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Abstract. We study a bond market model and the related term structure of interest rates
in which the prices of zero coupon bonds are driven by a multidimensional Lévy process. We
show that the short rate forms a Markov process if and only if the deterministic forward rate
volatility coefficients are decomposed into products of two factors where the factor depending on
the maturity time is the same for all components. The proof is based on the analysis of sample
path properties of the underlying multidimensional process.

1. Introduction. The unifying approach for modeling stochastic bond markets and
valuing interest rate derivatives presented by Heath, Jarrow and Morton [HJM]| turned
out to be a basic methodology in the last decades. In the proposed term structure model
the forward rate was assumed to solve a stochastic differential equation driven by a
multidimensional Wiener process. The restrictions imposed on the form of the volatility
coeflicients lead to specific classes of term structure models including well-known interest
rate models (see e.g. Vasicek [V] and Cox, Ingersoll, and Ross [CIR]). During the nineties,
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the same framework of term structure models driven by processes with jumps has been
investigated in detail. Shirakawa [Shi] studied a model driven by a Wiener and a Poisson
process. Bjork, Kabanov, and Runggaldier [BKR] extended the driving stochastic process
to the sum of a diffusion and a marked point process having at most finitely many
jumps during every finite time interval. A general jump-diffusion bond market model was
introduced and studied by Bjork et al. [BMKR].

Among other important issues, the question of the short rate to have the Markov prop-
erty has attracted a considerable attention in the recent literature on term structures of
interest rates. The reason for that fact is the simplification of pricing formulas for bonds
and derivatives in the underlying bond market in that case. Carverhill [C] proved that
the short rate process is Markovian within the Heath—Jarrow—Morton framework with
deterministic volatility if and only if the volatility coefficient factorizes into a product of
two functions depending only on the actual time and maturity time, respectively. Eberlein
and Raible [ER] (see also Eberlein [E]) generalised the result of [C] to the case of a model
driven by a Lévy process under an additional assumption on the related characteristic
function of the marginal distribution which particularly holds for the class of hyperbolic
distributions. Kiichler and Naumann [KN| extended this result to the model containing
new examples of driving processes like the class of bilateral gamma processes. This class
particularly includes the variance gamma processes which play an important role in recent
discussions of stochastic models in financial markets (see, e.g. Madan and Seneta [MS] and
Madan [M], and more recently, Kiichler and Tappe [KT1] and [KT2]). Other extensions
of the result of [C] were derived in [GK] for a model driven by a Wiener and a compound
Poisson process with different volatility coefficients, and in [G] for a model driven by a
fractional Brownian motion. In the present paper, we investigate a bond market model
with deterministic volatility coefficients and the corresponding term structure of inter-
est rates driven by a multidimensional Lévy process. We show that the short rate has a
Markov property if and only if the volatility coefficients can be decomposed into the prod-
ucts of two factors depending only on the actual time and maturity time where the matu-
rity time factor is common for all the components of the driving multidimensional process.

The paper is organised as follows. In Section [2] we introduce a bond market model
with deterministic volatility coefficients and the associated term structure of interest rates
driven by a multidimensional Lévy process. We also derive the relationships between the
bond prices, the instantaneous forward rates, as well as the short rate process under a
martingale measure. In Section [3] we present the necessary and sufficient conditions on
the volatility coefficients under which the short rate forms a Markov process. The current
value of the bond price process can then be expressed by means of the current value of the
short rate process under this criterion. The proof of this result is based on the analysis
of sample path properties of the underlying processes with independent increments and
consists of several auxiliary assertions deduced in Section [

2. The multidimensional term structure Lévy model. In this section, following
the line of the arguments used in [BKR], we define the basic objects of the bond market
model driven by a multidimensional Lévy process. We refer to [JS| and [Sh2, Chapter 111,
Section 1] for the terminology and notions from stochastic analysis.
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Suppose that on some stochastic base (Q,F,F = (Ft)iep,r-], @) with a fixed time
horizon T* > 0 there exists a multidimensional process L = (Li,... , LY )tepo, 7+, whose
components L} = (Li)te[O,T*] are assumed to be real-valued non-deterministic indepen-
dent Lévy process with generating triplets (b;, ¢;, Fi(dy)), for every i = 1,...,n, n € N.
Here, b; € R and ¢; > 0 are some constants, and F;(dy) is a positive o-finite measure on
(R, B(R)) satisfying the condition

/ (9P A ly]) Fi(dy) < oo (1)

for every ¢ = 1,...,n, so that we can consider the truncation function h(y) =y, y € R
(see, e.g. [Sh2] Chapter ITI, Section 1]). Moreover, we assume that the condition

/ VI(Jy| > 1) Fi(dy) < oo @)

holds, for each x € [-M, M] and some M > 0 fixed, and every i = 1,...,n (see [ER]
and [JZ]), where 1(-) denotes the indication function. The condition of guarantees
the property that the integrals with respect to the Lévy measures F;(dy) presented below
are well defined, for every i = 1,...,n. Let F = (F})¢cjo,7+] be the natural filtration of
the process L, that is, F; = 0(Ls | 0 < s < ), for all ¢ € [0, T*].

Let us consider a term structure of bond prices {P(t,T) |0 <t < T < T*}, where the
(positive) process P = (P(t,T'))c[o,r] denotes the price of a zero coupon bond at time ¢
maturing at time 7" which satisfies the normalisation condition

P(T,T) =1 (3)

for each T € [0, T*]. Let us suppose that for all but fixed T' € [0, T*] the logarithm of the
bond price process P = (P(t,T)):cjo,7] is given by the expression:

In P(t,T) lnP(O,T)Jr/Otoz(s,T) ds+zn:/0t oi(s,T)dL: (4)

foral T € [0,T*] and i = 1,...,n. Here, 0;(¢t,T), i = 1,...,n, are deterministic positive
functions defined on the triangle {(¢,7)|0 < ¢t < T < T*} which are assumed to be
continuously differentiable (so that bounded) in both variables and satisfy the condition

oi(T,T) =0 (5)

for all T € [0, T*]. Then, the integral with respect to the process L’ in is understood
in the sense of integration by parts:
t

t
/ai(s,T)dL?;:ai(t,T)L;z/ Lidoi(s,T) (6)
0 0

forall 0 <t <T <T* and every i = 1,...,n, and the function a(t,T") will be specified
below. We will also suppose that we are allowed, by the regularity of the functions, to
differentiate under the integral sign, to interchange the order of limits and integrals, as
well as to interchange the order of integration and differentiation. We further assume that
lo(t,T)| < M, forall 0 <t < T < T* for M > 0 fixed above.

Assuming that, for each ¢ € [0, T fixed, the bond price P(t,T') is (Q-a.s.) continuously
differentiable with respect to the variable T on [0, T*], let us introduce the corresponding
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term structure of interest rates {f(t,T)]|0 <t <T < T*}, where
Oln P(t,T)
t,1)=——777"- 7
£(6,7) o (7
is the instantaneous forward rate contracted at time ¢ for maturity 7. On the other hand,
integrating the equation in and using the condition of , we get:

P(t,T)= exp(— /tT ft,u) du) (8)

forall0 <t < T < T*, and hence, we see the one-to-one correspondence between the bond
prices and the forward rates. Define also the short rate process r = (r(t))¢cjo, 7+ by

r(t) = f(t,1) (9)
being the forward rate at time ¢ for maturity ¢, and the associated with it money account
process B = (B(t))¢ejo,r+] by

B(t) = esp( /0 ") ds) (10)

playing the role of a numéraire in the model. Then, setting
alt,T) =r(t) = > 0;(0i(t,T)) (11)
i=1

for all ¢ € [0,T], by means of the arguments in [JS, Chapter II, Section 2], we conclude
that the discounted bond price process (P(t,T)/B(t)):eo,r) forms an (F,Q)-martingale
(see [BMKR] Section 5]). Here, 6;(x) is a cumulant function of the process L? defined by
2
C;x

0;(x) =b;x+ 5 + /(e“’y —1—zy) F;(dy) (12)

for all z € [-M, M] and every i = 1,...,n.
Hence, using the expression for a(t,T), we see that, under the measure @ and
for each T € [0,T*], the logarithm of the bond price in admits the representation:

t n t n t
InP(¢t,T) =1ln P(0,T) —|—/ r(s)ds + Z/ oi(s,T)dL% — Z/ 0;(ci(s,T)) ds (13)
0 i=170 i=170
and the forward rate process in @ takes the form:
n t n t
fe.1) = 0.1 =3 [ nari+ Y [ o n)u0ds )
i=1"0 i=1"0

for all ¢t € [0,T). Here, we define ~,;(¢t,T) = 00;(t,T)/(9T), for all ¢ € [0,T] and every
i =1,...,n. Therefore, the short rate process in @D is given by

r(t) = f(0,t) — Z(t) + Z/o 0, (ai(s,t))”yi(s,t) ds (15)

where for all ¢ € [0, T*] we set

2= Y [ uls.0dri. (16)
i=1

Note that, in the Heath—Jarrow—Morton approach (see [HIM]) one starts with the
specification of the forward rates , so that the discounted bond prices turn out to be
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(F, @)-martingales, or, in other words, @ is a martingale measure. In this case, integrating
the expression in , we easily get the following representation for the bond price in :

P(t,T) (17)

P(0,T) /T/ S
= exp ~i(s,u) dLY du — / / 0;(0i(s,u))vi(s,u)dsdu
P (2, wemdidn =3 [ [ o m)utow dsc)
where, by virtue of the conditions of ,

T
o;(t,T) :/t ~i(t, v) dv (18)

forall0 <t <T <T*andeveryi=1,...,n. Since the process (P(t,T')/B(t)):e[o, 1 turns
out to be an (I, Q)-martingale under the condition of , according to the expression
in , it is easily shown that the bond price P = (P(t,T))¢c[o,1] can be represented as:

P(t,T) = E[exp(— /tTr(s) ds) 'ft} (19)

for all ¢ € [0, T]. Observe that, when the short rate r = (r(t)).cpo, 7+ is an (IF, Q)-Markov
process, the expression in takes the form

P(t,T) = E[exp(— /t Tr(s) ds) ‘r(t)} (20)

so that P(t,T) = H(t,r(t),T), forall 0 <t < T < T*, and some Borel function H defined
on [0,7] x R x [0,T*]. In this case, we see from the expression in that the current
value of the bond price can be expressed by means of the current value of the short rate.
We finally note from the expression in that the short rate r = (r(t))iep,r+ is a
Markov process if and only if so is the process Z = (Z(t)):e[o, 7+ defined in .

3. The results. In this section, we formulate and prove the following main result of the
paper which extends the results of [C], [ER], [KN], and [GK] to the case of a multidimen-
sional Lévy term structure model.

THEOREM 3.1. Let L' = (L;ﬁ)te[o’p], i =1,...,n, n € N, be real-valued nondeter-
ministic independent Lévy processes with triplets (b;, c;, Fi(dy)) satisfying the conditions
and . Suppose that both functions t — ~v;(t,T) and t — ~;(t,T*), for every
i=1,...,n, are nonconstant on [0,T], for each T € [0, T*]. Then, the short rate process
r = (r(t))teco,r+) is Markovian if and only if there exist continuously differentiable func-
tions n;(t), t € [0,T*], for i = 1,...,n, and a function ((T) > 0, for T € [0,T*], not
depending on v =1,...,n, such that the equality

%i(t, T) = ni()¢(T) (21)
holds, for all0 <t <T <T* and everyi=1,...,n.

The proof of this assertion is based on several auxiliary technical lemmata which
are deduced in Section [4| below. We further assume that L = (L}).ejo,r+), @ = 1,...,n,
are real-valued nondeterministic independent Lévy processes. We start with a simple
extension of an assertion from [ER] to the case of a multidimensional Lévy process which
is proved in Section [ below.
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LEMMA 3.2. Suppose that Z = (Z(t))icjo,r+] from is an (F,Q)-Markov process.
Then, for each 0 <T < S <T* fized, the expression

i/OT vi(t, S)dLi = G, (i /OT ~i(t,T) dLi) (Q-a.s.) (22)

holds, with a Borel function G,, n € N.

The proof of the next assertion is given in [KN| Lemma 3.1] and is also presented in
the next section for completeness.

LEMMA 3.3. Let f;i(t) and g;(t), i =1,...,n, n € N, be continuously differentiable non-
constant functions on [0,T], for some T € (0,T*] fized. Suppose that f;(t) and g;(t)
are affine independent on [0,T), that is, there are no constants a;,h; € R such that
fi(t) = a;g:(t) + hy, for allt € [0,T] and everyi =1,...,n. Then, the distribution of the

vector
( /0 ! £:(t)dLi, /0 ' gi(t) dL;') (23)

has a nonzero absolutely continuous part (with respect to the Lebesgue measure Ay on R?),
for everyi=1,...,n.

The proof of this result is based on the following assertion which is proved in
[Kl Theorem 3.1].

LEMMA 3.4. Let fi(t), i =1,...,n, n € N, be continuously differentiable functions on
[0,T], for some T € (0,T*] fized. Suppose that the equality

T
Hii( / fitydLy) = Ly (Q-a.s) (24)
0
holds, with a Borel function Hy,;, for every i = 1,...,n. Then, the function f;(t) is

necessarily a constant on [0,T], for everyi=1,...,n.

As a next step we shall prove in Section [4] below an assertion being an extension of
corresponding results from [ER], [K], [KN], and [GK] to the case of a multidimensional
Lévy process.

LEMMA 3.5. Let f;(t) and ¢;(t), i = 1,...,n, be continuously differentiable nonconstant
functions on [0,T], for some T € (0,T*] fized. Suppose that the equality

n_ T n_ T
> [ swazi =63 [ awdr) (@as) (25)
i=1"0 i=170
holds, with a Borel function G, n € N. Then, there exists a constant a, not depending
oni=1,...,n, such that f;(t) = ag;(t), for allt € [0,T] and everyi=1,...,n.

The proof of this result is given in Section @ below as well. We continue with the proof
of the main result stated above.

Proof of Theorem . Let us first suppose that the functions ~;(¢,7), 0 <t < T < T*,
1 =1,...,n, satisfy the conditions of . In this case, the process Z = (Z(t))ep0,7+]
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defined in can be represented in the form

0> / s) dL) (26)
i=1

for all ¢t € [0,7*]. Therefore, we may conclude that Z is a Markov process and so is the
process 7 = (r(t))se[0,7+] from .

We now assume that r = (r(t))¢cjo,7+) is a Markov process, and thus, by virtue of the
expression in and , the Markov property holds for the process Z = (Z(t))¢ejo,7+]
as well. Moreover, it follows from the assertion of Lemma that, for each 0 < T <
S < T* fixed, the expression in is satisfied, for a Borel function G,,, n € N. Hence,
by applying the assertion of Lemma to the functions t — ~;(¢,T*) and t — ~;(¢,T),

i=1,...,n, we deduce that the decomposition

Yi(t, T") = (T, T")y(t,T) (27)
holds, with some function £(7', T*), not depending on ¢, for all 0 <t < T < T™* and every
i =1,...,n. Observe that, since the functions ¢ — ~; (¢, T) are assumed to be nonconstant

on [0,T], we may conclude from the decomposition in that &(T,T*) # 0, for each
T € (0,T*] fixed. Recall that, since the functions o;(¢,T), ¢ = 1,...,n, are assumed to
be continuously differentiable on the triangle {(¢,7)]0 < ¢t < T < T*}, the functions
T — ~(t,T), i =1,...,n, are continuous on {(¢,7)|0 < ¢t < T < T*}. Then, we
have even £(T,7*) > 0 in , because of the obvious property £(7*,7*) = 1 and
a continuity argument. Otherwise, it would follow that ~;(¢,T) = 0, for all t € [0,T)
and some T € (0,7*] fixed, for every ¢ = 1,...,n, that is excluded by assumption.
Thus, defining 7;(t) = v(¢t,T*), ¢ = 1,...,n, and ((T) = 1/§(T,T*) > 0, for each
0<t<T<T* we obtain the decompositions in . The continuous differentiability
of the functions n;(t), t € [0,T*], ¢ = 1,...,n, follows directly from the assumption on
the functions ¢ — ~;(t, T*) to be continuously differentiable on [0, 7*], respectively. m

REMARK 3.6. In the assumptions of Theorem we observe from the expressions in
and that the forward rate process in admits the representation

F(.T) = 7(0.T) — ?(f)) 0 (28)

T) i/ot<bﬂ7i(s)+cmf(8) /STC(“)du+/em(s)f*TC(u)d“ym(S)yFi(dy)) s

where the process Z = (Z(t)):e[o,7+] is given by and the short rate process from
takes the form

r(t) = f(0,t) — Z(t (29)
SODSY NCTIBERTE /< dut [y )y ) ds

for all t € [0, T™].
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EXAMPLE 3.7. Suppose that L' = (L})ico,1+], i = 1,...,n, n € N, are bilateral gamma
processes, that is, they are Lévy processes with the triplets

(i /Xi+ — i~/ Xi —, 0, Fi(dy)),

where

.
Fldy) = (255 expl(-X ) Uy > 0) + (e Uy <0))dy (60
and A+, A\ —, a4 4,04, 1 = 1,...,n, are some positive parameters (see e.g. [KN|, Sec-
tion 5]). In this case, if the condition

T
6T = [te) [ Claydu] < minfas 0} (31)

holds, for all 0 < ¢t < T < T* and x € R, and every i = 1,...,n, then the conditions
in are satisfied with some M < min{\; +,\; _}. Thus, the assertion of Theorem
holds and the expressions in and take the explicit form:

¢(T)

f&,T)=£0,T) - mz(t)

Jrz/( az+m (s)C(T) 1i(s)C(T) >d5 (32)

(s) [ ¢(u) du Az,7+m s) [ ¢(u

' a6 i mi(s)C(t) b (33
+;/o<xi,+—m<s>f;<<u>du Xi— 4 ni(s) [1¢(u) du ) (%)

where the process Z = (Z(t))co,r+) is given by .

4. The proofs. In this section, we present the proof of the auxiliary assertions formu-
lated in Section Bl

We start with the proof of a simple extension of an assertion from [ER] to the case of
a driving multidimensional Lévy process.

Proof of Lemma . Observe that if the process Z = (Z(t))icjo, 7+ from is Marko-
vian, then

E[Z(S)|Fr]| =E[Z(5)| Z2(T)] (Q-as.) (34)
forall 0 <T < S < T*. Since the integrands v(¢,T') for 0 <t < T < T* are deterministic

functions, it follows from the independence of increments of the processes L = (L¢)¢ejo,7+]
that foral 0 <T < S <T*

E[Z(S)| Fr] :E[Z/O 7ilt, S)dL
i=1

and

B[Z(S)|z(T)] :E[Z /0 7ilt, S)dL
i=1

Fr] +E[§n: /T ’ Ylt,S) L] (Q-as.) (35)
=1

T)] +E[§n: /T S%(t,S) dLg] (Q-a.5.) (36)
i=1
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Hence, getting the expressions in 7 together, we obtain

n T n T
3 / 2u(t,8)dLi = B[ / vi(t, S) dL
i=170 i=170

that immediately implies the desired assertion. m

Proof of Lemma[3.3

(i) In order to prove the desired assertion, let us first assume that the process L! has
the triplet (b; — [y Fi(dy), ¢;,0) with some ¢; > 0, for any ¢ = 1,...,n. In this case, we
have Lj = (b; — [y Fi(dy))t + W{, for t € [0,T*], where W* = (W{);c[o,r+] denotes the
continuous martingale part of the process L*, for every ¢ = 1,...,n. Then, the process
Wt is Gaussian, and thus, by means of It6’s isometry, we get

E{(/T(f’b(t) —a; gi(t)) d/WtI)Q} = /T(fz(t) —a; gi(t)>2 d<Wz>t
0 . 0 . ]
:/ ,f,'2(t) d<Wl>t — Qai/ fi(t)gi(t) d<WZ>t +a12/ gf(t) d<WZ>t (38)
0 0 0

which is strictly positive, for all a; € R, by assumption. On the other hand, it is seen

n T .
Z/O %‘(t’T)dLﬂ (Q-a.s.)  (37)

that the expression in the right-hand side of represents a quadratic polynomial in
a; € R, and that expression is strictly positive obviously if and only if the inequality

/ Fi(H)gi (t) dW), < / £2() /Tgf<t>d<wi>t (39)

holds. However, the latter fact means that the distribution of the vector in have
a nonzero absolutely continuous part (with respect to the Lebesgue measure on R?).
Note that, since any process L° with the triplet (b;,c;, F;(dy)) can be decomposed as
L = (b; — [yFi(dy))t + W} + Ji, for t € [0,T*], where the continuous martingale
part W' is independent of the pure jump part J' = (J{);c[0,r+) Which has a triplet
(J 'y F;(dy),0, Fi(dy)), it remains to prove the desired assertion for pure jump processes
L' i=1,...,n, only.

(ii) Assume now that L has the triplet (\;, 0, \;61(dy)) with some \; > 0 fixed, for
any i = 1,...,n, where d;(dy) is the Dirac measure in the point 1. In this case, L is a
Poisson process of intensity \;, and denote by (7,)men the sequence of its jump times,
for any i = 1,...,n. Define the mapping ¢; by ¢;(u,v) = (fi(u) + fi(v), gi(u) + g:(v)), for
(u,v) € [0,T]%. Then, by virtue of the assumptions on the functions f;(t) and g;(t), the
mapping ¢;(u,v) is continuously differentiable with a nonzero Jacobian determinant

S fw)
Dilu,v) = det(gm g;w)) (40)

at least in an open neighbourhood Uj;(ug,vg) of some point (ug,ve) € (0,t)? fixed. In
this case, ¢;(u,v) maps U;(ug,vg) bijectively to an open neighbourhood V;(¢;(ug,vo))
of the point ¢;(ug,vo) = (fi(uo) + fi(vo),gi(uo) + gi(vo)), and that the inverse map-
ping ¢; *(z,y) is continuously differentiable. Note that, because of the symmetry of the
mapping ¢;(u,v) = ¢;(v,u), there is no restriction to assume that U;(ug,vg) is sym-
metric, so that (u,v) € U;(ug,vo) if and only if (v,u) € U;(up,vp). In particular, the
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set U;(ug,vo) N Ar has a positive Lebesgue measure, where we set Ar = {(u,v) € R?|
0<u<wv<T} forsomei=1,...,n.

It follows from the fact that L! is a Poisson process that P(t3 < T < 7i) > 0, for
any ¢ = 1,...,n. Moreover, it follows from the properties of the Poisson process that the
couple (74, 73) has a strictly positive density h;(u,v) on A, and it is uniformly distributed
under {7 < T < 74}. Then, we have Q((7{,74) € U;(ug,v0) | 74 < T < 74) > 0, so that
Q((r{,73) € U;(uo,v0), 74 < T < 74) > 0 holds. Hence, for any Borel set A € B(R?), we
have

Q(@(T{,Tg) € A‘ (Tf,TQi) € Ui(uO,Uo),Tzi <T< T§)
X Q((Tf,TQi) € U;(ug, vo) |T§ <T< T§)
Q(QSZ(T{,T;) € A, (ri,73) € Us(uo,vo) |7'2 <T< T3)

(41)

hi(u,v) dudv = / hi(u,v) 1((u,v) € U;(uo, v0)) dudv

/¢f1(A)ﬂUi(u0’v0) ¢1(A)

- /A hi (67 (2, 9)) D7 (6712, ) 1((y) € Vil@(uo, v0))) da dy

where we mean D~!(u,v) = 1/D(u,v), for (u,v) € [0, T]. Hence, we may conclude that
the distribution of the vector ¢;(7¢,74) has an absolutely continuous part. Therefore,
recalling the fact that

T T
([ swazi. [ avyari) = oitei.r) (12)
0 0
1) € Us(ug, vo), 7 < T < 74}, we see that the distribution given by
1, T2 2 3

Q(gbi(Tli,Té) € A’ (74, 78) € Ui(ug,vo), 7 < T < T§)
X Q((T{,Tﬁ) € Us(up,vg), 7 < T < Té) (43)

forms a nonzero absolutely continuous part for the distribution of the vector in , for
any Borel set A € B(R?).

(iii) Assume now that L’ with the triplet ([ y F;(dy),0, F;(dy)) such that F;(dy) sat-
isfies the condition of , while F;(R) < oo holds, for any ¢ = 1,...,n. In this case,
L% is a compound Poisson process which admits the representation L! = Zg;l Y,
for t € [0,7*], where N* = (N{);c[o,r+] is a Poisson process of intensity A; > 0 and
jump times (7! )men, and (Y,!)men is a sequence of mutually independent and inde-
pendent of N identically distributed random variables with distribution Fj(dy)/\;, for
some ¢ = 1,...,n. There is no restriction to assume that F;({0}) = 0. Let us denote by

U,(z1, 22;y1,y2) a version of the conditional distribution
\I/i(zh 22;Y1, y2)

T T
= Q(/ fi(t)dL; < 21,/ gi()dLy < zo | s <T <73, Y =11, Yy = y2> (44)
0 0
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for all (21,22) € R? and some (y1,y2) € R? fixed. Then, by virtue of independence of N*
and (Y{,Y3), we get
\I/i(zh 22591, y2)
= Q(fi(Tf)yl + fi(5) y2 < 21, 9i(73) y1 + 9i(13) Y2 < 22 | m<T< T§) (45)
for (21, 22) € R? and F;(dy;) ® F;(dys)-a.s. By taking into account the fact that the vector
(y1,y2) is unequal zero F;(dy,) ® F;(dys)-a.s., it follows from the arguments similar to the

ones used in part (i) above that the function W;(z1, 22; 41, y2) has a nonzero absolutely
continuous part F;(dy;) ® F;(dyz)-a.s. Then, because of the fact that

Q(/ fi(t)dL;gzh/ gi(t)dL;gZQ\ngT@;)
0 0

://\Ili(zlaz2§y1»y2)Fi(dy1)®Fi(d92)7 (46)
the same property holds for the conditional distribution of the vector in under
{rs<T<ri} fori=1,...,n.

(iv) Let us finally assume that L‘ has the triplet ([yF;(dy),0, F;(dy)) such that
F;(dy) satisfies condition (2)), but F;(R) = oo holds, for any ¢ = 1,...,n. Then, for any
relatively small ¢ > 0 fixed, the process L? admits the Lévy-Itd decomposition:

Ly = Jp° + (Ly = Ji9) (47)
with
Jpf= Y ALL1(|AL{|>¢) and AL;=L;—Lj (48)
0<s<t
for all t € [0,T*]. Here, J¢ = (JZ’E)te[o,T*] is a compound Poisson process for which
the result of part (iii) above holds whenever ¢ > 0 is small enough, so that J"* is
nondeterministic, while (L — J; “)tefo,r+] is a limit of compound Poisson processes, for
any ¢ = 1,...,n. Then the desired assertion holds in its general form, since the vectors

(/ T OT 9:(t) 7). (49)
(/ "R - 7, / "L - i) (50)

are independent, for any i =1,...,n. =

Proof of Lemma [3.5
(i) Assume that the functions f;(¢) and g¢;(¢) are affine independent on [0, T, for every
i=1,...,n. Then, by virtue of the assertion of Lemma [3.3] we get that the distribution

of the vector T T
(f foazi. [ awar) 61)

has a nonzero absolutely continuous part, for every ¢ = 1,...,n. Hence, by virtue of the
independence of the processes L?, i = 1,...,n, the distribution of the vector

(é /OT fi(t)dL, é /OT gi(t) dLi) (52)
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has an absolutely continuous part too, but the latter property cannot hold due to .
Thus, we may conclude that there exist a;, h; € R such that the representation

holds, for all ¢ € [0,T] and every i = 1,...,n, and therefore,

n T n T n
Z/o fi(t)dLi = Z ai/o gi(t) dLi + Z h; L. (54)
i=1 i=1 i=1

(ii) We now show that one can take h; = 0 in , for every i = 1,...,n. For this

purpose, let us assume that hy # 0, for some k = 1,...,n. Then, we observe that, by
virtue of , the representation in implies the equality
— Gy (Z IT) -y - A Lh = L (Q-as.), (55)
e =t =gk
with some Borel function G,,, n € N, where
5= [ aaz (56)
for every j = 1,...,n. Thus, by virtue of the independence of L?, i =1,...,n, it follows

from and that

n

1 k N\ Gk gk —~ a; —~ h;
G (IT + 3 uj) - > I > v =Lh (Qas) (57)
J=1j#k J=1,3#k J=1j#k

for Q(I%,Lé)—ahnost all (uj,v;), for every j = 1,...,n, j # k. Hence, there exists at
least two vectors (uf,...,up_1,Up 1, .., Uy) and (vy,...,vp_1, V5 q,-..,0,) such that

n n n
hian(Lff«—i- | Z u;) - Z—ZI{F— | Z Z—iu; - Z Z—;v; =Lk (Q-as) (58)
J=1,j#k J=1j#k J=1j#k

for some k = 1,...,n. Taking into account the fact that L* is nondeterministic and apply-
ing the result of Lemma for the appropriate function in 1} for such (uf,...,u}_q,
Uy 1y Uy) and (V] ..., v, Vg, -, 0;,) fixed, we may therefore conclude that gy (t)
would have to be constant on [0, 7], which contradicts the assumption above. The latter
fact directly yields that hx has to be zero, for every k =1,...,n.

(iii) We finally show that a; = ... = a, in the representation . In this case,
using condition as well as the fact proved in part (ii) above that h; = 0, for every
i =1,...,n, in the representation , we get from the equality

é””“(zlﬁz,z (a; —ax) I (Q-as.), (59)
j=1 j=1,j#k

for any k= 1,...,n. Here, we set énk(x = Gn(x) — agx, for all z € R, and the random
variables I, j = 1,...,n, are defined in l) Then, taking into account the independence



MARKOVIAN SHORT RATES IN MULTIDIMENSIONAL LEVY MODELS 105

of the processes Li, i = 1,...,n, it follows from (59) that

n n
Gor(w+ > )= Y (-l (Qas) (60)
Jj=1,j#k j=1,j#k

for Q(I%)-almost all ug, for any k = 1,...,n. Observe that the left-hand side in is
a Borel function of uy, while the right-hand side in does not depend on uy. Hence,
using the facts that the processes L° are nondeterministic and the functions g;(t), for
i = 1,...,n, are continuously differentiable and nonconstant on [0,7] by assumption,
we may conclude from that the function én,k should be constant. The latter fact
implies that we should have a; = ay, for every j=1,...,n,j#k,andany k =1,...,n,
in , and therefore, concludes the proof of the lemma. m
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