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Abstract. In this paper we revisit linear stochastic volatility models with correlated Brownian
noises. In such models the asset price satisfies a linear SDE with coefficient of linearity being
the volatility process, and a volatility equation with time-dependent coefficients. This class
contains among others the Black–Scholes model, the Heston model and the log-normal stochastic
volatility model. We present a representation theorem for the density of price, conditions ensuring
smoothness of density and some other properties. As an application of using of our general
framework we can refine the results for the log-normal stochastic volatility model with correlated
noises.

1. Introduction. The famous Black–Scholes model with its relatively stringent assump-
tions does not capture many phenomena of modern financial markets. A prime example
is the stochastic nature of the financial asset’s volatility, called volatility smile (see for
example Hull and White [6]). In recent years many stochastic volatility models have
been introduced and developed. However, making the volatility stochastic complicates
the models considerably (see for example Rebonato [14]). It is not our aim to review the
broad range of stochastic volatility models. We focus on and develop idea of modeling
stochastic volatility as SDE with time-dependent coefficients, so in the simplest possible
but effective way. We start with a theorem giving a representation of the density function
of the underlying asset price in a linear stochastic volatility model. This representation
allows us to find a closed formula for the density function, which is important for appli-
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cations (see, e.g., Carmona and Durrleman [2]). We formulated the conditions ensuring
that the density function of Xt belongs to the class C∞ = C∞((0,∞)), and then give a
form of the density. Moreover, in a few theorems we present some probabilistic properties
of density of X in a linear stochastic volatility model, among others an interesting factor-
ization of the density of ξt = X2

t

4γ , where γ is a gamma random variable with parameter
1/2 independent from X. Knowing the moments E(lnXt)n we can compute E(Xte

−λX2
t )

under some assumptions, which in fact leads to the closed form of density of ξt. Let us
note that some interesting results regarding moments in stochastic volatility models can
be found in Lions and Musiela [12].

In the last section we present how using our general framework we can refine the
results for specific models. We consider the log-normal stochastic volatility model with
correlated noises. Using the representation of density we present forms of density of the
price process, which improve the formula presented in Gulisashvili [4]. As an application
of our results we obtain a new result for the Hartman–Watson distribution (Corollary
4.5) (other results on the Hartman–Watson distribution can be found in [9]). We also
find a recurrence which enables to compute E(lnXt)n for every n = 1, 2, . . . .

2. Preliminaries. We consider a market defined on a complete probability space
(Ω,F ,P) with filtration F = (Ft)t∈[0,T ], T < ∞, satisfying the usual conditions. By FZ
we denote the natural filtration generated by a process Z augmented to satisfy the usual
conditions. Without loss of generality we assume that the savings account is constant
and identically equal to one. Moreover, we assume that the price Xt at time t of the
underlying asset has a stochastic volatility Yt, which has the dynamics given by time
dependent SDE, so the dynamics of the vector (X,Y ) is given by

dXt = YtXt dWt, (1)
dYt = µ(t, Yt) dt+ σ(t, Yt) dZt, (2)

where X0, Y0 are positive constants, the processesW,Z are correlated Brownian motions,
d〈W,Z〉t = ρ dt with ρ ∈ (−1, 1), and µ : R+×R+ → R, σ : R+×R+ → R are continuous
functions such that there exists a unique strong solution of (2), which is positive. We have∫ T

0 Y 2
u du <∞ P-a.s. since Y is continuous, so it follows from the well known properties

of stochastic exponent that a unique strong solution of SDE (1) on [0, T ] has the form

Xt = X0 exp
(∫ t

0
Yu dWu −

1
2

∫ t

0
Y 2
u du

)
(3)

(see, e.g., Revuz and Yor [15]). The processX is a local martingale, so there is no arbitrage
on such a market. We assume that the asset price is being modeled under the risk-neutral
probability.

We call this model a linear stochastic volatility model, because the SDE (1) governing
the asset price is linear with respect to the asset price itself with the coefficient of lin-
earity being the stochastic volatility Y . Note that the known models such as Black and
Scholes model, log-normal stochastic volatility model, Heston model (where Y 2 is a CIR
process) and Stein and Stein model belong to this class. For a review of such models see
[4, Chapter 2].
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Remark 2.1. It is worth noticing that the constant ρ in the model can be replaced by
a measurable, deterministic function ρ : [0, T ] → (−1, 1) and the results of this paper
remain true with minor modifications.

3. Existence of the density function and its representation. We start with a
theorem on existence of the density function of the underlying asset price in a linear
stochastic volatility model, and its representation. This representation allows us to find
a closed formula for the density function (see examples in the next section), which is
important for applications (see, e.g., Carmona and Durrleman [2]). Of course, our theorem
gives for the Black–Scholes model the well-known density function of price. Gulisashvili
in [4, Section 3] gives various representations formulas for stock price densities in the
specific linear stochastic volatility models. Our technique of proof is different from that
in [4].

By Φ (resp. φ) we denote the cumulative distribution function (resp. the density
function) of the standard Gaussian random variable.

Theorem 3.1. Fix t ∈ (0, T ]. In a linear stochastic volatility model the distribution of Xt

has the representation

P(Xt ≤ r) = EΦ
(

ln(r/X0)− µZ(t)
σZ(t)

)
, (4)

where r > 0, and

µZ(t) = ρ

∫ t

0
Yu dZu −

1
2

∫ t

0
Y 2
u du, (5)

σ2
Z(t) = (1− ρ2)

∫ t

0
Y 2
u du. (6)

Moreover, the random variable Xt has the density function gXt on (0,∞), which has the
representation

gXt(r) = E
[

1
rσZ(t)φ

(
ln(r/X0)− µZ(t)

σZ(t)

)]
. (7)

If

E
(
σ2
Z(t)

)−1/2
<∞, (8)

then the density function gXt is continuous.

Proof. Notice that we can represent W in the form

Wt = ρZt +
√

1− ρ2Bt, (9)

where (B,Z) is the standard two-dimensional Wiener process. This together with (3)
implies that

lnXt = lnX0 + θZ(t) + θB(t), (10)
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where

θZ(t) := ρ

∫ t

0
Yu dZu −

1
2 ρ

2
∫ t

0
Y 2
u du,

θB(t) :=
√

1− ρ2
∫ t

0
Yu dBu −

1
2(1− ρ2)

∫ t

0
Y 2
u du.

For fixed r > 0 we have
P(Xt ≤ r) = E1{X0 exp(

∫ t
0
Yu dWu− 1

2

∫ t
0
Y 2
u du)≤r}

= EE
[
1{ρ
∫ t

0
Yu dZu+

√
1−ρ2

∫ t
0
Yu dBu− 1

2

∫ t
0
Y 2
u du≤ln(r/X0)}

∣∣ FZt ]. (11)

Since SDE (2) has the unique strong solution, there exists an appropriately measurable
function Ψ(·, ·) such that Y = Ψ(Y0, Z) (see, e.g. Ikeda, Watanabe [7]). Together with the
fact that the processes B and Z are independent Brownian motions, this implies that the
random variable θB(t), for a fixed trajectory of Zu, u ≤ t, has the Gaussian distribution
with mean µ̂ = − 1

2 (1 − ρ2)
∫ t

0 Y
2
u du and variance σ̂2 = (1 − ρ2)

∫ t
0 Y

2
u du. Consequently,

by (11), we obtain

P(Xt ≤ r) = EP
(
µZ(t) + σZ(t)g ≤ ln r

X0

∣∣∣∣ FZt )
= EP

(
g ≤ ln(r/X0)− µZ(t)

σZ(t)

∣∣∣∣ FZt ) = EΦ
(

ln(r/X0)− µZ(t)
σZ(t)

)
,

where g is a standard Gaussian random variable independent of FZt , µZ(t) and σ2
Z(t) are

given by (5) and (6), respectively. This finishes the proof of (4).
Since

∂

∂r
Φ
(

ln(r/X0)− µZ(t)
σZ(t)

)
= 1
rσZ(t) φ

(
ln(r/X0)− µZ(t)

σZ(t)

)
we have, by the Fubini theorem for nonnegative functions,

P(Xt ≤ r) = E
∫ r

0

1
sσZ(t) φ

(
ln(s/X0)− µZ(t)

σZ(t)

)
ds

=
∫ r

0
E
[

1
sσZ(t) φ

(
ln(s/X0)− µZ(t)

σZ(t)

)]
ds

for r > 0. Hence the random variable Xt has the density function gXt given by (7).
The continuity of density, under assumption (8), follows from (7) and the Lebesgue

dominated convergence theorem. Indeed, fix an arbitrary r > 0. Observe that

s 7−→ 1
sσZ(t) φ

(
ln(s/X0)− µZ(t)

σZ(t)

)
is continuous on (0,∞), and

1
sσZ(t)φ

(
ln(s/X0)− µZ(t)

σZ(t)

)
≤ 1
r − ε

(
1

σZ(t)

)
φ

(
ln((r + ε)/X0)− µZ(t)

σZ(t)

)
:= J (12)

for s ∈ (r−ε, r+ε). Since, by (8), J is integrable, we conclude that lims→r gXt(s) = gXt(r)
by the Lebesgue dominated convergence theorem.
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Remark 3.2. From the last theorem it is clear, under our standing assumption |ρ| < 1,
that finding the distribution of Xt, for fixed t, reduces to deriving the distribution of the
vector (

∫ t
0 Yu dZu,

∫ t
0 Y

2
u du), so to finding functionals of Brownian motion. For the case

ρ = ±1 we have the same conclusion because in this case we have W = ±Z and

Xt = X0 exp
(
±
∫ t

0
Yu dZu −

1
2

∫ t

0
Y 2
u du

)
.

In the next proposition we give two sufficient conditions for (8) to hold.

Proposition 3.3. Assume that one of the following conditions holds:

i) There exists m ≥ 1 such that

E
(∫ t

0
Y 2
u du

)−m/2
<∞. (13)

ii) There exists β > 0 and m ≥ 1
2β such that

E
(∫ t

0
Y −2β
u du

)m
<∞. (14)

Then condition (8) is satisfied.

Proof.
i) Using the Hölder inequality we see that (13) implies (8) for m ≥ 1.
ii) Assume that (14) holds. Since, by the Hölder inequality,

t ≤
(∫ t

0
Y 2
u du

)β/(β+1)(∫ t

0
Y −2β
u du

)1/(1+β)
,

we have

E
(∫ t

0
Y 2
u du

)−1/2
≤ t−(β+1)/(2β)E

(∫ t

0
Y −2β
u du

)1/(2β)
.

Hence, using again the Hölder inequality with p = 2mβ ≥ 1, we conclude that (14)
implies (8).

Now, we formulate the conditions ensuring that the density function of Xt belongs to
the class C∞ = C∞((0,∞)) and present an analytic form of the density. An application
of this proposition will be presented in Theorem 4.7. In what follows by f (n) we denote
the n-th derivative of f .

Proposition 3.4. Fix t ∈ (0, T ]. Let X0 = x > 0. Assume that

E
∣∣∣∣ 1
σn+1
Z (t)

(
µZ(t)
σZ(t)

)p
φ(n)

(
ln(r/x)− µZ(t)

σZ(t)

)∣∣∣∣ <∞ (15)

for every r ∈ (0,∞), n ∈ N, p ∈ {0, 1}, and

Eσ−mZ (t) <∞ (16)

for every m ∈ N. Then the density function gXt belongs to the class C∞. Moreover, if

lim
n→∞

rn

n! E
(

1
σn+1
Z (t)

φ(n)
(
r − µZ(t)
σZ(t)

))
= 0, (17)
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for every r ∈ R, then

gXt(r) = 1
r

( ∞∑
n=0

γn(ln(r/x))n
)
, (18)

where the coefficients γk (depending on fixed t) are given by

γk = E
(

1
σkZ(t)

φ(k−1)
(
−µZ(t)
σZ(t)

))
. (19)

Proof. Theorem 3.1 implies, by assumption (16), that r 7→ gXt(r) is continuous on (0,∞).
Using similar arguments as in the proof of Theorem 3.1, we can differentiate g and we
obtain

g′Xt(r) = 1
r
E
(

1
σ2
Z(t)φ

′
(

ln(r/x)− µZ(t)
σZ(t)

))
− 1
r2E

(
1

σZ(t)φ
(

ln(r/x)− µZ(t)
σZ(t)

))
.

Now, using assumptions (15), (16), the elementary formula

φ(k+1)(x) = −xφ(k)(x)− kφ(k−1)(x)

and proceeding as in the proof of Theorem 3.1 we deduce that the function

r 7→ E
(

1
σn+1
Z (t)

φ(n)
(

ln(r/x)− µZ(t)
σZ(t)

))
is differentiable. By similar arguments, using mathematical induction, the fact that

E
∣∣∣∣ ln(r/x)− µZ(t)

σn+2
Z (t)

φ(n)
(

ln(r/x)− µZ(t)
σZ(t)

)∣∣∣∣ <∞,
and the Leibniz formula we infer the first statement.

To prove the second statement let us define a function H on R by formula

H(θ) = E
(

1
σZ(t) φ

(
θ − µZ(t)
σZ(t)

))
.

By similar arguments as above we see that H ∈ C∞. If condition (17) holds, then H can
be expanded into the series

H(θ) =
∞∑
n=0

γnθ
n. (20)

The sequence (γk) we find in a standard way by taking derivatives of H at point 0. By
Theorem 3.1, for θ = ln(r/x), we have

gXt(r) = 1
r
H
(
ln(r/x)

)
.

Combining this and (20) we finish the proof.

In the next few theorems we present some properties of X.

Theorem 3.5. Assume that X0 = x, E
∫ T

0 X2
uY

2
u du < ∞, Eσ2

Z(t)−1 < ∞. Let γ be a
gamma random variable with parameter 1/2 independent from X and

G(z) := 1
4 1{(0,∞)}(z)

(
x

2z2 −
3
z

)
.



REVISITING STOCHASTIC VOLATILITY MODELS 175

Let us define, for t ≥ 0,

Ht(z) := E(Y 2
t |Xt = z),

Ft(z) := E
(
G(γ)Ht(Xt)

∣∣∣ X2
t

4γ = z
)
. (21)

Assume that, for every z > 0, the functions t 7→ Ht, t 7→ Ft are continuous. Then

P
(
X2
t

4γ ∈ dz
)

= x

2
√
πz3

exp
(
−x

2

4z +
∫ t

0
Fu(z) du

)
1(0,∞)(z) dz. (22)

Proof. Let us recall that Xt = x +
∫ t

0 XuYu(ρ dBu +
√

1− ρ2 dVu), where B, V are two
independent Brownian motions. From the Itô lemma we have

de−λXt = −λe−λXtXtYt
(
ρ dBu +

√
1− ρ2 dVu

)
+ λ2

2 e−λXtX2
t Y

2
t dt (23)

for λ > 0. The local martingale in (23) is a true martingale since
∫ T

0 EX2
uY

2
u du <∞, by

assumption, so

Ee−λXt = e−λx + λ2

2 E
∫ t

0
e−λXuX2

uY
2
u du = e−λx + λ2

2 E
∫ t

0
e−λXuX2

uHu(Xu) du.

Hence the function t 7→ Ee−λXt is differentiable for t > 0, and
∂

∂t
Ee−λXt = λ2

2 E
(
e−λXtX2

tHt(Xt)
)
. (24)

Using the fact that Ee−λ2/(4γ) = e−λ and independence of Xt and γ we have
λ2

2 E
(
e−λXtX2

tHt(Xt)
)

= 1
2 E
(
e−λ

2X2
t /(4γ)λ2X2

tHt(Xt)
)
. (25)

The density of 1
4γ given by f(z) = x

2
√
πz3 e

−x2/(4z)
1(0,∞)(z) is differentiable on (0,∞) and

f(0) = 0. Moreover, G = 1
2
f ′

f , thus we obtain using integration by parts

1
2E
(
e−λ

2X2
t /(4γ)λ2X2

tHt(Xt)
)

= 1
2

∫ ∞
0

∫ ∞
0

e−λ
2u2zλ2u2Ht(u)f(z) dz PXt(du)

= 1
2

∫ ∞
0

∫ ∞
0

e−λ
2u2zHt(u)f ′(z) dz PXt(du) = E

(
e−λ

2X2
t /(4γ)G(γ)Ht(Xt)

)
.

Hence and from (24) and (25) we conclude, for ξt := X2
t

4γ , that

∂

∂t
Ee−λ

2ξt = E
(
e−λ

2ξtG(γ)Ht(Xt)
)
. (26)

Observe that from (7) we have

P(ξt ∈ dv) = 1
2v E

[
1

σZ(t) φ
( ln(2√vγ/x)− µZ(t)

σZ(t)

)]
dv,

so t 7→ gξt(z) dz := P(ξt ∈ dz) is differentiable since E(σ2
Z(t))−1 <∞. Next, we conclude

from (26) that
∂

∂t
gξt(z) = gξt(z)Ft(z). (27)
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Moreover, ξ0 has the density

gξ0(z) dz = P
(x2

4γ ∈ dz
)

= x

2
√
πz3

e−x
2/(4z)

1(0,∞)(z) dz. (28)

By assumption, t 7→ Ft and t 7→ Ht are continuous. Thus, using (27) and (28) we conclude
that

gξt(z) = x

2
√
πz3

exp
(
−x

2

4z +
∫ t

0
Fu(z) du

)
1(0,∞)(z), (29)

which is the statement of the theorem.

Hence we deduce an interesting factorization of the density of ξt = X2
t

4γ .

Corollary 3.6. Under assumptions of Theorem 3.5, for z > 0 we have

i) P
(X2

t

4γ ∈ dz
)

= P
(x2

4γ ∈ dz
)

exp
(∫ t

0
Fu(z) du

)
.

ii) E
(
G(γ)Ht(Xt)

∣∣∣ X2
t

4γ = z
)

=
E
(
G(γ)H(2√zγ)√γgXt(2

√
zγ)
)

E
(√
γgXt(2

√
zγ)
) .

Proof.
i) It follows immediately from (22) and (28).
ii) The assertion follows from the fact that for two positive independent random

variables X and Y having densities gX and gY respectively,

P
(
Y ∈ dy

∣∣∣ X
Y

= z
)

= gY (y)ygX(yz)
E(Y gX(Y z)) ,

for z > 0.

From Corollary 3.6 it follows that to know the density of X2
t /(4γ) it is enough to

know the form of function F . As we will see in the next proposition the distribution of
X2
t /(4γ) leads to the explicit formula of modified Laplace transform of X2

t .

Proposition 3.7. Under the assumptions of Theorem 3.5, for any v > 0 we have

E
(
Xt exp

(
−X

2
t

4v

))
= x exp

(
−x

2

4v +
∫ t

0
Fu(v) du

)
. (30)

Proof. Let ξt = X2
t

4γ . Using subsequently Fubini’s theorem, the elementary formula

e−
√
λs = s√

2

∫ ∞
0

1√
2πv3

exp
(
−λv − s2

4v

)
dv for s > 0,

the identity E exp(−λ
2

4γ ) = e−λ and Corollary 3.6, we obtain

Ee−λ
2ξt = E exp

(
−λ2X

2
t

4γ

)
= Ee−λXt = E

(
Xt√

2

∫ ∞
0

1√
2πv3

exp
(
−λ2v − X2

t

4v

)
dv

)
=
∫ ∞

0

1
2
√
πv3

e−λ
2vE
(
Xt exp

(
−X

2
t

4v

))
dv
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for λ > 0. Hence and from Corollary 3.6 we have∫ ∞
0

1
2
√
πv3

e−λ
2vE
(
Xt exp

(
−X

2
t

4v

))
dv

= Ee−λ
2ξt =

∫ ∞
0

exp
(
−λ2v +

∫ t

0
Fu(v) du

) x

2v
√
πv

exp
(
−x

2

4v

)
dv

for λ > 0. The assertion follows.

The next theorem states that knowing the moments E(lnXt)n we can compute
E(Xte

−λX2
t ) under some assumptions and finally the function F .

Theorem 3.8. Fix λ > 0, t > 0. Let cn = 1
n!
∑∞
k=0

(−λ)k
k! (2k + 1)n. If for every n ∈ N

we have
E(Xte

−λX2
t ) <∞, E(lnXt)n <∞, (31)

then

lim inf
n

E
( n∑
l=0

cl(lnXt)l
)+
≥ EXte

−λX2
t . (32)

Moreover, if

lim
n

E
( n∑
l=0

cl(lnXt)l
)+

= lim
n

E
n∑
l=0

cl(lnXt)l ≤ E(Xte
−λX2

t ) (33)

then

E(Xte
−λX2

t ) =
∞∑
l=0

clE(lnXt)l. (34)

Proof. Fix t ≥ 0 for which (31) is satisfied. As xk =
∑∞
i=0

(k ln x)i
i! and xe−λx

2 =∑∞
k=0

(−λ)k
k! x2k+1 we have

xe−λx
2

=
∞∑
k=0

(−λ)k

k!

∞∑
i=0

((2k + 1) ln x)i

i! =
∞∑
i=0

ci(ln x)i

and

E(Xte
−λX2

t ) = E
∞∑
n=0

cn(lnXt)n,

for cn = 1
n!
∑∞
k=0

(−λ)k
k! (2k+ 1)n. Let X(i)(t) = ci(lnXt)i, i ∈ N. By assumptions X(i)(t)

is integrable. For k ∈ N let

Zn =
n∑
i=0

X(i)(t), Λk = {ω : sup
n
Zn(ω) = Zk(ω)}, Λ =

∞⋃
k=1

Λk.

Integrability of Xt yields
∞∑
k=1

EXte
−λX2

t 1Λk = EXte
−λX2

t 1Λ. (35)
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Observe that on Λc we have supn Zn =
∑∞
i=0X

(i)(t) and the equality

E(Xte
−λX2

t 1Λc) =
∞∑
n=0

E(cn(lnXt)n1Λc) (36)

follows from the monotone convergence theorem. Define

Bn = {Zn(ω) ≥ 0}, ξn = sup
j
Zj − Zn ≥ 0.

From Fatou’s lemma, for fixed k, we have

lim inf
n

Eξn1Λk∩Bn ≥ E(Zk1Λk)− E(Xte
−λX2

t 1Λk).

On the other side, the Lebesgue dominated convergence theorem yields

lim
n

Eξn1Λk∩Bn = EZk1Λk − lim
n

EZn1Λk∩Bn ,

and thus
EXte

−λX2
t 1Λk ≤ lim inf

n
EZn1Λk∩Bn ≤ EXte

−λX2
t 1Λk ,

where in the first inequality we used again Fatou’s lemma. In result for any k1, k2, . . . , kN
and N ∈ N

N∑
j=1

EXte
−λX2

t 1Λkj = lim inf
n

EZn1Bn1Λkj .

Hence, from (35), Fatou’s lemma, and Fubini’s theorem we obtain

EXte
−λX2

t 1Λ =
∞∑
k=1

lim inf
n

EZn1Λk∩Bn ≤ lim inf
n

∞∑
k=1

EZn1Λk∩Bn = lim inf
n

E
(
Z+
n 1Λ

)
.

If we assume (33), then

lim inf
n

EZ+
n ≤ lim

n
EZ+

n = lim
n

EZn ≤ E(Xte
−λX2

t )

and the assertion follows from (32).

In the next section we describe a recursive procedure for calculation of E(lnXt)n in
the lognormal stochastic volatility model.

4. Log-normal stochastic volatility model. In this section we present how our gen-
eral results can be used for the specific models. Using our general framework we obtain
the refined results for the log-normal stochastic volatility model.

A log-normal model is a model where the process Y is a geometric Brownian motion,
so

Yt = yeσZt−tσ
2/2, y > 0, σ > 0. (37)

It was considered by Hull and White in the case of uncorrelated noises [6]. In the case
of correlated noises it is a SABR model with β = 1, introduced in 2002 by Hagan et
al. [5]. Sin [16] and later Jourdain [10] proved that in the log-normal stochastic volatility
model the price process X is a martingale if and only if ρ ≤ 0. Their rather technically
complicated proof relied on Feller’s test for explosion. Another proof can be found in
Lions and Musiela [12]. A simple proof of this result can be found in [8].
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From now, for simplicity of presentation, we assume that Yt = yeZt−t/2. The results
below can be deduced with some effort for the process yeσZt−tσ2/2, σ > 0, by the scaling
of time. The first result is an application of the representation of density given by (7).

Theorem 4.1. Fix t > 0. Let Yt = yeZt−t/2 and X0 = x > 0. Then

gXt(r) = 2e−t/8

ry
√

2π(1− ρ2)
1

h(x, r, y, ρ)

×
∫ ∞

0
H(z, y, ρ)K−1

(
H(z, y, ρ)h(x, r, y, ρ)

)
eq(x,r,y,ρ,z)

θ(z, t)
z3/2 dz, (38)

where K−1 is the modified Bessel function and

h(x, r, y, ρ) = 1
y
√

1− ρ2

√
y2(1− ρ2) + (ln(r/x) + ρy)2, (39)

θ(z, t) = z√
2π3t

eπ
2/(2t)

∫ ∞
0

e−u
2/(2t)e−z cosh(u) sinh(u) sin(πu/t) du, (40)

H(z, y, ρ) = 1√
1− ρ2

√
z2(1− ρ2) + (ρz − y/2)2,

q(x, r, y, ρ, z) = 1
2y(1− ρ2) (ln(r/x) + ρy)(2ρz − y)

for z ≥ 0.

Proof. Let Tλ be an exponential random variable with parameter λ, independent of FY,X .
From (7) we have

EgXTλ (r) = E
[

1
rσZ(Tλ)φ

(
ln(r/x)− µZ(Tλ)

σZ(Tλ)

)]
,

where µZ(t) = ρ(Yt − y) − 1
2At, σZ(t) =

√
1− ρ2

√
At, At =

∫ t
0 Y

2
u du. Hence and

from Theorem 4.11 Matsumoto and Yor [13] describing the joint density of the vector
(eBTλ−Tλ/2,

∫ Tλ
0 e2Bu−u du) we conclude that

EgXTλ (r) = 1
ry
√

2π(1− ρ2)

∫ ∞
0

∫ ∞
0

1√
u

exp
(
− (ln(r/x)− ρy(v − 1) + y2u/2)2

2(1− ρ2)y2u

)
× λ

v2+γ+1/2 p
(γ)(u, 1, v) du dv,

where p(γ) is the transition probability density of the Bessel process with index γ, and
here γ =

√
2λ+ 1/4. Let us substitute v = zu. The last expression is equal to

λ

ry
√

2π(1− ρ2)

∫ ∞
0

z−3/2Iγ(z)eq(x,r,y,ρ,z)
∫ ∞

0

1
u2 e

−(h2(x,r,y,ρ)u−1+H2(z,y,ρ)u)/2 du dz,

where Iγ is the modified Bessel function. Identifying the GIG density in the last expression
we see further that this equals

λ

ry
√

2π(1− ρ2)

∫ ∞
0

z−3/2Iγ(z)eq(x,r,y,ρ,z)2K−1
(
H(z, y, ρ)h(x, r, y, ρ)

)H(x, r, y, ρ)
h(z, y, ρ) dz.
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To finish the proof we use another identity for modified Bessel functions

Iγ(z) =
∫ ∞

0
e−γ

2t/2θ(z, t) dt, z > 0, (41)

(see [13, (2.10)]), Fubini’s theorem and the standard Laplace transform argument.

Remark 4.2. Formula (38) giving density of Xt is the improvement of the formula pre-
sented in Theorem 4.15 of [4] which consists of 3 complicated integrals. In this point we
have to mention that θ(z, t) giving the Hartman–Watson distribution (see, e.g., [13, The-
orem A.1]) is an oscillating function for small t. So, is not easy to handle with by using
numerical methods, see Barrieu, Rouault and Yor [1]. Some methodology of approximat-
ing θ(z, t) nearby 0 useful for numerical applications was presented in Gerhold [3].

Continuing the argumentation from Theorem 4.1 we can find another form of integral
in (38), so we can present a result which gives another form of density of Xt.

Theorem 4.3. Fix t > 0 and X0 = x > 0. The density function of Xt in the lognormal
stochastic volatility model is given by

gXt(r) = 2e−t/8

ry
√

2π(1− ρ2)

exp
(
− ln(r/x)+ρy

2(1−ρ2)
)

h2(x, r, y, ρ)

×
∫ ∞

0
exp
(
−s− y2h2(x, r, y, ρ)

16s(1− ρ2)

)
w(αx,r,y,ρ(s), βx,r,y,ρ(s)) ds, (42)

where

w(α, β) =
∫ ∞

0
z−3/2e−αz

2+βzθ(z, t) dz, α > 0, β ∈ R, (43)

and for s > 0

αx,r,y,ρ(s) = h2(x, r, y, ρ)
4s(1− ρ2) , βx,r,y,ρ(s) = ρ

1− ρ2

( y
4sh

2(x, r, y, ρ) + ln(r/x) + ρy

y

)
with h and θ given by (39) and (40).

Proof. Using the integral representation of modified Bessel function K−1

K−1(u) = 1
u

∫ ∞
0

e−s−u
2/(4s) ds (44)

(see Lebedev [11, p. 119]), and the Fubini theorem we obtain

1
h(x, r, y, ρ)

∫ ∞
0

H(z, y, ρ)K−1
(
H(z, y, ρ)h(x, r, y, ρ)

)
eq(x,r,y,ρ,z)

θ(z, t)
z3/2 dz

=
∫ ∞

0

∫ ∞
0

1
h2(x, r, y, ρ) exp

(
−s− H2(z, y, ρ)h2(x, r, y, ρ)

4s

)
eq(x,r,y,ρ,z)

θ(z, t)
z3/2 dz ds

= e−(ln(r/x)+ρy)/(2(1−ρ2))

h2(x, r, y, ρ)

∫ ∞
0

exp
(
−s− y2h2(x, r, y, ρ)

16s(1− ρ2)

)
w(αx,r,y,ρ(s), βx,r,y,ρ(s)) ds.

This and (38) give (42).
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Proposition 4.4. Fix t, ρ, y = Y0. Assume that one of the following conditions holds:

i) λ = 0,
ii) 0 < λ < 1/y and ρ2 > −y(λ+1)

yλ−1 ,
iii) λ /∈ [0, 1/y] and ρ2 < −y(λ+1)

yλ−1 .

Then

Ee−λρy
(
y2(1− ρ2)

(Xt

x

)−λ
+ (ln(Xt/x) + ρy)2

(Xt

x

)−λ)
=
√
πy2e−t/8(1− ρ2)

∫ ∞
0

θ(z, t)
z3/2

√
z2 + ζ2(z, y, ρ)

(ψ(z, y, ρ, λ))−3/2

× exp
(
−
√

(z2 + ζ2(z, y, ρ))ψ(z, y, ρ, λ)
)(

1 +
√

(z2 + ζ2(z, y, ρ))ψ(z, y, ρ, λ)
)
dz,

where

ζ2(z, y, ρ) =
(
zρ− y

2

)2
(1− ρ2)−1,

ψ(z, y, ρ, λ) = 1− y2 1− ρ2

z2 + ζ2(z, y, ρ)

(zρ− (y/2)
1− ρ2 − λ

)2
.

Proof. Using Theorem 4.1 we have

E
((
y2(1− ρ2) + (ln(Xt/x) + ρy)2)(Xt

x

)−λ
e−λρy

)
=
∫ ∞

0

(
y2(1− ρ2) + (ln(r/x) + ρy)2)( r

x

)−λ
e−λρy

2e−t/8

ry
√

2π(1− ρ2)
1

h(x, r, y, ρ)

×
(∫ ∞

0
H(z, y, ρ)K−1

(
H(z, y, ρ)h(x, r, y, ρ)

)
eq(x,r,y,ρ,z)

θ(z, t)
z3/2 dz

)
dr.

Next, using substitution u = ln(r/x) + ρy, the Fubini theorem, formula (44), the form of
functions h and H we see that the last expression is equal to∫ ∞

0

∫ ∞
0

2y
√

1− ρ2

2π e−t/8
θ(z, t)
z3/2 exp

(
−s− 1

4s

(
z2 + (zρ− y/2)2

(1− ρ2)

))
×
∫ ∞
−∞

exp
(
− 1

4s
u2

y2(1− ρ2)

(
z2 + (zρ− y/2)2

(1− ρ2)

)
+ u
( zρ− y/2
y(1− ρ2) − λ

))
du ds dz

=
∫ ∞

0

∫ ∞
0

2y
√

1− ρ2 e−t/8
θ(z, t)
z3/2 exp

(
−s− 1

4s

(
z2 + (zρ− y/2)2

(1− ρ2)

))
× y

√
2s(1− ρ2)√

z2 + (zρ−y/2)2

(1−ρ2)

exp
(
sy2(1− ρ2)

( zρ−y/2
y(1−ρ2) − λ

)2
z2 + (zρ−y/2)2

(1−ρ2)

)
ds dz.

Now, in the last expression we can again use the form of GIG distribution, since from
assumption it follows that

1− y2(1− ρ2)
( zρ−y/2
y(1−ρ2) − λ

)2
z2 + (zρ−y/2)2

(1−ρ2)

> 0
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for all z ≥ 0. In result the last integral equals∫ ∞
0

2y2e−t/8(1− ρ2) θ(z, t)
z3/2(z2 + ζ2(z, y, ρ))1/2

1√
2

×K3/2

(√
z2 + ζ2(z, y, ρ)

√
ψ(z, y, ρ, λ)

)(z2 + ζ2(z, y, ρ)
ψ(z, y, ρ, λ)

)3/4
dz,

which, due to the fact that K3/2(z) =
√
π√

2z3/2 e
−z(1 + z), is equal to

√
πy2e−t/8(1− ρ2)

∫ ∞
0

θ(z, t)
z3/2

√
z2 + ζ2(z, y, ρ)

(ψ(z, y, ρ, λ))−3/2

× exp
(
−
√

(z2 + ζ2(z, y, ρ))ψ(z, y, ρ, λ)
)(

1 +
√

(z2 + ζ2(z, y, ρ))ψ(z, y, ρ, λ)
)
dz.

This finishes the proof.

As an application of this result we obtain a new result for the Hartman–Watson
distribution (compare with Remark 4.2).

Corollary 4.5. Let ρ = 0 and y = 1. For any t > 0 and λ ∈ (−1, 0]

E
[(

1 + ln2
(Xt

x

))(Xt

x

)−λ]
=
√
πe−t/8

∫ ∞
0

θ(z, t)(z2 + 1/4)
z3/2

e−p(z,λ)

p3(z, λ)
(
p(z, λ) + 1

)
dz,

where

p(z, λ) =
(
z2 + 1

4 − (1/2 + λ)2
)1/2

.

Proof. The result follows directly from the last proposition.

Corollary 4.6. For ρ = 0, y = 1, t ≥ 0 and α ∈ (0, 1/2)

E
[(

1 + ln2
(Xt

x

))(Xt

x

)α]
= E

[(
1 + ln2

(Xt

x

))(Xt

x

)1−α
]
.

Proof. We put α = −λ and observe that p(z,−α) = p(z,−(1−α)) for every α ∈ (0, 1/2).
The assertion follows from the previous corollary.

As we found the density has complicated form, so it is difficult to calculate density
even numerically. Therefore, we present an application of Proposition 3.4 which gives the
density of asset price in a linear stochastic volatility model in the form of series (18) with
coefficients γk, k = 1, . . . , defined by (19). To use Proposition 3.4 we need to verify its
assumptions. For this we observe that for Yt = yeZt−t/2 we have E(σZ(t))a <∞ for any
a ∈ R. The last observation and some tedious algebra lead to the desired conclusion. We
omit technical details. To find γk it is enough to compute E

[ (µZ(t))i
(σZ(t))i+j exp

(
− (µZ(t))2

2(σZ(t))2

)]
for natural i, j since γk is a linear combination of such expressions.



REVISITING STOCHASTIC VOLATILITY MODELS 183

Proposition 4.7. Let Yt = yeZt−t/2, X0 = x > 0 and i, j ∈ N. Then

E
[

(µZ(t))i

(σZ(t))i+j exp
(
− (µZ(t))2

2(σZ(t))2

)]
=

i∑
k=0

(
i

k

)
(−ρy)i−k(1− ρ2)−(i+j)/2h(ρ, y)k−(i+j+1)/2 exp

(
− ρy

2(1− ρ2) −
t

8

)
×
∫ ∞

0
(ρyz − 1

2 )kl(ρ, y, z)(i+j+1)/2−k2Kk−(i+j+1)/2
(
h(ρ, y)l(ρ, y, z)

)
exp
(
ρ2y2z
1−ρ2

)
θ(z, t) dz,

where Ki are the modified Bessel functions, θ is given by (40) and

h(ρ, y) =

√
1 + ρ2y2

1− ρ2 , l(ρ, y, z) = 1
2
√

1− ρ2

√
4z2(1− ρ2) + (2ρyz + 1)2.

Proof. In the proof we use a similar idea as in the proof of Theorem 4.1. We take an
exponential random variable Tλ with parameter λ, independent of F and use the form of
the joint density of the vector (eBTλ−Tλ/2,

∫ Tλ
0 e2Bu−u du). As a result, we have

I := E
[

(µZ(Tλ))i

(σZ(Tλ))i+j exp
(
− (µZ(Tλ))2

2(σZ(Tλ))2

)]
=
∫ ∞

0

∫ ∞
0

(ρy(v − 1)− u/2)i

[(1− ρ2)uy2](i+j)/2
exp
(
− (ρy(v − 1)− u/2)2

2u(1− ρ2)

) λ

v2+γ+1/2 p
(γ)(u, 1, v) du dv,

where p(γ) is the transition probability density of the Bessel process with index γ =√
2λ+ 1/4. We can rewrite the last expression, using substitution v = uz, as∫ ∞

0

∫ ∞
0

(ρy(uz − 1)− u/2)i

[(1− ρ2)uy2](i+j)/2
exp
(
− 1

2uh
2(ρ, y)− u

2 l
2(ρ, y, z)

)
× exp

( ρ2y2z

1− ρ2 −
ρy

2(1− ρ2)

) λ

z3/2
1

u3/2 Iγ(z) du dz,

where Iγ is the modified Bessel function. Using the Newton formula we expand the
expression (ρy(uz − 1)− u/2)i into the sum and obtain

I =
i∑

k=0

∫ ∞
0

(
i

k

)(
ρyz − 1

2

)k
(−ρy)i−k(1− ρ2)−(i+j)/2y−(i+j)

×
[∫ ∞

0
uk−(i+j+1)/2−1 exp

(
−u2 l

2(ρ, y, z)− 1
2uh

2(ρ, y)
)
du

]
× exp

( ρ2y2z

1− ρ2 −
ρy

2(1− ρ2)

) λ

z3/2 Iγ(z) dz.

Using the GIG distribution we can compute the internal integral and obtain

I =
i∑

k=0

∫ ∞
0

(
i

k

)(
ρyz − 1

2

)k
(−ρy)i−k(1− ρ2)−(i+j)/2y−(i+j)

( l(ρ, y, z)
h(ρ, y)

)−k+(i+j+1)/2

× 2Kk−(i+j+1)/2
(
h(ρ, y)l(ρ, y, z)

)
exp
( ρ2y2z

1− ρ2 −
ρy

2(1− ρ2)

) λ

z3/2 Iγ(z) dz.
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To finish the proof we again use (41), Fubini’s theorem and the standard Laplace trans-
form argument.

In the next proposition we find a recurrence which connects E((lnXt)nY kt ) for different
values n ∈ N and k ∈ N ∪ {0}, in particular using this we can compute E(lnXt)n for
every n = 1, 2, . . . .

Proposition 4.8. Let un,k(t) = E((lnXt)nY kt ) for t ≥ 0, n ∈ N, k ∈ N ∪ {0}. The
functions un,k satisfy

u′n,k(t) = n(n− 1)
2 un−2,k+2(t)− n

2 un−1,k+2(t)

+ k(k − 1)
2 un,k(t) + nkρun−1,k+1(t). (45)

Proof. By (3), (37), (9) and (10) we see that un,k(t) are well defined. Moreover,

E
∫ t

0
(lnXu)2nY 2k

u du <∞,

so we conclude from Itô’s lemma that un,k ∈ C1 and (45) holds.

Remark 4.9. Proposition 4.8 allows us to find values of un,k in a recursive way. In
particular, we can find un,0(t) = E(lnXt)n. Let us observe that u0,k(t) = yketk(k−1)/2,
k ∈ N ∪ {0}. Moreover, from (45) we have

u′1,k(t) = −1
2 u0,k+2(t) + k(k − 1)

2 u1,k(t) + kρu0,k+1(t)

for every k. From this ODE we obtain u1,k for k ∈ N∪{0}. To obtain u2,k for k ∈ N∪{0}
we have to solve the system of ODEs (45) for n = 2 and k ∈ N ∪ {0}, i.e.

u′2,k(t) = u0,k+2(t)− u1,k+2(t) + k(k − 1)
2 u2,k(t) + 2kρu1,k+1(t).

Generally, having calculated um,k for all m < n and k ∈ N ∪ {0} we find un,k for all
k ∈ N ∪ {0} using (45). The procedure is completed.

In particular, knowing un−2,2 and un−1,2 we find E(lnXt)n = un,0(t) since u′n,0 =
n(n−1)

2 un−2,2 − n
2un−1,2.
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