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Abstract. We study the most famous example of a large financial market: the Arbitrage Pricing
Model, where investors can trade in a one-period setting with countably many assets admitting a
factor structure. We consider the problem of maximising expected utility in this setting. Besides
establishing the existence of optimizers under weaker assumptions than previous papers, we
go on studying the relationship between optimal investments in finite market segments and
those in the whole market. We show that certain natural (but nontrivial) continuity rules hold:
maximal satisfaction, reservation prices and (convex combinations of) optimizers computed in
small markets converge to their respective counterparts in the big market.

1. Introduction. Arbitrage Pricing Theory (APT) was conceived by [21] in order to
derive the conclusions of Capital Asset Pricing Model (see [15, 22]) from alternative
assumptions. These remarkable conclusions had a huge bearing on empirical work but
they somehow overshadowed the highly inventive model suggested in [21].

Mathematical finance subsequently took up the idea of a market with countably many
assets and the theory of large financial markets was founded in [10] and further developed
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in e.g. [11, 13, 14, 12, 5], just to mention a few. For the sake of generality, continuous
trading was assumed in the overwhelming majority of related papers which, again, eclipsed
the original setting of [21].

While the arbitrage theory of the large financial markets has been worked out in
[10, 11] satisfactorily in continuous time, other crucial topics — such as utility maxi-
mization or superreplication — brought about only dubious conclusions and unsettled
questions. Portfolios in finitely many assets were considered in the above references and
a natural definition for strategies involving possibly all the assets was missing. General-
ized portfolios were introduced (see [7, 5, 16]) as suitable limits of portfolios with finitely
many assets. They lacked, however, a clear economic interpretation. In the APT (and,
for the moment, only in that model) [20] introduces a straightforward concept of port-
folios in infinitely many assets which we will use in the present paper. In [4] it is proved
that assuming absence of arbitrage in all of the small markets and under integrability
conditions, the no arbitrage condition stated with infinitely many assets also holds true.
In the same paper, the authors obtain a dual representation of the superreplication cost
of a contingent claim.

In this paper, we investigate the existence of optimizers for utility functions on the
whole real line (the positive real axis case was treated in [4]) and we relax some rather
stringent conditions imposed in [20, 19]. From both a theoretical and a computational
viewpoint it is crucial to clarify the relationship between optimal investment in the finite
markets and those in the whole market.

In our setup, it is expected that the value functions in finite markets perform asymp-
totically as well as the value function in the large market. Considering utility indifference
prices, these should also converge as the number of assets increases. While these facts
are intuitive, no formal justification has been provided so far. We prove these facts in
Theorem 3.9 and Corollary 3.11 below. We also prove that certain convex combinations
of the optimal portfolios in finite markets perform asymptotically as well as the overall
optimizer.

Asymptotic results for superhedging and mean-variance hedging have been obtained
in [2, 3]. In the utility maximization context the first such result is Theorem 5.3 of [20]
where it was shown that there exists a sequence of strategies in finite markets whose
values converge to the optimal value. That paper, however, assumed that asset price
changes may take arbitrarily large negative and positive values which is a rather strong
requirement. Under the more relaxed conditions of the present work we also show the
existence of such sequence, moreover, they can be chosen to be averages of finite market
optimizers, see Theorem 3.9 below.

Section 2 presents the model and recalls some useful results from [4]. Section 3 contains
the main contributions: existence of utility maximization and the asymptotics from small
markets to big markets.



FROM SMALL MARKETS TO BIG MARKETS 43

2. The large market model. Let (Ω,F , P ) be a probability space. We consider a two
stage Arbitrage Pricing Model. For any i ≥ 1, let the return on asset i be given by

Ri = β̄i(εi − bi), 1 ≤ i ≤ m;

Ri =
m∑
j=1

βji (εj − bj) + β̄i(εi − bi), i > m,

where the (εi)i≥1 are random variables and (β̄i)i≥1, (bi)i≥1, (βji )i>m,1≤j≤m are constants.
We refer to [10, 18, 19] for further discussions on the model.

Assumption 2.1. The (εi)i≥1 are square-integrable, independent random variables sat-
isfying

E(εi) = 0, E(ε2
i ) = 1, i ≥ 1.

We consider strategies using potentially infinitely many assets and belonging to

`2 :=
{

(hi)i≥1 |hi ∈ R, i ≥ 1,
∞∑
i=1

h2
i <∞

}
,

which is an Hilbert space with the norm ||h||`2 :=
√∑∞

i=1 h
2
i .

Let L2(Ω,F , P ) := {X : Ω → R |E|X|2 < ∞} (denoted by L2(P ) from now on),
which is again a Hilbert space with the norm ||X||L2 :=

√
E(|X|2). For h ∈ `2, let

Φ(h) :=
∑∞
i=1 hiεi, where the infinite sum in Φ(h) has to be understood as the limit in

L2(P ) of the finite sequences (
∑n
i=1 hiεi)n≥1. Then Φ is an isometry from `2 to L2(P ).

Assumption 2.2. We have ‖b‖`2 <∞.

Under Assumption 2.2, we have (see (2) in [4]):

E
(( ∞∑

i=1
hi(εi − bi)

)2)
≤ (1 + ‖b‖2`2

)‖h‖2`2
<∞, (1)

and we may consider again the infinite sum 〈h, ε− b〉 :=
∑∞
i=1 hi(εi − bi). Note that

E(|〈h, ε− b〉|) ≤
√
E(〈h, ε− b〉)2 ≤

√
1 + ‖b‖2`2

‖h‖`2 .

The (self-financed) value at time 1 that can be attained starting from x and using a
strategy h in `2 with infinitely many assets is given by

V x,h := x+ 〈h, ε− b〉.

Assumption 2.3. For all i ≥ 1,

P (εi > bi) > 0 and P (εi < bi) > 0.

Fix N ≥ 1. Using Lemma 3.1 in [4], under Assumptions 2.1 and 2.3, there exists some
αN ∈ (0, 1) such that for every (h1, . . . , hN ) ∈ RN satisfying

∑N
i=1 h

2
i = 1 we have

P
( N∑
i=1

hi(εi − bi) < −αN
)
> αN . (2)

This condition is the so called quantitative no-arbitrage condition on any “small market”
with N random sources and it is well-known that this condition is equivalent to the
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existence of a equivalent martingale measure for the finite market with assets R1, . . . , RN
(see [6] and [8]).

However, we need the existence of martingale measures for the whole market and even
sufficient integrability of the martingale density. We say that EMM2 holds if

M2 :=
{
Q |Q ∼ P, dQ

dP
∈ L2(P ), EQ(εi) = bi ∀ i ≥ 1

}
6= ∅. (3)

Unfortunately, Assumptions 2.1, 2.2 and 2.3 are known not to be sufficient for ensuring
that EMM2 holds (see Proposition 4 of [18]). Hence we also need the following technical
condition.

Assumption 2.4. We have
sup
i≥1

E[|εi|3] <∞. (4)

Lemma 2.5. Under Assumptions 2.1, 2.3 and 2.4,

Assumption 2.2 ⇐⇒ EMM2. (5)

Proof. This is Corollary 1 of [18].

Lemma 2.6 below asserts that the quantitative no arbitrage condition, mentioned
above, is true in the large market, too.

Lemma 2.6. Assume that Assumptions 2.1, 2.2, 2.3 and 2.4 hold. Then there exists some
α > 0, such that for all h ∈ `2 satisfying ‖h‖`2 = 1

P (〈h, ε〉 < −α) > α.

Proof. This is Proposition 3.2 in [4].

Remark 2.7. If Q ∈ M2 is such that dQ/dP ∈ L2 and if Assumption 2.2 holds then
EQ(V 0,h) = 0 for all h ∈ `2, see Remark 3.1 of [4].

Lemma 2.8 below will be used in the proofs of Theorems 3.8 and 3.9 in order to show
uniform integrability.

Lemma 2.8. Assume that Assumptions 2.1 and 2.2 hold and that supi≥1E|εi|γ <∞ for
some γ ≥ 2. Then there is a constant Cγ such that, for all h ∈ `2

E|〈h, ε− b〉|γ ≤ Cγ‖h‖γ`2
(1 + ‖b‖γ`2

).

Proof. This is Lemma 3.3 in [4].

Remark 2.9. Let 0 < λ < γ and c > 0. Fix h ∈ `2, ‖h‖`2 ≤ c. Using Assumption 2.4,
Hölder inequality and Lemma 2.8, we get for any A ∈ F :

E(|V x,h|λ1A) ≤ 2λ−1|x|λP (A) + 2λ−1E(|〈h, ε− b〉|λ1A)

≤ 2λ−1|x|λP (A) + 2λ−1(E(|〈h, ε− b〉|γ))λ/γ(P (A))1/q

≤ 2λ−1|x|λP (A) + 2λ−1cλ(Cγ(1 + ‖b‖γ`2
))λ/γ(P (A))1/q,

where q is the conjugate of γ/λ. So an important consequence of Assumption 2.4 is that
for any c > 0 and 0 < λ < 3 {|V x,h|λ |h ∈ `2, ‖h‖`2 ≤ c} is uniformly integrable.
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We finally recall an important concept of functional analysis. A Banach space B has
the Banach–Saks property if, for every norm-bounded sequence ξn ∈ B, n ∈ N, there
exists a subsequence nk, k ∈ N, such that the corresponding arithmetic means

ξn0 + . . .+ ξnk−1

k

converge in the norm of B. It was proved in [1] that Lp spaces have this property. In the
present paper we will apply this result in the Hilbert space `2.

3. Utility maximisation. It is standard (see [17]) to model economic agents’ prefer-
ences by concave increasing utility functions U . So suppose that U : R→ R is a concave
strictly increasing differentiable function and that for some x0 ∈ R

U(x0) = 0 and U ′(x0) = 1. (6)
For a claim G ∈ L0 and x ∈ R, we define

A(U,G, x) :=
{
h ∈ `2 |EU−(V x,h −G) < +∞

}
.

Define the supremum of expected utility at the terminal date when delivering a contingent
claim G, starting from initial wealth x ∈ R, by

u(G, x) := sup
h∈A(U,G,x)

EU(V x,h −G). (7)

The following assumptions will be needed in Theorems 3.8 and 3.9.
Assumption 3.1. There exist some constants C1 ∈ (0,∞), C2 ∈ R+ and β > 1 such
that for all x ≤ x0

|U(x)| ≥ C1|x|β − C2.

Assumption 3.2. There exist some constants C3 ∈ (0,∞), C4 ∈ R+ and γ ≥ max(β, 2)
such that for all x ∈ R

U−(x) ≤ C3|x|γ + C4

and
sup
i≥1

E
[
|εi|γ

]
<∞. (8)

Assumption 3.3. We have G ≥ 0 a.s. and it satisfies |E(U(x−G))| < +∞, for all x ∈ R.
Remark 3.4. Assumption 3.3 is satisfied whenever G is nonnegative, measurable and
bounded. Define

U(x) := −1
δ

[
(x+ 1)−δ − 1

]
1{x>0} −

1
β

[
(1− x)β − 1

]
1{x≤0}

for some β ≥ 2 and δ > 0. Then U is concave, strictly increasing, continuously differen-
tiable and satisfies both Assumptions 3.1 and 3.2 whenever supi≥1E[|εi|β ] < ∞. Note
that Assumption 2.4 implies (8) when 2 ≤ β ≤ 3.
Remark 3.5. Let U be concave, strictly increasing and differentiable, satisfying Assump-
tions 3.1, 3.2 and 3.3. Then (6) actually imposes no restriction on U . Indeed, as U cannot
be constant, there exists x0 ∈ R such that U ′(x0) > 0. Define

V (x) := U(x)
U ′(x0) −

U(x0)
U ′(x0) ,
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which obviously satisfies (6). Moreover,

|V (x)| ≥ C1

U ′(x0) |x|
β − C2

U ′(x0) −
|U(x0)|
U ′(x0) , x ≤ x0,

V −(x) ≤ C3

U ′(x0) |x|
γ + C4

U ′(x0) + U+(x0)
U ′(x0) , x ∈ R,

|E(V (x−G))| ≤ |E(U(x−G))|
U ′(x0) + |U(x0)|

U ′(x0) <∞.

So Assumptions 3.1, 3.2 and 3.3 hold for V . One may apply Theorems 3.8, 3.9 and
Corollary 3.11 below to V and then the same results can be deduced for U .

The following lemmata will be used in the proofs of Theorems 3.8 and 3.9.

Lemma 3.6. Let Assumption 2.2 hold and assume G ≥ 0 a.s. Then for all y ∈ R and
h ∈ `2

U+(y + 〈h, ε− b〉 −G) ≤ |x0|+ |y + 〈h, ε− b〉|. (9)

Proof. As U is increasing, concave and differentiable, recalling (6), we get for all y ∈ R,

U(y) ≤ U(max(x0, y)) ≤ U(x0) + max(y − x0, 0)U ′(x0)
≤ max(y − x0, 0) ≤ |y − x0| ≤ |y|+ |x0|.

If h ∈ `2, then

U+(y + 〈h, ε− b〉 −G) ≤ U+(y + 〈h, ε− b〉)
≤ U+(y + 〈h, ε− b〉)1y+〈h,ε−b〉≥x0 + U+(x0)1y+〈h,ε−b〉<x0

= U(y + 〈h, ε− b〉)1y+〈h,ε−b〉≥x0 ≤ |x0|+ |y + 〈h, ε− b〉|.

Lemma 3.7 asserts that an optimal solution for (7) must be bounded.

Lemma 3.7. Assume that Assumptions 2.1, 2.2, 2.3, 2.4, 3.1 and 3.3 hold. Let x ∈ R.
There exists some constant Mx,G > 0 such that if h ∈ `2 satisfies

‖h‖`2 > Mx,G

then the 0 strategy performs better than h, that is,

EU(x−G) > EU(x+ 〈h, ε− b〉 −G).

Proof. Let x ∈ R and h ∈ `2. Recall α > 0 from Lemma 2.6. As b ∈ `2, there exists some
nα ≥ 1 such that

(∑
i≥nα+1 b

2
i

)1/2 ≤ α/2. Let
h := (h1, . . . , hnα , 0, . . . ) and b =: (b1, . . . , bnα , 0, . . . )
h := (0, . . . , 0, hnα+1, . . . ) and b =: (0, . . . , 0, bnα+1, . . . ).

From the no-arbitrage condition in the market with nα assets (see (2)) there exists
αnα such that P (A) > αnα , where A :=

{∑nα
i=1 hi(εi − bi) < −αnα‖h‖`2

}
. Let B :={∑

i≥nα+1 hiεi ≤ −α‖h‖`2

}
then P (B) > α (recall Lemma 2.6). As the (εi)i≥1 are
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independent, we see that P (A ∩B) = P (A)P (B) > αnαα. On A ∩B,

〈h, ε− b〉 = 〈h, ε− b〉+ 〈h, ε− b〉 ≤ −αnα‖h‖`2 − α‖h‖`2 − 〈h, b〉
≤ −αnα‖h‖`2 − α‖h‖`2 + ‖b‖`2‖h‖`2

≤ −αnα‖h‖`2 − α‖h‖`2 + α/2‖h‖`2 ≤ −α(‖h‖`2 + ‖h‖`2),

where α = inf(αnα , α/2). Thus P (〈h, ε− b〉 < −α(‖h‖`2 + ‖h‖`2)) > αnαα. Assume that
‖h‖`2 + ‖h‖`2 ≥ max

(
x−x0
α , |x|α

)
. Then applying Lemma 3.6 and Assumption 3.1, we get

EU(V x,h −G) ≤ E
(
U(x+ 〈h, ε− b〉)1〈h,ε−b〉<−α(‖h‖`2 +‖h‖`2 )

)
+ E

(
U+(x+ 〈h, ε− b〉)1〈h,ε−b〉≥−α(‖h‖`2 +‖h‖`2 )

)
≤ U(x− α(‖h‖`2 + ‖h‖`2))αnαα+ |x0|+ E

∣∣x+ 〈h, ε− b〉+ 〈h, ε− b〉
∣∣

≤ U(x− α(‖h‖`2 + ‖h‖`2))αnαα+ |x0|+ |x|+ ‖h‖`2

√
1 + ‖b‖2`2

+ ‖h‖`2

√
1 + ‖b‖2`2

≤
(
−C1

∣∣α(‖h‖`2 + ‖h‖`2)− x
∣∣β + C2

)
αnαα+ |x0|+ |x|+ (‖h‖`2 + ‖h‖`2)

√
1 + ‖b‖2`2

≤
(
−C1α

β(‖h‖`2 + ‖h‖`2)β + C2
)
αnαα+ |x0|+ |x|+ (‖h‖`2 + ‖h‖`2)

√
1 + ‖b‖2`2

,

because U(x− α(‖h‖`2 + ‖h‖`2)) ≤ U(x0) = 0 and∣∣α(‖h‖`2 + ‖h‖`2)− x
∣∣β ≥ ∣∣α(‖h‖`2 + ‖h‖`2)− |x|

∣∣β =
(
α(‖h‖`2 + ‖h‖`2)− |x|

)β
≥ αβ(‖h‖`2 + ‖h‖`2)β .

Assume that

(‖h‖`2 + ‖h‖`2)
√

1 + ‖b‖2`2
− C1

2 αnααα
β(‖h‖`2 + ‖h‖`2)β < 0

−C1

2 αβαnαα(‖h‖`2 + ‖h‖`2)β + |x0|+ |x|+ C2αnαα < −|EU(x−G)| ≤ EU(x−G),

which is true if ‖h‖`2 + ‖h‖`2 > Mx,G, where

Mx,G := max
((

2 |x0|+ |x|+ C2αnαα+ |E(U(x−G))|
C1αnααα

β

)1/β
,

(
2

√
1 + ‖b‖2`2

C1αnααα
β

)1/(β−1))
.

Then, setting Mx,G := max
(
x−x0
α , |x|α ,Mx,G

)
, if ‖h‖`2 + ‖h‖`2 > Mx,G,

EU(V x,h −G) < EU(x−G) (10)

so the strategy 0 performs better than h. It follows that ‖h‖`2 > Mx,G implies (10) since

‖h‖`2 =
(
‖h‖2`2

+ ‖h‖2`2

)1/2 ≤ ‖h‖`2 + ‖h‖`2 .

Now we present our first main result. We establish the existence of an optimizer for
the utility maximization problem. In [19] this was shown assuming uniformly bounded
exponential moments for the εi. In [20] the moment condition was weak but it was
assumed that all the εi take arbitrarily large negative and positive values. Here we do
not need the latter assumption and merely assume (4) and (8).
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Theorem 3.8. Assume that Assumptions 2.1, 2.2, 2.3, 2.4, 3.1, 3.2 and 3.3 hold. Let
x ∈ R. There exists h∗ ∈ A(U,G, x) such that

u(G, x) = EU(V x,h
∗
−G).

Proof. Let x ∈ R and let hn ∈ A(U,G, x) be a sequence such that

EU(V x,hn −G) ↑ u(G, x), n→∞.

If ‖hn‖`2 > Mx,G, then using Lemma 3.7, we can replace hn by 0 and still have a
maximising sequence. So one can assume that supn∈N ‖hn‖`2 ≤ Mx,G < ∞. Hence as
`2 has the Banach–Saks Property, there exists a subsequence (nk)k≥0 and some h∗ ∈ `2
such that for h̃n := 1

n

∑n−1
k=0 hnk

‖h̃n − h∗‖`2 → 0, n→∞.

Using (1), we get

E〈h̃n − h∗, ε− b〉2 ≤ ‖h̃n − h∗‖2`2
(1 + ‖b‖2`2

)→ 0,

when n → ∞. In particular, 〈h̃n − h∗, ε − b〉 → 0, n → ∞ in probability. Hence also
U(V x,̃hn − G) → U(V x,h∗ − G) in probability by continuity of U . We claim that the
family U+(V x,̃hn −G), n ∈ N, is uniformly integrable. Indeed, from (9)

U+(V x,̃hn −G) ≤ |x0|+ |V x,̃hn |.

We know that supn∈N ‖h̃n‖`2 ≤Mx,G <∞. Hence from Assumption 2.4 (see Lemma 2.8
and Remark 2.9), we infer that {U+(V x,̃hn −G), hn ∈ `2, ‖h̃n‖`2 ≤ Mx,G} is uniformly
integrable. Fatou’s lemma used for −U− implies that

E(−U−(V x,h
∗
−G)) ≥ lim sup

n→∞
E(−U−(V x,̃hn −G)),

and uniform integrability guarantees that

lim
n→∞

E(U+(V x,̃hn −G)) = E(U+(V x,h
∗
−G)).

Thus, by concavity of U

EU(V x,h
∗
−G) ≥ lim sup

n→∞
EU(V x,̃hn −G) ≥ lim

n→∞
EU(V x,hn −G) = u(G, x),

and the proof will be finished as soon as we show h∗ ∈ A(U,G, x). From Assumption 3.2
and Lemma 2.8,

EU−(V x,̃hn −G) ≤ C3E|V x,̃hn −G|γ + C4

≤ C3
(
2γ−1(|x|γ + E| < h̃n, ε− b > |γ)

)
+ C4

≤ C3
(
2γ−1(|x|γ + CγM

γ
x,G(1 + ‖b‖γ`2

)
))

+ C4 =: K.

(11)

Fatou’s lemma used for U− implies that

E(U−(V x,h
∗
−G)) ≤ lim inf

n→∞
E(U−(V x,̃hn −G)) ≤ K.
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We consider now the problem of optimization in the small market n with only the
random sources (εi)1≤i≤n. Let

An(U,G, x) :=
{
h ∈ `2 |hi = 0 ∀ i ≥ n+ 1, EU−(V x,h −G) < +∞

}
.

Note that An(U,G, x) ⊂ An+1(U,G, x) ⊂ . . . ⊂ A(U,G, x). We set for n ∈ N

un(G, x) := sup
h∈An(U,G,x)

EU(V x,h −G). (12)

Now we arrive at the principal message of our paper: optimization problems in the
small markets behave consistently with those on the big market, in a natural way.
Theorem 3.9. Assume that Assumptions 2.1, 2.2, 2.3, 2.4, 3.1, 3.2 and 3.3 hold. Then
for each x ∈ R, we have un(G, x) ↑ u(G, x), n→∞.

Let h∗n be an optimal solution for (12) 1. Then there exists a subsequence (nk)k≥0 and
some ĥ ∈ `2, optimal solution of (7), such that for ĥn := 1

n

∑n−1
k=0 h

∗
nk
,

‖ĥn − ĥ‖`2 → 0, n→∞.
Proof. The sequence un(G, x), n ∈ N is clearly non-decreasing and it is bounded from
above by u(G, x). Let h̄n := (h̃0, . . . , h̃n, 0, . . . ), n ∈ N where h̃ is the optimizer con-
structed in Theorem 3.8. Using (1) and h̃ ∈ `2, we have

E〈h̄n − h̃, ε− b〉2 → 0, n→∞

hence also 〈h̄n, ε− b〉 → 〈h̃, ε− b〉, n→∞ in probability. The Fatou lemma for U+ shows
that

EU+(V x,̃h −G) ≤ lim inf
n→∞

EU+(V x,h̄n −G).

Now we show that the family U−(V x,h̄n −G), n ∈ N is uniformly integrable. Assumption
3.2 implies that

U−(V x,h̄n −G) ≤ C3|V x,h̄n −G|γ + C4

≤ C3
(
2γ−1(|x|γ + |〈h̄n, ε− b〉

∣∣γ)
)

+ C4.

As h̃ is optimal, ‖h̄n‖`2 ≤ ‖h̃‖`2 ≤ Mx,G (see Lemma 3.7) and as in Remark 2.9,
U−(V x,h̄n −G), n ∈ N is uniformly integrable. We also get as in (11) that

EU−(V x,h̄n −G) ≤ K
and h̄n ∈ An(G,U, x) follows. Uniform integrability implies that

EU−(V x,̃h −G) = lim
n→∞

EU−(V x,h̄n −G).

It follows that
u(G, x) = EU(V x,̃h −G) ≤ lim inf

n→∞
EU(V x,h̄n −G) ≤ lim

n→∞
un(G, x) ≤ u(G, x).

Let h∗n ∈ An(U,G, x) be an optimal solution for (12). By Lemma 3.7, ‖h∗n‖`2 ≤ Mx,G.
We proceed as in the proof of Theorem 3.8. By the Banach–Saks Property, there exists
a subsequence (nk)k≥0 such that for ĥn := 1

n

∑n−1
k=0 h

∗
nk
,

‖ĥn − ĥ‖`2 → 0, n→∞,

1which exists by the argument of Theorem 3.8.
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for some ĥ ∈ `2. The arguments of the proof of Theorem 3.8 apply verbatim and show
that ĥ is an optimizer for the utility maximization problem (7) in the large market.

Remark 3.10. When U is strictly concave then the optimizer is unique and hence h∗ of
Theorem 3.8 equals ĥ of Theorem 3.9.

The corollary below addresses the problem of convergence of the reservation prices
pn, p. These latter were introduced in [9].

Corollary 3.11. Assume that Assumptions 2.1, 2.2, 2.3, 2.4, 3.1, 3.2 and 3.3 hold. The
reservation price pn (resp. p) of G in the market with the random sources (εi)1≤i≤n (resp.
with (εi)i≥1) is defined as a solution of

un(G, x+ pn) = un(0, x) and u(G, x+ p) = u(0, x).

These quantities are well-defined and we have pn → p, n→∞.

Proof. We justify the definition of p, the case of pn being completely analogous. We show
that the set {u(G, x) |x ∈ R} is the same as {u(0, x) |x ∈ R}.

We claim that u(G, x), u(0, x) are finite for all x. Indeed, Assumption 3.3, Lemmata
3.6 and 3.7 imply that −∞ < u(G, x) ≤ u(0, x) < ∞. As u is monotone, furthermore it
is concave and thus continuous on its effective domain, it suffices to show that

u(G,−∞) = u(0,−∞) = −∞, u(G,∞) = u(0,∞) = U(∞) (13)

and that u(G, x), u(0, x) < U(∞) for all x because in this case {u(G, x) |x ∈ R} =
{u(0, x) |x ∈ R} = (−∞, U(∞)).

We first concentrate on the latter claim. If U(∞) =∞ then this is obvious. Otherwise
denote by h′, h′′ the strategies attaining u(0, x), u(G, x), respectively. Then, by the strictly
increasing property of U , we have

u(0, x) = EU(x+ 〈h′, ε− b〉) < EU(∞) = U(∞) (14)

and
u(G, x) = EU(x+ 〈h′′, ε− b〉 −G) < EU(∞) = U(∞).

Now we turn to showing (13). It is clear that u(G,∞), u(0,∞) ≤ U(∞) and

u(0,∞) = lim
x→∞

u(0, x) ≥ lim
x→∞

U(x) = U(∞). (15)

Assumption 3.3 and Fatou’s lemma also imply that

u(G,∞) ≥ lim inf
x→∞

u(G, x) ≥ lim inf
x→∞

EU(x−G) ≥ U(∞).

Since u(G, x) ≤ u(0, x), it is enough to establish limx→−∞ u(0, x) = −∞. By concav-
ity, this is clearly the case if u(0, ·) is not the constant function. But if u(0, ·) = c then
we would necessarily have c ≥ U(∞) by (15) which contradicts (14).

We now turn to proving convergence. Arguing by contradiction let us assume that,
along a subsequence (which we continue to denote by n), one has pn → p for some p < p

(the case of a limit p > p is analogous). It follows that there is N such that, for n ≥ N ,
pn < (p+ p)/2 < p. Using Theorem 3.8, let h† ∈ A(G,U, x+ (p+ p)/2) ⊂ A(G,U, x+ p)
satisfy

u(G, x+ (p+ p)/2) = EU
(
x+ (p+ p)/2 + 〈h†, ε− b〉 −G

)
.
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Then, the definition of the reservation prices and Theorem 3.9 imply that

lim sup
n→∞

un(G, x+ pn) ≤ lim sup
n→∞

un(G, x+ (p+ p)/2)

= u(G, x+ (p+ p)/2) = EU(x+ (p+ p)/2 + 〈h†, ε− b〉 −G)
< EU(x+ p+ 〈h†, ε− b〉 −G) ≤ u(G, x+ p)
= u(0, x) = lim

n→∞
un(0, x) = lim

n→∞
un(G, x+ pn),

a gross contradiction.
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