordp(x) log p and P 6= ∞. There are also the (more complicated) formulae for
computation of non-archimedean local heights ĥp in the other cases (when the reduction
at p is not good and a point P is singular after the reduction, see [16, pp. 478–479]). To
estimate the archimedean contribution ĥ∞ to the canonical height we use Tate’s series:

ĥ∞(P ) = 1
2 log

∣∣x(P )
∣∣+ 1

8

∞∑
k=0

log
∣∣z(2kP )

∣∣
4k − 1

12 log |∆E |, (3.2)

where z is a certain function depending on the curve E (we omit details but E must be
given by the minimal equation) and ∆E is the discriminant of E.

Lemma 3. If p ≡ 3 (mod 4) or (p ≡ 1 (mod 4) and m ≤ 3) then

ĥ(P ) ≤ 1
4 log(a2 + 2mpb2) + 1

12 log
(

1 + p

2m

)
for any P ∈ Ep,m(Q) \ {∞}, where x(P ) = a/b and gcd(a, b) = 1.

Proof. Under our assumptions a global minimal model of Ep,m is given by (1.1). We
shall consider two cases. In archimedean case we use Tate’s series (3.2) where now z(P ) =
(1+2mpt2)2 with t = 1/x(P ). Clearly, Ep,m(R) has two components, and for any point Q
in the identity component E0

p,m(R) we have 1 ≤ z(Q) ≤ (1+p2−m)2. Since 2kP ∈ E0
p,m(R)

(for k ≥ 1), we get

ĥ∞(P ) ≤ 1
2 log

∣∣x(P )
∣∣+ 1

8 log
∣∣z(P )

∣∣+ 1
8

∞∑
k=1

2 log(1 + p2−m)
4k − 1

12 log |∆E |

= 1
4 log(x(P )2 + 2mp) + 1

12 log
(

1 + p

2m

)
− 1

12 log |∆E |.

Now consider non-archimedean case. Let l be a prime. By [16, p. 478], we obtain

ĥl(P ) ≤ 1
2 max

(
0,−vl(x(P ))

)
+ 1

12 vl(∆E).

Note that x(P ) = a/b, and so max
(
0,−vl(x(P ))

)
= vl(b). Since∑

l

vl(∆E) =
∑
l

log lordl(∆E) = log
∏
l

lordl(∆E) = log |∆E |,

where the above sum is over all (finite) primes, combining the inequalities for local heights,
we finally get

ĥ(P ) ≤ 1
4 log(a2 + 2mpb2) + 1

12 log
(

1 + p

2m

)
,

which completes the proof.

Lemma 4. If p ≡ 3 (mod 4) or (p ≡ 1 (mod 4) and m = 1, 3) or (p ≡ 1 (mod 8) and
m = 2) then for any non-torsion point P ∈ Ep,m(Q) we have

ĥ(P ) ≥ 1
16 log(2m(p+ 2m)).

Proof. See [4, Proposition 7].

Proof of Theorem 1. We can assume that m ≥ 3 because by [9, Theorems 2.1, 2,2, 2.3],
Ep,2 has no non-torsion integral points at all, Ep,1 has no non-torsion integral points in
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the non-identity component, and at most two such points in the identity component. By
assumption, Q = nP + T and x(Q) = a where T is a torsion point, and n, a are integers.
Let us first assume that Q /∈ E0

p,m(R). Then a ∈ [−p, 0] and T ∈
{

(0, 0), (−p, 0)
}
(since

P , (2m, 0) and ∞ belong to the identity component E0
p,m(R)). Therefore by Lemma 3,

we get

ĥ(P ) ≤ 1
4 log(a2 + 2mp) + 1

12 log
(

1 + p

2m

)
≤ 1

4 log(p2 + 2mp) + 1
12 log

(
1 + p

2m

)
.

On the other hand, by Lemma 4 and properties of the canonical height, we obtain

ĥ(P ) = ĥ(nQ+ T ) = ĥ(nQ) = n2ĥ(Q) ≥ n2

16 log(2m(p+ 2m)).

Consequently, after some calculations, we have

n2 ≤ 4 log p+ 16/3 log(p+ 2m)− 4m/3 log 2
log(p+ 2m) +m log 2 .

It is not difficult to check (we used Mathematica’s [18] command Maximize) that the
function on the right side reaches its maximum for m = 3 and p = 5, hence n2 < 3.74.
So |n| ≤ 1, which proves the first part.

Now suppose that a ∈ [2m, 2m152p]. Consequently, T ∈ {∞, (2m, 0)}. As before by
Lemmata 3 and 4, we obtain

n2

16 log(2m(p+ 2m)) ≤ ĥ(P ) ≤ 1
4 log(22mp2154 + 2mp) + 1

12 log
(

1 + p

2m

)
,

which implies

n2 ≤ 4 log(22mp2154 + 2mp) + 4/3 log(1 + p/2m)
log(p+ 2m) +m log 2 .

We checked (by using Mathematica) that the function on the right side reaches its max-
imum for m = 3 and p = 7 (and it is circa 15.9519). Therefore |n| ≤ 3, which completes
the proof.

Proof of Corollary 1. By Remark 2 we know that there are at most two non-torsion inte-
gral points in the non-identity component. If Ep,m(Q) has rank 1 then Γ = Ep,m(Q),
and by Theorem 1 and Lemma 2, any non-torsion integral point with x-coordinate
in [2m, 2m152p] is contained in the set {±P, ±P + (2m, 0), ±2P + (2m, 0), ±3P,
±3P + (2m, 0)}, and we are done.

Proof of Theorem 2. It follows immediately from Lemma 2 and the proof of Theorem 1.

4. Remarks and conjectures. In this section we make five remarks about our theo-
rems and methods, and state two conjectures. We also discuss numerical computations.

Remark 1. Note that Theorem 1 and Corollary 1 are not ‘empty’ since for e.g., m = 4
or (m ≥ 5 and p ≡ 3, 5, 7 (mod 8)) the root number of Ep,m(Q) is −1 so conjecturally
rankEp,m(Q) = 1. In fact, we have many examples of curves Ep,m with a positive rank.

Remark 2. Note that by [9, Theorems 2.1–2.4], if p ≡ 3 (mod 4) or m ≤ 3, we have at
most two non-torsion integral points in the non-identity component. If they exist, they
have x-coordinate −1 (for m = 3), and −2(2m−3 − 1)2 (for m ≥ 4).
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Remark 3. The bound 2m152p looks arbitrary, but that is not the whole truth. Indeed,
as we showed in [9, Theorem 2.4], any non-torsion integral point in the identity component
(with an exception in one case) has x-coordinate of the form 2αa2pβ where 0 < α ≤ m,
0 ≤ β ≤ 1, and a is a positive integer. Moreover, almost all integral points (with one
exception) that we found numerically have x-coordinates≤ 2m132p (see below for details).
Remark 4. In [4, Proposition 7] there are also lower bounds for ĥ(P ) for other p and m
than in Lemma 4. We are able to compute upper bounds for the canonical height for
p ≡ 1 (mod 4) and m ≥ 4 (cf. Lemma 3) but in this case the equation (1.1) is not
minimal. We must use the minimal model, i.e., y2 + xy = x3 + p−2m−1

4 x2 − 2m−4px but
we are interested in the integral solutions of (1.1).
Remark 5. Note that the family of the congruent number elliptic curves (considered
in [6]) is the family of quadratic twists of one curve y2 = x3−x, and the family of Fermat
elliptic curves (considered in [5]) is the family of cubic twists of one curve x3 + y3 = 1.
Our two-parameter family Ep,m is not a family of quadratic twists nor cubic twists, and
perhaps it is harder to estimate the number of integral points in this case.

We have made some numerical calculations in Magma [1]. We were looking for integral
points on Ep,m for m ≤ 10 and p ≤ p1000 = 7919 (by using the command IntegralPoints)
but for some m and p Magma was not able to answer. We also checked certain bigger m
or p, and e.g., we found the integral point

(2019550184120871208, 2870000639061829344674420880) on E178566897581,3

and the integral point (16331640832, 2087108321525760) on E23593,12. Among all tested
curves Ep,m we found only one example of curve with eight non-torsion integral points
(all other our examples have at most six integral points): m = 9, p = 89, q = 601, (x, y) =
(−64,±960), (712,±10680), (2312,±99960), (481312,±333771360). Note that E89,9(Q)
has rank two, and the points P1 = (−16/169,−144240/2197), P2 = (−200/9, 24040/27)
generate E89,9(Q) modulo torsion. We have also the following relations: (−64,−960) =
P2+(2m, 0), (712,−10680) = P2+(−p, 0), (2312, 99960) = P1+P2, (481312,−333771360)
= P1 + (0, 0). In addition, for all found non-torsion integral points P on the tested Ep,m
we also checked that 3P is not integral. Therefore numerical computations performed
in Magma, Theorems 1, 2, Corollary 1, and other reasons mentioned below suggest the
following.
Conjecture 1. If P is a non-torsion point in Ep,m(Q) then 3P is not integral point.
Conjecture 2. The curve Ep,m has at most eight non-torsion integral points.

Notice that if Conjecture 1 is true then from the proof of Corollary 1 we see that if
Ep,m(Q) has rank one then it has at most 8 non-torsion integral points with x-coordinates
≤ 2m152p (indeed, ±3P = 3(±P ) and ±3P +(2m, 0) = 3(±P +(2m, 0)) are not integral).
Similarly, in this case by Theorem 2, we immediately deduce that if nP is a non-torsion
integral point and x(nP ) ≤ 2m152p then n = ±1.

Here we explain why we believe in Conjecture 1. We found the ‘triplication’ formula,
i.e., for a point P = (x, y) on Ep,m we have x(3P ) = xF (x)2

G(x)2 where F (x) = x4+2m+13px2+
2m+2p(p − 2m)x − 22m3p2, G(x) = −3x4 − 4(p − 2m)x3 + 2m+13px2 + 22mp2. Assume



78 T. JĘDRZEJAK

that P is integral (otherwise by Lemma 1, 3P is not integral too). Then x(3P ) ∈ Z ⇔
G(x)2 | xF (x)2 ⇔ gcd(G(x)2, xF (x)2) = G(x)2, but we can prove that for any integer x,
the only prime divisors of gcd

(
G(x)2, xF (x)2) are 2, p, and q = p + 2m. Since it is

reasonable to suppose that for any x = x(P ) ∈ Z the integer G(x) has (at least one)
another prime factor, we think that x(3P ) /∈ Z.
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