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Abstract. In this paper we give an introduction on how one can extend a valuation from a field K

to the polynomial ring K[x] in one variable over K. This follows a similar line as the one presented
by the author in his talk at ALaNT 5. We will discuss the objects that have been introduced to
describe such extensions. We will focus on key polynomials, pseudo-convergent sequences and
minimal pairs. Key polynomials have been introduced and used by various authors in different
ways. We discuss these works and the relation between them. We also discuss a recent version
of key polynomials developed by Spivakovsky. This version provides some advantages that will
be discussed in this paper. For instance, it allows us to relate key polynomials, in an explicit
way, to pseudo-convergent sequences and minimal pairs. This paper also provides examples that
illustrate these objects and their properties. Our main goal when studying key polynomials is to
obtain more accurate results on the problem of local uniformization. This problem, which is still
open in positive characteristic, was the main topic of the paper of the author and Spivakovsky
in the proceedings of ALaNT 3.

1. Introduction. If ν0 is a valuation on a field K, then what are the possible extensions
ν of ν0 to K[x]? This question has been extensively studied and many objects have been
introduced to describe such extensions. Three of the more relevant are key polynomials,
pseudo-convergent sequences and minimal pairs. The main goal of this paper is to describe
these objects and present the relation between them.
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Throughout this paper, we will fix the following notation and assumptions:
K is a field,
K is a fixed algebraic closure of K,
K[x] is the ring of polynomials with one indeterminate over K,
ν is a valuation on K[x],
µ is an extension of ν to K[x].

(1)

We start by defining key polynomials. These objects were introduced by MacLane
in [5] and refined by Vaquié in [9]. The definition that we present here is slightly different
and is due to Spivakovsky. The basic properties of Spivakovsky’s key polynomials were
developed in [7] and will be summarized in Section 3. In Section 2 we will discuss the
MacLane–Vaquié key polynomials and in Section 3 we discuss how they are related to
Spivakovsky’s key polynomials.

For a positive integer b and f ∈ K[x] let ∂bf be the b-th formal derivative of f , i.e.,
∂bf are the uniquely determined polynomials for which the Taylor expansion

f(x)− f(a) =
deg(f)∑
i=1

∂if(a)(x− a)i,

is satisfied for every a ∈ K. An easy and useful formula for computing ∂bf is

∂bf = 1
b!
∂b

∂xb
(f).

(Observe that the expression above makes sense even in positive characteristic because b!
divides the integer obtained by performing b many times the derivative of f with respect
to x.) For a polynomial f ∈ K[x] let

ε(f) = max
b∈N

{
ν(f)− ν(∂bf)

b

}
.

A monic polynomial Q ∈ K[x] is said to be a (Spivakovsky’s) key polynomial for ν if for
every f ∈ K[x],

ε(f) ≥ ε(Q) =⇒ deg(f) ≥ deg(Q).

In [3], Kaplansky introduced the concept of pseudo-convergent sequences. For a valued
field (K, ν), a pseudo-convergent sequence is a well-ordered subset {aρ}ρ<λ of K, without
last element, such that

ν(aσ − aρ) < ν(aτ − aσ) for all ρ < σ < τ < λ.

Let R be a ring with K ⊆ R and consider an extension of ν to R, which we call again ν.
An element a ∈ R is said to be a limit of {aρ}ρ<λ ⊆ K if for every ρ < λ we have
ν(a− aρ) = ν(aρ+1 − aρ).

One of the main goals of [7] is to compare key polynomials and pseudo-convergent
sequences. These results are presented in Section 5.

Another theory that has been developed to study extensions of a given valuation to
the ring of polynomials in one variable is the theory of minimal pairs of definition of a
valuation (see [1]). A minimal pair for ν is a pair (a, δ) ∈ K × µ(K[x]) such that for
every b ∈ K

µ(b− a) ≥ δ =⇒ [K(b) : K] ≥ [K(a) : K].
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If in addition,
µ(x− a) = δ ≥ µ(x− b)

for every b ∈ K, then (a, δ) is called a minimal pair of definition for ν.
The main goal of [6] is to compare key polynomials and minimal pairs. These relations

will be presented in Section 5.
For a valued field (K, ν) we denote by Kν the residue field and by νK the value group

of ν, respectively. A valuation ν on K[x] is called valuation-algebraic if ν(K(x))/νK
is a torsion group and K(x)ν |Kν is an algebraic extension. Otherwise, it is called
valuation-transcendental. If ν is valuation-transcendental, then it is residue-transcendental
if K(x)ν |Kν is a transcendental extension and value-transcendental if ν(K(x))/νK is
not a torsion group.

Given two polynomials f, q ∈ K[x] with q monic, we call the q-expansion of f the
expression

f(x) = f0(x) + f1(x)q(x) + . . .+ fn(x)qn(x)
where for each i, 0 ≤ i ≤ n, fi = 0 or deg(fi) < deg(q). For a polynomial q(x) ∈ K[x],
the q-truncation of ν is defined as

νq(f) := min
0≤i≤n

{ν(fiqi)}

where f = f0 + f1q + . . .+ fnq
n is the q-expansion of f .

We point out that the original definition of minimal pairs, presented in [1], is slightly
different than the one appearing here. The reason is that, with the original definition,
one can prove that a valuation on K[x] admits a pair of definition if and only if it is
residue-transcendental. On the other hand, from the results in [7], one can prove that
an extension admits a minimal pair of definition (as presented here) if and only if it is
valuation-transcendental. Hence, with our definition we are considering all the valuations
which are somehow simpler to handle (i.e., valuations for which the sequence of key
polynomials has a last element). This result will follow from the following:
Theorem 1.1 (Theorem 1.3 of [6]). A valuation ν on K[x] is valuation-transcendental
if and only if there exists a polynomial q ∈ K[x] such that ν = νq.

The theorem above can be seen as the version of Theorem 3.11 of [4] for key polynomi-
als and truncations. In Section 3, we describe a complete sequence of key polynomials for ν.
If Q is such a sequence and Q is a largest element for it, then ν = νQ. Hence, we conclude
from Theorem 1.1 that if Q has a last element, then ν is valuation-transcendental.

This paper is divided as follows. In Section 2, we describe the theory of MacLane–
Vaquié key polynomials. In Section 3, we describe some of the most important properties
of Spivakovsky’s key polynomials. Also in Section 3, we describe the relation of MacLane–
Vaquié and Spivakovsky’s key polynomials. In Section 4, we describe some of the main
properties of pseudo-convergent sequences. Section 5 is devoted to presenting the com-
parison between these three objects. In Section 6, we present an example that illustrates
the theory.

Acknowledgements. I thank the anonymous referee for a careful reading and for pro-
viding useful suggestions in the notation and presentation of this paper.
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2. Key polynomials. Take a commutative ring R and an ordered abelian group Γ.
Take ∞ to be an element not in Γ and set Γ∞ to be Γ∪{∞} with extensions of addition
and order as usual (i.e., ∞ > γ for every γ ∈ Γ and ∞+ γ =∞ for every γ ∈ Γ).
Definition 2.1. A valuation on R is a map ν : R −→ Γ∞ such that:
(V1) ν(ab) = ν(a) + ν(b) for every a, b ∈ R,
(V2) ν(a+ b) ≥ min{ν(a), ν(b)} for every a, b ∈ R,
(V3) ν(1) = 0 and ν(0) =∞.

One can show that under the assumptions (V1) and (V2), the condition (V3) is
equivalent to the support of ν, defined by supp(ν) := {a ∈ R | ν(a) =∞}, being a prime
ideal of R. Hence, if R is a field, then (V3) is equivalent to

ν(x) =∞⇐⇒ x = 0,
which is the usual assumption for valuations defined on a field.
Remark 2.2. We use this opportunity to correct a mistake in the definition of a valuation
in [6]. There we require that supp(ν) is a minimal prime ideal, when it should be a prime
ideal.
Remark 2.3. If R = K[x], then valuations on R describe all the valuations extending
ν0 = ν |K to simple extensions K(a) of K. Indeed, if supp(ν) is the zero ideal, then ν

extends in an obvious way to K(x) where x is a transcendental element. If
supp(ν) 6= (0),

then there exists p(x) ∈ K[x] monic and irreducible such that supp(ν) = (p). Hence, ν
defines a valuation on

K[x]/(p) = K(a)
for some element a ∈ K with minimal polynomial p(x).

Let ν0 be a valuation of K and ν a valuation of K[x] extending ν0. If γ0 = ν(x), then
we define

ν1(a0 + a1x+ . . .+ arx
r) = min{ν0(ai) + iγ0}.

If ν = ν1, then we are done. If not, then take a polynomial φ1 of smallest degree such
that

γ1 := ν(φ1) > ν1(φ1).
For each f ∈ K[x], write f = f0 + f1φ1 + . . .+ frφ

r
1, with deg(fi) < deg(φ1) and define

ν2(f) = min{ν1(fi) + iγ1}.

If ν = ν2, then we are done. Otherwise we continue the process.
Question 2.4. Can we construct a “sequence” of polynomials φi such that ν is the
“limit” of the maps νi?

Key polynomials were first introduced by MacLane in [5]. In order to define MacLane
key polynomials, we will need to define the graded algebra associated to a valuation. Let
R be a ring and ν a valuation on R. For every β ∈ νR, set

Pβ := {y ∈ R | ν(y) ≥ β} and P+
β := {y ∈ R | ν(y) > β}.
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The graded algebra of ν is defined as

grν(R) :=
⊕
β∈νR

Pβ/P
+
β .

For an element y ∈ R we denote by inν(y) the image of y in grν(R), i.e.,

inν(y) := y + P+
ν(y) ∈ Pν(y)/P

+
ν(y) ⊂ grν(R).

Let K be a field and let ν be a valuation on K[x], the polynomial ring in one variable
over K. Given f, g ∈ K[x], we say that f is ν-equivalent to g (and write f ∼ν g) if
inν(f) = inν(g). Moreover, we say that g ν-divides f (and write g |νf) if there exists
h ∈ K[x] such that f ∼ν g · h.

Definition 2.5. A monic polynomial φ ∈ K[x] is a MacLane–Vaquié key polynomial
for ν if it is ν-irreducible (i.e., φ |νf · g =⇒ φ |νf or φ |νg) and if for every f ∈ K[x]

φ |νf =⇒ deg(f) ≥ deg(φ).

Let φ be a key polynomial for ν, Γ′ be a group extension of ν(K[x]) and γ ∈ Γ′ such
that γ > ν(φ). For every f ∈ K[x], let

f = f0 + f1φ+ . . .+ fnφ
n

be the φ-expansion of f . Define the map

ν′(f) := min
0≤i≤n

{ν(fi) + iγ}.

Theorem 2.6 (Theorem 4.2 of [5]). The map ν′ is a valuation on K[x].

Definition 2.7. The map ν′ is called an augmented valuation and denoted by

ν′ := [ν; ν′(φ) = γ].

Given a valuation ν on K, a group Γ′ containing νK and γ ∈ Γ′ we define the map

νγ(a0 + a1x+ . . .+ anx
n) := min

0≤i≤n
{ν(ai) + iγ}.

Theorem 2.8 (Theorem 4.1 of [5]). The map νγ is a valuation on K[x].

This valuation is called a monomial valuation and denoted by

ν′ := [ν; ν′(x) = γ].

Consider now the set V of all valuations on K[x] (extending a fixed valuation ν0
on K). The theorems above give us an algorithm to build valuations on K[x]. Namely,
take a group Γ1 containing ν(K) and γ1 ∈ Γ1. Set

ν1 := [ν0; ν1(x) = γ1].

Now, let φ1 be a key polynomial for ν1, Γ2 an extension of Γ1 and γ2 ∈ Γ2 with
γ2 > ν1(φ1). Set

ν2 := [ν1; ν2(φ1) = γ2].
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Proceeding iteratively, we build
groups ν(K) ⊆ Γ1 ⊆ Γ2 ⊆ . . . ⊆ Γn ⊆ . . . ,
valuations ν1, ν2, . . . , νn, . . . ∈ V,
polynomials φ1, . . . , φn, . . . ∈ K[x]

and γi ∈ Γi, i ∈ N, such that φi+1 is a key polynomial for νi and
νi+1 = [νi; νi+1(φi) = γi+1].

Assume that we have constructed an infinite sequence as above. If for every f ∈ K[x]
there exists nf ∈ N such that νn(f) = νnf (f) for every n ≥ nf , then we define

ν∞(f) := νnf (f).
On the other hand, if Γn ⊆ R for every n ∈ N, then for every polynomial f ∈ K[x] the
sequence s := {νn(f)}n∈N has a supremum, and since s is increasing we have

ν∞(f) := sup{νn(f)} = lim
n→∞

νn(f).

Observe that ν∞(f) can be ∞, even if f 6= 0.
Theorem 2.9 (Theorem 6.2 of [5]). The map ν∞ is a valuation of K[x].

The valuation in the theorem above is called a limit valuation (and we write ν∞ =
lim νi).

Consider now the subset Vc of V consisting of monomial, augmented and limit valu-
ations (extending ν0).
Question 2.10. Is it true that Vc = V? In other words, given any valuation ν ∈ V,
does there exist a sequence of valuations ν1, ν2, . . . , νn, . . . such that ν = νi for some i or
ν = lim νi?

Let ν be any valuation on K[x]. We put ν0 := ν |K and
ν1 = [ν0; ν1(x) = ν(x)].

If ν = ν1, then ν ∈ Vc (because it is monomial). If not, then take φ1 ∈ K[x], monic and
of smallest degree among polynomials f satisfying ν1(f) < ν(f). One can prove that φ1
is a key polynomial for ν1. Consider then the valuation

ν2 = [ν1; ν2(φ1) = ν(φ1)].
If ν2 = ν, then ν ∈ Vc (because is an augmented valuation). If not, then we choose
φ2 ∈ K[x] monic and of smallest degree among polynomials satisfying ν2(f) < ν(f).
Again, one can prove that φ2 is a key polynomial for ν2 and consider

ν3 = [ν2; ν3(φ2) = ν(φ2)].
We proceed iteratively until we find a valuation νn with νn = ν, or constructing an
infinite sequence {νi}i∈N such that νi 6= ν and νi+1 is an augmented valuation of νi. We
have the following:
Theorem 2.11 (Theorem 8.1 of [5]). If ν0 is a discrete valuation of K of rank one, and
the infinite sequence above has been constructed, then ν = lim νi. In particular, if every
valuation of K is discrete, then Vc = V.
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Remark 2.12. Observe that if ν0 is discrete of rank one, then Γn ⊆ R and we can always
construct limn→∞ νn.

If ν0 is not discrete, then Vc does not have to be equal to V (as will be shown in
Section 6). This happens because we might need a sequence of key polynomials of order
type greater than ω. In order to find a sequence of “augmented” valuations for a given
valuation, Vaquié introduced “limit key valuations” (associated to limit key polynomials).

Vaquié’s idea was to continue the algorithm started above. If the produced sequence
of valuations {νn} is not enough to define the valuation (i.e., if ν is not the “limit” of
the sequence {νn}), then we pick a polynomial of smallest degree for which the sequence
{νn(f)} is bounded and not ultimately constant, and start the process over again (such
a polynomial will be a limit key polynomial). Since the degree of this new polynomial
must be greater than the degree of the key polynomials appearing before, this process will
eventually stop. In the next paragraphs, we present the formal definitions of family of aug-
mented iterated valuations, which extend the notion of the sequence {νn} presented above.

More precisely, a family {να}α∈A of valuations of K[x], indexed by a totally ordered
set A, is called a family of augmented iterated valuations if for all α in A, except α
the smallest element of A, there exists θ in A, θ < α, such that the valuation να is an
augmented valuation of the form να = [νθ; να(φα) = γα], and if we have the following
properties:

• If α admits an immediate predecessor in A, then θ is that predecessor, and in the
case when θ is not the smallest element of A, the polynomials φα and φθ are not
νθ-equivalent and satisfy deg(φθ) ≤ deg(φα);
• if α does not have an immediate predecessor in A, then for all β in A such that
θ < β < α, the valuations νβ and να are equal to the augmented valuations

νβ = [νθ; νβ(φβ) = γβ ] and να = [νβ ; να(φα) = γα],
respectively, and the polynomials φα and φβ have the same degree.

For f, g ∈ K[x], we say that f A-divides g (f |A g) if there exists α0 ∈ A such that
f |να g for every α ∈ A with α > α0. A polynomial φ is said to be A-minimal if for any
polynomial f ∈ K[x] if φ |Af , then deg(φ) ≤ deg(f). Also, we say that φ is A-irreducible
if for every f, g ∈ K[x], if φ |A f · g, then φ |A f or φ |A g.

Definition 2.13. A monic polynomial φ of K[x] is said to be a MacLane–Vaquié limit
key polynomial for the family {να}α∈A if it is A-minimal and A-irreducible.

Let {να}α∈A be a family of iterated valuations of K[x] and, for each α ∈ A, denote
the value group of να by Γνα . Then

ΓA :=
⋃
α∈A

Γνα

is a totally ordered abelian group. For a polynomial f ∈ K[x], the family {να}α∈A is said
to be convergent for f if {να(f)} is unbounded in ΓA or there exists αf ∈ A such that
να(f) = ναf (f) for every α ≥ αf . If {να}α∈A is convergent for every f ∈ K[x], then we
define

lim
α∈A

να(f) := sup
α∈A

να(f).
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Observe that limα∈A να(f) = ∞ if {να(f)} is unbounded and is equal to ναf (f), other-
wise.

Theorem 2.14 (Théorème 2.4 of [9]). Let ν be a valuation of K[x] extending a valuation
ν0 of K. Then, there exists a family of iterated valuations {να}α∈A of K[x], convergent
for every f ∈ K[x], such that

ν(f) = lim
α∈A

να(f).

Remark 2.15. Theorem 2.14 is a generalization of Theorem 2.11. The difference is that,
if ν is not discrete, then we might need a sequence of key polynomials with order type
greater than ω.

3. Spivakovsky’s key polynomials. We start this section by presenting a character-
ization of ε(f) in terms of the fixed extension µ of ν to K[x]. For a monic polynomial
f ∈ K[x], we define

δ(f) := max{µ(x− a) | a is a root of f}.

Example 3.1. Let f(x) = (x− a1)(x− a2)(x− a3). Then

∂1(f) = (x− a1)(x− a2) + (x− a1)(x− a3) + (x− a2)(x− a3)
∂2(f) = (x− a1) + (x− a2) + (x− a3)
∂3(f) = 1.

(i) Assume that µ(x− ai) = i, for i = 1, 2, 3, then

ν(f) = 6, ν(∂1f) = 3, ν(∂2f) = 1 and ν(∂3f) = 0,

and hence

ε(f) = max
{
ν(f)− ν(∂1f)

1 ,
ν(f)− ν(∂2f)

2 ,
ν(f)− ν(∂3f)

3

}
= max

{
3, 5

2 , 2
}

= 3 = δ(f).

(ii) Assume that µ(x− a1) = 1 and µ(x− a2) = µ(x− a3) = 2, then

ν(f) = 5, ν(∂1f) ≥ 3, ν(∂2f) = 1 and ν(∂3f) = 0,

and hence

ε(f) = max
{
ν(f)− ν(∂1f)

1 ,
ν(f)− ν(∂2f)

2 ,
ν(f)− ν(∂3f)

3

}
= max

{
2, 2, 5

3

}
= 2 = δ(f).

The examples above can be generalized to prove the following.

Proposition 3.2 (Proposition 3.1 of [6]). Let f ∈ K[x] be a monic polynomial. Then
δ(f) = ε(f).

In particular, δ(f) does not depend on the choice of the extension µ of ν to K[x].
Let q ∈ K[x] be any polynomial. Then νq does not need to be a valuation (Example

2.5 of [7]). The first important property of key polynomials is the following.
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Proposition 3.3 (Proposition 2.6 of [7]). If Q is a key polynomial, then νQ is a valua-
tion.

We observe that the converse of the above proposition is not true, i.e., there exists a
valuation ν on K[x] and polynomial q ∈ K[x] such that νq is a valuation, but q is not a
key polynomial (Corollary 2.4 of [6]).

For a key polynomial Q ∈ K[x], let

α(Q) := min{deg(f) | νQ(f) < ν(f)}, and
Ψ(Q) :=

{
f ∈ K[x] | f is monic, νQ(f) < ν(f) and α(Q) = deg(f)

}
.

Theorem 3.4 (Theorem 2.12 of [7]). A monic polynomial Q is a key polynomial if and
only if there exists a key polynomial Q− ∈ K[x] such that either Q ∈ Ψ(Q−) or the
following conditions are satisfied:

(K1) α(Q−) = deg(Q−),
(K2) the set {ν(Q′) |Q′ ∈ Ψ(Q−)} does not contain a maximal element,
(K3) νQ′(Q) < ν(Q) for every Q′ ∈ Ψ(Q−),
(K4) Q has the smallest degree among polynomials satisfying (K3).

Definition 3.5. A key polynomial Q is called a (Spivakovsky’s) limit key polynomial if
the conditions (K1)–(K4) of the theorem above are satisfied.

For a set Q ⊆ K[x] we denote by NQ the set of mappings λ : Q −→ N such that
λ(q) = 0 for all but finitely many q ∈ Q. For λ ∈ NQ we denote

Qλ :=
∏
q∈Q

qλ(q) ∈ K[x].

Definition 3.6. A set Q ⊆ K[x] is called a complete set for ν if for every p ∈ K[x] there
exists q ∈ Q such that

deg(q) ≤ deg(p) and ν(p) = νq(p). (2)

Proposition 3.7. If Q ⊆ K[x] is a complete set for ν, then for every p ∈ K[x] there
exist a1, . . . , ar ∈ K and λ1, . . . , λr ∈ NQ, such that

p =
r∑
i=1

aiQ
λi with ν(aiQλi) ≥ ν(p), for every i, 1 ≤ i ≤ r,

and the elements Q ∈ Q appearing in the decomposition of p (i.e., for which λi(Q) 6= 0
for some i, 1 ≤ i ≤ r) have degree smaller than or equal to deg(p). In particular, for
every β ∈ ν(K[x]), the additive group Pβ is generated by the elements aQλ ∈ Pβ where
a ∈ K and λ ∈ NQ.

Remark 3.8. The latter condition in the proposition above appears in [8] as the definition
of generating sequence. The proof of Proposition 3.7 and the Proposition 3.9 below will
appear in a forthcoming paper.

The next result gives us a converse for Proposition 3.7.

Proposition 3.9. Assume that Q is a subset of K[x] with the following properties:

• νQ is a valuation for every Q ∈ Q;
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• for every finite subset F ⊆ Q, there exists Q ∈ F such that νQ(Q′) = ν(Q′) for every
Q′ ∈ F ;
• for every p ∈ K[x] there exist a1, . . . , ar ∈ K and λ1, . . . , λr ∈ NQ such that

p =
r∑
i=1

aiQ
λi with ν(aiQλi) ≥ ν(p), for every i, 1 ≤ i ≤ r,

and deg(Q) ≤ deg(p) for every Q ∈ Q for which λi(Q) 6= 0 for some i, 1 ≤ i ≤ r.

Then Q is a complete set for ν.

Theorem 3.10 (Theorem 1.1 of [7]). Let ν be a valuation on K[x]. Then there exists
a set Q ⊆ K[x] of key polynomials, well-ordered (with the order Q < Q′ if and only if
ε(Q) < ε(Q′)), such that Q is a complete set for ν.

Remark 3.11. The definition of complete set of key polynomials presented in [7] does
not require that the degree of the polynomial Q for which νQ(p) = ν(p) is smaller than
or equal to deg(p). This assumption is important and we use this opportunity to fix
the definition presented there. The proof presented in [7] guarantees that this additional
property is satisfied, hence the theorem above is still valid.

The relation between the key polynomials of Spivakovsky and those of MacLane–
Vaquié is given by the following.

Theorem 3.12 (Theorem 23 of [2]). Let Q be a Spivakovsky’s key polynomial for ν. Then
Q is a MacLane–Vaquié key polynomial for νQ.

We also have the following.

Theorem 3.13 (Theorem 26 of [2]). Let Q and Q′ be two Spivakovsky’s key polynomials
for ν such that Q′ ∈ Ψ(Q). Then Q′ is a MacLane–Vaquié key polynomial for νQ.

As for the converse, we have:

Theorem 3.14 (Corollary 29 of [2]). Let Q be a MacLane–Vaquié key polynomial for ν
and ν′ a valuation of K[x] for which ν′(Q) > ν(Q) and ν′(f) = ν(f) for every f ∈ K[x]
with deg(f) < deg(Q). Then Q is a Spivakovsky’s key polynomial for ν′.

From now on, by key polynomial we will mean Spivakovsky’s key polynomial, unless
stated explicitly.

4. Pseudo-convergent sequences. Let {aρ}ρ<λ be a pseudo-convergent sequence for
(K, ν). For every polynomial f(x) ∈ K[x], there exists ρf < λ such that either

ν(f(aσ)) = ν(f(aρf )) for every ρf ≤ σ < λ, (3)

or
ν(f(aσ)) > ν(f(aρ)) for every ρf ≤ ρ < σ < λ. (4)

Definition 4.1. A pseudo-convergent sequence {aρ}ρ<λ is said to be of transcendental
type if for every polynomial f(x) ∈ K[x] condition (3) holds. Otherwise, {aρ}ρ<λ is said
to be of algebraic type.
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The next two theorems justify the definitions of algebraic and transcendental pseudo-
convergent sequences.
Theorem 4.2 (Theorem 2 of [3]). If {aρ}ρ<λ is a pseudo-convergent sequence of trans-
cendental type, without a limit in K, then there exists an immediate transcendental exten-
sion K(z) of K defined by setting ν(f(z)) to be the value ν(f(aρf )) as in condition (3).
Moreover, for every valuation µ in some extension K(u) of K, if u is a pseudo-limit of
{aρ}ρ<λ, then there exists a value preserving K-isomorphism from K(u) to K(z) taking
u to z.
Theorem 4.3 (Theorem 3 of [3]). Let {aρ}ρ<λ be a pseudo-convergent sequence of alge-
braic type, without a limit in K, q(x) a polynomial of smallest degree for which (4) holds
and z a root of q(x). Then there exists an immediate algebraic extension of K to K(z)
defined as follows: for every polynomial f(x) ∈ K[x], with deg f < deg q we set ν(f(z))
to be the value ν(f(aρf )) as in condition (3). Moreover, if u is a root of q(x) and µ is
some extension K(u) of K making u a pseudo-limit of {aρ}ρ<λ, then there exists a value
preserving K-isomorphism from K(u) to K(z) taking u to z.

5. Comparison results. In this section we describe explicitly the relation between key
polynomials, pseudo-convergent sequences and minimal pairs.
Theorem 5.1 (Theorem 1.2 of [7]). Let {aρ}ρ<λ ⊂ K be a pseudo-convergent sequence,
without a limit in K, for which x is a limit. If {aρ}ρ<λ is of transcendental type, then

Q := {x− aρ | ρ < λ}
is a complete set of key polynomials for ν. On the other hand, if {aρ}ρ<λ is of algebraic
type, then every polynomial q(x) of minimal degree among the polynomials not fixed by
{aρ}ρ<λ is a limit key polynomial for ν.

The theorem above gives us a way to interpret pseudo-convergent sequences in terms
of key polynomials. The next theorem gives us a way to obtain the opposite relation.
Proposition 5.2 (Proposition 1.2 of [6]). Let Q be a complete sequence of key polyno-
mials for ν, without last element. For each Q ∈ Q, let aQ ∈ K be a root of Q such that
µ(x − aQ) = δ(Q). Then {aQ}Q∈Q is a pseudo-convergent sequence of transcendental
type, without a limit in K, such that x is a limit for it.

We also want to describe the relation between key polynomials and minimal pairs.
The next result gives us such a relation.
Theorem 5.3 (Theorem 1.1 of [6]). Let Q ∈ K[x] be a monic irreducible polynomial and
choose a root a of Q such that µ(x − a) = δ(Q). Then Q is a key polynomial for ν if
and only if (a, δ(Q)) is a minimal pair for ν. Moreover, (a, δ(Q)) is a minimal pair of
definition for ν if and only if ν = νQ.

6. Example. The main goal of this section is to present an example that will illustrate
the objects introduced in the previous sections (i.e., pseudo-convergent sequences, key
polynomials, truncations, etc.). The process used in its construction is a matter of research
at the moment, and we hope to make it general in the near future.
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Let k be an algebraically closed field of characteristic p > 0 (e.g., k = Fp) and
K = k(y)1/p∞ the perfect hull of k(y) inside of k((yQ)). Set ν0 to be the valuation on K
induced by the y-adic valuation νy on k((yQ)).

6.1. Construction of the first limit key polynomial. Let x be an indeterminate
over K and extend ν0 to K[x] by setting

ν1 (a0 + a1x+ . . .+ anx
n) := min

0≤i≤n

{
ν0(ai)−

i

p

}
.

In the MacLane–Vaquié’s language, we see that ν1 is the monomial valuation given by

ν1 =
[
ν0; ν1(x) = −1

p

]
.

Consider the polynomial φω = xp − x− y−1 ∈ K[x]. Then

ν1(φω) = min
{
ν1(xp), ν1(x), ν1(y−1)

}
= min

{
−1,−1

p
,−1

}
= −1.

One can show that φ2 := x− y−1/p is a (MacLane–Vaquié’s) key polynomial for ν1 and
we consider the augmented valuation

ν2 :=
[
ν1; ν2(φ2) = − 1

p2

]
.

Writing x = φ2 + y−1/p, we have

φω =
(
φ2 + y−1/p)p − (φ2 + y−1/p)− y−1

= φp2 + y−1 − φ2 − y−1/p − y−1 = φp2 − φ2 − y−1/p.

Hence,

ν2(φω) = min
{
ν2(φp2), ν2(φ2), ν2(y−1/p)

}
= min

{
−1
p
,− 1

p2 ,−
1
p

}
= −1

p
.

Continuing the process, one can show that φ3 := φ2 − y−1/p2 = x − y−1/p − y−1/p2 is a
(MacLane–Vaquié’s) key polynomial for ν2 and define

ν3 :=
[
ν2; ν3(φ3) = − 1

p3

]
.

Putting φ2 = φ3 + y−1/p2 gives us

φω = φp3 − φ3 − y−1/p2
and ν3(φω) = − 1

p2 .

We proceed in this manner, until we obtain a sequence of valuations {νn}n∈N for which

φn+1 = x−
n∑
i=0

y−1/pi ∈ K[x]

is a (MacLane–Vaquié’s) key polynomial for νn and

νn+1 :=
[
νn; νn+1(φn+1) = − 1

pn+1

]
.
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Analogously to what we did before, we have

φω = φpn+1 − φn+1 − y−1/pn and νn+1(φω) = − 1
pn
. (5)

Setting an =
∑n
i=0 y

−1/pi we see that {an}n∈N ⊆ K is a pseudo-convergent sequence
for ν0. Indeed, for m < n < l we have

ν0(an − am) = ν0

( n∑
i=m+1

y−1/pi
)

= − 1
pm+1 < −

1
pn+1 = ν0(al − an).

Let K be the algebraic closure of K inside k((yQ)) and denote the valuation induced
on K by the y-adic valuation again by ν0. Then η :=

∑∞
i=1 y

−1/pi ∈ K, because it is a
root of φω. It is immediate from the definition that η is a limit for {an}n∈N. Hence, any
other limit of {an}n∈N should be of the form η + η′ with ν0(η′) ≥ 0 and hence cannot
belong to K. Now, since φn+1 = x− an, we have φn+1(an) = 0 and consequently by (5),
we have

ν0(φω(an)) = ν0
(
φpn+1(an)− φn+1(an)− y−1/pn) = ν0

(
−y−1/pn) = − 1

pn
.

Therefore the value of φω is not fixed by {an}n∈N.
We claim that φω is a polynomial of smallest degree whose value is not fixed by

{an}n∈N. Indeed, it follows from [3] that such a degree must be a power of p. Since
{an}n∈N does not have a limit in K, such a degree must be greater than or equal to p.
Since deg(φω) = p, we conclude that φω has the smallest degree possible.

One can show that the sequence {νn}n∈N is a sequence of augmented valuations on
K[x] and that φω is a limit key polynomial (in Vaquié’s language) for {νn}n∈N.

6.2. Construction of the second limit key polynomial. Now take γ ∈ Q ∪ {∞}
with γ ≥ 0. Since 0 > − 1

pn = νn(φω) for every n ∈ N, we can consider the valuation

νω :=
[
{νn}n∈N; νω(φω) = γ

]
. (6)

Remark 6.1. If γ = ∞, then νω induces a valuation on K(η) = K[x]/(φω) which is
exactly the valuation given in Theorem 4.3. In this case, the pseudo-convergent sequence
{an}n∈N can be thought of as a “pseudo-convergent sequence of algebraic type with an
algebraic limit” (because in this case η is a limit for it).

So far, we have constructed an example where the sequence of key polynomials of
order type ω “is not enough to construct the valuation”. In terms of pseudo-convergent
sequences, this means that the pseudo-convergent sequence is of algebraic type. We will
now continue the construction, starting from the valuation νω defined by the limit key
polynomial φω.

Set γ = 0 and let φ2ω := φpω − yφω − 1. Then

νω(φ2ω) = min
{
νω(φpω), νω(yφω), νω(1)

}
= min{0, 1, 0} = 0.

One can show that φω+1 = φω − 1 is a (MacLane–Vaquié’s) key polynomial for νω and
we can define the valuation

νω+1 :=
[
νω; νω+1(φω+1) = 1

p

]
.
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Since φω = φω+1 + 1, we have

φ2ω = (φω+1 + 1)p − y(φω+1 + 1)− 1
= φpω+1 + 1− yφω+1 − y − 1 = φpω+1 − yφω+1 − y.

Hence,
νω+1(φ2ω) = min

{
νω+1(φpω+1), νω+1(yφω+1), ν0(y)

}
= 1.

One can prove that
φω+2 := φω+1 − y1/p = φω − 1− y1/p

is a (MacLane–Vaquié’s) key polynomial for νω+1. We set

νω+2 :=
[
νω+1; νω+2(φω+2) = 1 + p

p2

]
.

Then

φ2ω =
(
φω+2 + y1/p)p − y(φω+2 + y1/p)− y = φpω+2 − yφω+2 − y(1+p)/p

and consequently,

νω+2(φ2ω) = min
{
νω+2(φpω+2), νω+2(yφω+2), ν0(y(1+p)/p)

}
= 1 + p

p
.

We can construct a sequence of valuations {νω+n}n∈N such that

φω+n+1 = φω+n − y(1+...+pn−1)/pn = φω − 1−
n∑
i=1

y(1+...+pi−1)/pi ∈ K[x]

is a (MacLane–Vaquié’s) key polynomial for νω+n and

νω+n+1 :=
[
νω+n; νω+n+1(φω+n+1) = 1 + . . .+ pn

pn+1

]
.

Also,

φ2ω = φpω+n+1 − yφω+n+1 − y(1+...+pn)/pn and νω+n+1(φ2ω) = 1 + . . .+ pn

pn
.

Remark 6.2. The sequence {νω+n}n∈N is an augmented sequence of valuations (in the
Vaquié’s language) and

νω+n(φ2ω) > νω+m(φ2ω) if n > m.

If ν is a valuation of K[x] such that

ν(φi) = νi(φi) for every i, 0 ≤ i < 2ω, (7)

then one can show that φ2ω is a (MacLane–Vaquié’s) limit key polynomial for ν. Moreover,
for each i, 0 ≤ i < 2ω, the polynomial φi is a key polynomial for ν and νφi = νi.

6.3. Alternative construction. In this section we will present an alternative way of
constructing valuations νη′ on K[x] from an element η′ ∈ k((yQ)). Moreover, we will
present an element η′ ∈ k((yQ)) such that the valuations νi in the previous sections can
be obtained by the truncations of νη′ on the polynomials φi.
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Fix η′ ∈ k((yQ)) \K. Since k((yQ)) is algebraically closed, we can define a valuation
on K[x] by setting

νη′(anxn+. . .+a0) := ν0(an)+
r∑
i=1

νy(η′−ηi) where anxn+. . .+a0 = an

r∏
i=1

(x−ηi). (8)

In other words, νη′(p(x)) = νy(p(η′)) for each p(x) ∈ K[x].
Remark 6.3. Observe that if η′ is transcendental, then the valuation defined above
extends to a valuation on K(x), because in this case, supp(ν) = 0. On the other hand, if
η′ is algebraic, then for the minimal polynomial pη′ of η′ over K we have νη′(pη′) = ∞.
Since pη′ is irreducible, we have supp(ν) = (pη′). Hence, the valuation defined above
induces a valuation on K(η′) = K[x]/(pη′) (see Remark 2.3).

One can prove that if
η′ = η + η′′ with supp(η′′) ≥ 0, (9)

then the truncation of νη′ on the polynomial φi, 1 ≤ i < ω, is exactly νi. Moreover, if
η′′ is transcendental over K, then {an}n∈N is a “pseudo-convergent sequence of algebraic
type with a transcendental pseudo-limit” (because η′ is a limit of it).

In order to obtain η′′ in expression (9) such that for each i, ω ≤ i < 2ω, the truncation
of νη′ on φi is νi, we need the following remark.
Remark 6.4. If

p(x) = xp − x− a0 − a1 − . . .− an ∈ K[x], a0, . . . , an ∈ K
is an Artin–Schreier polynomial, then all the roots of p are

η0 + . . .+ ηn + j, 0 ≤ j ≤ p− 1, where ηi is a root of xp − x− ai.
Let η1 ∈ k be a root of xp − x − 1. Then η + η1 + j, 0 ≤ j ≤ p − 1, are all the roots
of φω+1. On the other hand, for each α ∈ Q>0 we see that

θα := −
∞∑
i=0

yp
iα ∈ k((yQ)) is a root of Xp −X − yα.

Hence, if for n > 1 we set ηn := θ(1+...+pn−2)/pn−1 , then
η + η1 + . . .+ ηn + j, 0 ≤ j ≤ p− 1, are all the roots of φω+n.

Take

η′ = η + η1 − y1/p − . . .− y(1+...+pn−1)/pn − . . . = η + η1 −
∞∑
i=1

y(1+...+pi−1)/pi .

Then

νη′(x− η + η1 + . . .+ ηn) = νy(η′ − η + η1 + . . .+ ηn) = 1 + . . .+ pn

pn+1

and
νη′(x− η + η1 + . . .+ ηn + j) = 0 for every j, 1 ≤ j ≤ p− 1.

Hence
νη′(φω+n) = 1 + . . .+ pn−1

pn
= νω+n(φω+n).

One can show that, in this case, for each i, 1 ≤ i < 2ω, the truncation of νη′ on φi is νi.
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6.4. Algorithm. The process to construct key polynomials used here is based in an
algorithm which is a matter of research at the moment. Our hope is that this algorithm
will allow us to give a description of the key polynomials associated to a valuation in a
constructive way. Such a description is very important in the program of Spivakovsky to
solve the local uniformization problem in positive characteristic.

This algorithm can be described vaguely as follows. Once you have a limit key poly-
nomial φ, there are polynomials which are candidates to be the next limit key polynomial
(they can be described in terms of p-polynomials and suitable Newton polygons). Once
you fix a candidate ψ, one can use an algorithm similar to the Newton’s method to ap-
proximate roots of a polynomial to obtain the key polynomials q, such that φ < q < ψ

(where the order is given by φ < q if and only if ε(φ) < ε(q)). Observe that in the
constructions of Section 6.1 we found the polynomials φi, 1 ≤ i < ω, depending on the
polynomial φω = xp − x − y−1. In Section 6.2, we also constructed the key polynomials
φω+n depending on the polynomial φ2ω = φpω − yφω − 1.
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