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Abstract. This paper is concerned with an optimal selling rule for pairs stock trading. A pairs
position consists of a long position in one stock and a short position in the other. The problem
is to find an optimal stopping time to close the pairs position by selling the long position and
buying back the short position. In this paper, we consider the optimal pairs-trading selling rule
by allowing the stock prices to follow a general geometric Brownian motion with regime switch-
ing. The optimal policy is characterized by threshold curves obtained by solving the associated
HJB equations (quasi-variational inequalities). Moreover, numerical examples are provided to
illustrate optimal policies and value functions.

1. Introduction. Pairs trading is about simultaneously trading of a pair of stocks.
A pairs position consists of a long position in one stock and a short position in the other.
In this paper, assuming an existing pairs position, our goal is to determine when to fold
and close the position.

Pairs trading is closely related to the timing of the optimal investments studied in
McDonald and Siegel [MS]. In particular, they considered the optimal timing of invest-
ment in an irreversible project. Two main variables in their model are the value of the
project and the cost of investing. They demonstrated one should defer the investment
until the present value of the benefits from the project exceed the investment cost by
a certain margin. Further studies along this line were carried out by Hu and Øksendal
[HO] to specify precise optimality conditions and to provide a new proof of the following
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variational inequalities among others. Their results can be easily interpreted in terms of
pairs-trade selling rule when treating the project value as the long position and investment
cost the short position.

In this paper, we extend these results to incorporate markets with regime switching.
We focus on a simple and easily implementable strategy, and its optimality and sufficient
conditions for a closed-form solution.

Mathematical trading rules have been studied for many years. For example, Zhang [Z]
considered a selling rule determined by two threshold levels, a target price, and a stop-
loss limit. In [Z], such optimal threshold levels are obtained by solving a set of two-point
boundary value problems. Guo and Zhang [GZ] studied the optimal selling rule under a
model with switching Geometric Brownian motion. Using a smooth-fit technique, they
obtained the optimal threshold levels by solving a set of algebraic equations. These pa-
pers are concerned with the selling side of trading in which the underlying price models
are of GBM type. Recently, Dai et al. [DZZ] developed a trend-following rule based
on a conditional probability indicator. They showed that the optimal trading rule can
be determined by two threshold curves which can be obtained by solving the associated
Hamilton–Jacobi–Bellman (HJB) equations. A similar idea was developed following a con-
fidence interval approach by Iwarere and Barmish [IB]. Besides, Merhi and Zervos [MZ]
studied an investment capacity expansion/reduction problem following a dynamic pro-
gramming approach under a geometric Brownian motion market model. In connection
with mean reversion trading, Zhang and Zhang [ZZ] obtained a buy-low and sell-high pol-
icy by characterizing the ‘low’ and ‘high’ levels in terms of the mean reversion parameters.
Song and Zhang [SZ] studied pairs trading under a mean reversion model. It is shown
that the optimal trading rule can be determined by threshold levels that can be obtained
by solving a set of algebraic equations. A set of sufficient conditions are also provided
to establish the desired optimality. Deshpande and Barmish [DB] introduced a control-
theoretic approach. In particular, they were able to relax the requirement for spread
functions and showed that their trading algorithm produces positive expected returns.
Other related pairs technologies can be found in Elliott et al. [EHM] and Whistler [W].
Recently, we [TZZ] studied an optimal pairs trading rule. The objective is to initiate
and close the positions of the pair sequentially to maximize a discounted payoff function.
Using a dynamic programming approach, we study the problem under a geometric Brow-
nian motion model and proved that the buying and selling can be determined by two
threshold curves in closed form. They also demonstrate the optimality of their trading
strategy.

Market models with regime switching are important in market analysis. In this paper,
we consider a geometric Brownian motion with regime switching. The market mode is
represented by a two-state Markov chain. We focus on the selling part of pairs trading
and generalize the results of Hu and Øksendal [HO] by incorporating models with regime
switching. We show that the optimal selling rule can be determined by two threshold
curves and establish a set of sufficient conditions that guarantee the optimality of the
policy. We also include several numerical examples under a different set of parameter
values.
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This paper is organized as follows. In §2, we formulate the pairs trading problem
under consideration. In §3, we study the associated HJB equations and their solutions.
We provide a set of sufficient conditions that guarantee the optimality of our selling rule.
Numerical examples are given in §4. Some concluding remarks are given in §5.

2. Problem formulation. We consider two stocks S1 and S2. Let {X1
t , t ≥ 0} denote

the prices of stock S1 and {X2
t , t ≥ 0} that of stock S2. They satisfy the following

stochastic differential equation:

d

(
X1
t

X2
t

)
=
(
X1
t

X2
t

)[(
µ1(αt)
µ2(αt)

)
dt+

(
σ11(αt) σ12(αt)
σ21(αt) σ22(αt)

)
d

(
W 1
t

W 2
t

)]
, (1)

where µi, i = 1, 2, are the return rates, σij , i, j = 1, 2, the volatility constants, αt a
two-state Markov chain, and (W 1

t ,W
2
t ) a two-dimensional standard Brownian motion.

Let M = {1, 2} denote the state space for the Markov chain αt and let Q =(
−λ1 λ1
λ2 −λ2

)
, with λ1 > 0 and λ2 > 0, be its generator. We assume αt and (W 1

t ,W
2
t )

are independent.
In this paper, we consider a pair selling rule. For simplicity, we assume the corre-

sponding pair’s position consists of a one-share long position in stock S1 and a one-share
short position in stock S2. The problem is to determine an optimal stopping time τ to
close the pair’s position by selling S1 and buying back S2.

Let K denote the transaction cost percentage (e.g., slippage and/or commission)
associated with stock transactions. For example, the proceeds to close the pairs position
at t is (1−K)X1

t − (1 +K)X2
t . For ease of notation, let βb = 1 +K and βs = 1−K.

Given the initial state (x1, x2), α = 1, 2, and the selling time τ , the corresponding
reward function

J(x1, x2, α, τ) = E
[
e−ρτ (βsX

1
τ − βbX

2
τ )
]
, (2)

where ρ > 0 is a given discount factor.
Let Ft = σ{(X1

r , X
2
r , αr) : r ≤ t}. The problem is to find an {Ft} stopping time τ to

maximize J . Let V (x1, x2, α) denote the corresponding value functions:

V (x1, x2, α) = sup
τ
J(x1, x2, α, τ). (3)

Remark 2.1. The ‘one-share’ pair position is not as restrictive as it appears. For exam-
ple, one can consider any pairs with n1 shares of long position in S1 and n2 shares of
short position in S2. To treat this case, one only has to make change of the state vari-
ables (X1

t , X
2
t )→ (n1X

1
t , n2X

2
t ). Due to the nature of GBMs, the corresponding system

equation in (1) will remain the same. The modification only affects the reward function
in (2) implicitly.

Throughout this paper, we impose the following conditions:
(A1) For α = 1, 2, ρ > µ1(α) and ρ > µ2(α).

Under these conditions, we have the lower and upper bounds for V :

βsx1 − βbx2 ≤ V (x1, x2, α) ≤ βsx1. (4)
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Actually, the lower bound follows from the value function definition

V (x1, x2, α) ≥ J(x1, x2, α, 0) = βsx1 − βbx2.

The upper bound can be obtained from Dynkin’s formula

J(x1, x2, α, τ) ≤ E[e−ρτβsX
1
τ ] = βs

(
x1 + E

∫ τ

0
e−ρtX1

t (−ρ+ µ1(αt)) dt
)
≤ βsx1.

3. HJB equations. In this paper, we follow the dynamic programming approach and
focus on HJB equations. First, for i = 1, 2, let

Ai = 1
2

[
a11(i)x2

1
∂2

∂x2
1

+ 2a12(i)x1x2
∂2

∂x1∂x2
+ a22(i)x2

2
∂2

∂x2
2

]
+ µ1(i)x1

∂

∂x1
+ µ2(i)x2

∂

∂x2
(5)

where

a11(i) = σ2
11(i)+σ2

12(i), a12(i) = σ11(i)σ21(i)+σ12(i)σ22(i), and a22(i) = σ2
21(i)+σ2

22(i).

Formally, the associated HJB equations have the form:
min

{
(ρ−A1)v(x1, x2, 1)− λ1(v(x1, x2, 2)− v(x1, x2, 1)),

v(x1, x2, 1)− βsx1 + βbx2
}

= 0,
min

{
(ρ−A2)v(x1, x2, 2)− λ2(v(x1, x2, 1)− v(x1, x2, 2)),

v(x1, x2, 2)− βsx1 + βbx2
}

= 0.

(6)

To solve the HJB equations, we first convert them into equations with a single in-
dependent variable by introducing y = x2/x1 and v(x1, x2, i) = x1wi(x2/x1), for some
function wi(y) and i = 1, 2. Then direct calculation yields

∂v(x1, x2, i)
∂x1

= wi(y)− yw′i(y), ∂v(x1, x2, i)
∂x2

= w′i(y),

∂2v(x1, x2, i)
∂x2

1
= y2w′′i (y)

x1
,

∂2v(x1, x2, i)
∂x2

2
= w′′i (y)

x1
,

∂2v(x1, x2, i)
∂x1∂x2

= −yw
′′
i (y)
x1

.

We rewrite Aiv(x1, x2, i) in terms of wi to obtain

Aiv(x1, x2, i) = x1
{
σiy

2w′′i (y) + [µ2(i)− µ1(i)]yw′i(y) + µ1(i)wi(y)
}
.

where σi = [a11(i)− 2a12(i) + a22(i)]/2. Let

Li[wi(y)] = σiy
2w′′i (y) + [µ2(i)− µ1(i)]yw′i(y) + µ1(i)wi(y), i = 1, 2.

Then, the HJB equations can be given in terms of y and wi as follows:{
min

{
(ρ+ λ1 − L1)w1(y)− λ1w2(y), w1(y) + βby − βs

}
= 0,

min
{

(ρ+ λ2 − L2)w2(y)− λ2w1(y), w2(y) + βby − βs
}

= 0.
(7)

In this paper, we only consider the case when σi 6= 0, i = 1, 2. If either σ1 = 0 and/or
σ2 = 0, the problem reduces to a (partial) first order case and can be treated in a similar
and much simpler way.
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First we consider the equations:

(ρ+ λ1 − L1)w1 = λ1w2 and (ρ+ λ2 − L2)w2 = λ2w1. (8)

Then both w1 and w2 satisfy the equation[
(ρ+ λ1 − L1)(ρ+ λ2 − L2)− λ1λ2

]
w = 0.

Note that both L1 and L2 are the classical Euler type operators and therefore the
solutions to the above equation is of the form w = yδ for some δ. This leads to that δ
must satisfy

[ρ+ λ1 −A1(δ)][ρ+ λ2 −A2(δ)]− λ1λ2 = 0, (9)

with
Ai(δ) = σiδ(δ − 1) + [µ2(i)− µ1(i)]δ + µ1(i), i = 1, 2. (10)

It is elementary to show the equation (9) has four zeros which can be arranged as follows:
δ1 ≥ δ2 > 1 > 0 > δ3 ≥ δ4.

Let

w1 =
4∑
j=1

c1jy
δj and w2 =

4∑
j=1

c2jy
δj ,

for some constants cij . Then, in view of the equations in (8), it follows that

c1,j(ρ+ λ1 −A1(δj)) = λ1c2j and c2j(ρ+ λ2 −A2(δj)) = λ2c1j .

Define
ηj = ρ+ λ1 −A1(δj)

λ1
. (11)

Then it follows from (9) that

ηj = λ2

ρ+ λ2 −A2(δj)
.

Therefore, c2j = ηjc1j , j = 1, 2, 3, 4. Hence,

w1 =
4∑
j=1

c1jy
δj and w2 =

4∑
j=1

ηjc1jy
δj (12)

will be the general solution of (8).
Heuristically, one should close the pairs position when X1

t is large and X2
t is small. In

view of this, we introduce H1 = {(x1, x2) : x2 ≤ k1x1} and H2 = {(x1, x2) : x2 ≤ k2x1},
for some k1 and k2 so that one should sell when (X1

t , X
2
t ) enters Hi provided αt = i,

i = 1, 2.
In this paper, we need consider two cases: k1 ≤ k2 and k2 ≥ k1. By symmetry in

αt = 1 and αt = 2, we only need to consider one of them, say k1 ≤ k2. We treat two
separate cases: k1 < k2 and k1 = k2.

Case 1: k1 < k2. First, we divide (0,∞) into three intervals:

Γ1 = (0, k1], Γ2 = (k1, k2), and Γ3 = [k2,∞).
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Then, on each of these intervals, the HJB equations can be specified as follows:
Γ1 : w1(y) = βs − βby; w2(y) = βs − βby;
Γ2 : (ρ+ λ1 − L1)w1(y) = λ1w2(y); w2(y) = βs − βby;
Γ3 : (ρ+ λ1 − L1)w1(y) = λ1w2(y); (ρ+ λ2 − L2)w2(y) = λ2w1(y).

We are to find solutions on each intervals. First, on Γ3, recall the linear bounds for value
functions given in (4). Recall also that δ1 > 1 and δ2 > 1. It follows that the coefficients
in (12) for yδ1 and yδ2 must be zero. Therefore,

w1 = C1y
δ3 + C2y

δ4 and w2 = η3C1y
δ3 + η4C2y

δ4 .

Next, to find solution on Γ2, note that a particular solution for

(ρ+ λ1 − L1)w1(y) = λ1w2(y) = λ1(βs − βby)

can be given by w1 = a1 + a2y, with

a1 = λ1βs

ρ+ λ1 − µ1(1) and a2 = − λ1βb

ρ+ λ1 − µ2(1) . (13)

To find a general solution of the above non-homogeneous equation, we only need to solve
the homogeneous equation (ρ+λ1−L1)w1 = 0. This is also of Euler type and its solution
is of the form yγ . Then γ must be the roots of the quadratic equation

σ1γ(γ − 1) + [µ2(1)− µ1(1)]γ + µ1(1)− ρ− λ1 = 0.

They are given by
γ1 = 1

2 + µ1(1)− µ2(1)
2σ1

+

√(
1
2 + µ1(1)− µ2(1)

2σ1

)2
+ ρ+ λ1 − µ1(1)

σ1
,

γ2 = 1
2 + µ1(1)− µ2(1)

2σ1
−

√(
1
2 + µ1(1)− µ2(1)

2σ1

)2
+ ρ+ λ1 − µ1(1)

σ1
.

(14)

The general solution for w1 on Γ2 is given by

w1 = C3y
γ1 + C4y

γ2 + λ1βs

ρ+ λ1 − µ1(1) −
λ1βb

ρ+ λ1 − µ2(1) y, (15)

for some constants C3 and C4.

Smooth-fit conditions. Smooth-fit conditions in connection with optimal stopping typ-
ically require the value functions to be continuously differentiable. Next we use such
smooth-fit conditions to set up equations for parameters Cj , j = 1, 2, 3, 4, k1 and k2.

First, the continuous differentiability of w1 at k1 yields

βs − βbk1 = C3k
γ1
1 + C4k

γ2
1 + a1 + a2k1,

−βb = C3γ1k
γ1−1
1 + C4γ2k

γ2−1
1 + a2.

(16)

Similarly, we have the equation for w2 at k2

βs − βbk2 = η3C1k
δ3
2 + η4C2k

δ4
2 ,

−βb = η3δ3C1k
δ3−1
2 + η4δ4C2k

δ4−1
2 .

(17)
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Finally, the equations for w1 at k2 are given by

C3k
γ1
2 + C4k

γ2
2 + a1 + a2k2 = C1k

δ3
2 + C2k

δ4
2 ,

C3γ1k
γ1−1
2 + C4γ2k

γ2−1
2 + a2 = δ3C1k

δ3−1
2 + δ4C2k

δ4−1
2 .

(18)

We solve equations (16) and (17) for Cj , j = 1, 2, 3, 4, in terms of k1 and k2 and obtain

C1 = −δ4βs + (δ4 − 1)βbk2

η3(δ3 − δ4)kδ3
2

,

C2 = δ3βs + (1− δ3)βbk2

η4(δ3 − δ4)kδ4
2

,

C3 = γ2(βs − a1) + (1− γ2)(βb + a2)k1

(γ2 − γ1)kγ1
1

,

C4 = −γ1(βs − a1) + (γ1 − 1)(βb + a2)k1

(γ2 − γ1)kγ2
1

.

Substituting these into (18), we obtain two equations on k1 and k2

γ2(βs − a1) + (1− γ2)(βb + a2)k1

(γ2 − γ1)

(k2

k1

)γ1

+ −γ1(βs − a1) + (γ1 − 1)(βb + a2)k1

(γ2 − γ1)

(k2

k1

)γ2
+ a1 + a2k2

= −δ4βs + (δ4 − 1)βbk2

η3(δ3 − δ4) + δ3βs + (1− δ3)βbk2

η4(δ3 − δ4)

and
γ2(βs − a1) + (1− γ2)(βb + a2)k1

(γ2 − γ1) γ1

(k2

k1

)γ1

+ −γ1(βs − a1) + (γ1 − 1)(βb + a2)k1

(γ2 − γ1) γ2

(k2

k1

)γ2
+ a2k2

= −δ4βs + (δ4 − 1)βbk2

η3(δ3 − δ4) δ3 + δ3βs + (1− δ3)βbk2

η4(δ3 − δ4) δ4.

We next simplify these equations and obtain

[γ2(βs − a1) + (1− γ2)(βb + a2)k1]
(k2

k1

)γ1
+ γ2a1 + (γ2 − 1)a2k2

= −δ4βs + (δ4 − 1)βbk2

η3(δ3 − δ4) (γ2 − δ3) + δ3βs + (1− δ3)βbk2

η4(δ3 − δ4) (γ2 − δ4)

and

[−γ1(βs − a1) + (γ1 − 1)(βb + a2)k1]
(k2

k1

)γ2
+ (1− γ1)a2k2 − γ1a1

= −δ4βs + (δ4 − 1)βbk2

η3(δ3 − δ4) (δ3 − γ1) + δ3βs + (1− δ3)βbk2

η4(δ3 − δ4) (δ4 − γ1).
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To reduce the above equations into linear equations in k1 and k2, we let r = k2/k1.
Then, we have

[
γ2(βs − a1) + (1− γ2)(βb + a2)k1

]
rγ1 =

[
−δ4βs(γ2 − δ3)
η3(δ3 − δ4) + δ3βs(γ2 − δ4)

η4(δ3 − δ4) − γ2a1

]
+
[

(δ4 − 1)(γ2 − δ3)βb

η3(δ3 − δ4) + (1− δ3)βb(γ2 − δ4)
η4(δ3 − δ4) − (γ2 − 1)a2

]
k2

and[
−γ1(βs − a1) + (γ1 − 1)(βb + a2)k1

]
rγ2 =

[
−δ4βs(δ3 − γ1)
η3(δ3 − δ4) + δ3βs(δ4 − γ1)

η4(δ3 − δ4) + γ1a1

]
+
[

(δ4 − 1)(δ3 − γ1)βb

η3(δ3 − δ4) + (1− δ3)βb(δ4 − γ1)
η4(δ3 − δ4) − (1− γ1)a2

]
k2.

To simplify notation, let

A1 = −δ4βs(γ2 − δ3)
η3(δ3 − δ4) + δ3βs(γ2 − δ4)

η4(δ3 − δ4) − γ2a1,

A2 = −δ4βs(δ3 − γ1)
η3(δ3 − δ4) + δ3βs(δ4 − γ1)

η4(δ3 − δ4) + γ1a1,

B1 = (δ4 − 1)(γ2 − δ3)βb

η3(δ3 − δ4) + (1− δ3)βb(γ2 − δ4)
η4(δ3 − δ4) − (γ2 − 1)a2,

B2 = (δ4 − 1)(δ3 − γ1)βb

η3(δ3 − δ4) + (1− δ3)βb(δ4 − γ1)
η4(δ3 − δ4) − (1− γ1)a2.

Then, we have{(
γ2(βs − a1) + (1− γ2)(βb + a2)k1

)
rγ1 = A1 +B1k2,(

−γ1(βs − a1) + (γ1 − 1)(βb + a2)k1
)
rγ2 = A2 +B2k2.

Eliminate k1 to obtain the equation in r:

A1 − γ2(βs − a1)rγ1

(1− γ2)(βb + a2)rγ1 −B1r
= A2 + γ1(βs − a1)rγ2

(γ1 − 1)(βb + a2)rγ2 −B2r
.

Let

f(r) = A1 − γ2(βs − a1)rγ1

(1− γ2)(βb + a2)rγ1 −B1r
− A2 + γ1(βs − a1)rγ2

(γ1 − 1)(βb + a2)rγ2 −B2r
. (19)

We assume

(A2) f(r) has a zero r0 > 1.
Use this r0 and recall that k2 = r0k1 to obtain
k1 = A1 − γ2(βs − a1)rγ1

0
(1− γ2)(βb + a2)rγ1

0 −B1r0
= A2 + γ1(βs − a1)rγ2

0
(γ1 − 1)(βb + a2)rγ2

0 −B2r0
,

k2 = r0k1 = A1r0 − γ2(βs − a1)rγ1+1
0

(1− γ2)(βb + a2)rγ1
0 −B1r0

= A2r0 + γ1(βs − a1)rγ2+1
0

(γ1 − 1)(βb + a2)rγ2
0 −B2r0

.

(20)
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Using these k1 and k2, we can express C1, C2, C3, and C4. Therefore, the solutions
w1 and w2 are given by

w1(y) =


βs − βby for y ∈ Γ1,

C3y
γ1 + C4y

γ2 + a1 + a2y for y ∈ Γ2,

C1y
δ3 + C2y

δ4 for y ∈ Γ3;

w2(y) =
{
βs − βby for y ∈ Γ1 ∪ Γ2,

C1η3y
δ3 + C2η4y

δ4 for y ∈ Γ3.

Note that the variational inequalities in the HJB equations need to hold. In particular,
we need the HJB inequalities to hold:

Γ1 : (ρ+ λ1 − L1)w1(y)− λ1w2(y) ≥ 0, (ρ+ λ2 − L2)w2(y)− λ2w1(y) ≥ 0;
Γ2 : w1 ≥ βs − βby, (ρ+ λ2 − L2)w2(y)− λ2w1(y) ≥ 0;
Γ3 : w1 ≥ βs − βby, w2 ≥ βs − βby.

(21)

Next, we simplify these inequalities and establish equivalent conditions.
First, consider the inequalities on Γ1. Recall that on this interval, both w1 and w2

equal βb − βby. Simple calculation yields that

(ρ+ λ1 − L1)(βs − βby) = (ρ+ λ1 − µ1(1))βs − (ρ+ λ1 − µ2(1))βby.

So, (ρ+ λ1 − L1)w1(y)− λ1w2(y) ≥ 0 leads to (ρ− µ1(1))βs − (ρ− µ2(1))βby ≥ 0. This
is equivalent to

k1 ≤
(ρ− µ1(1))βs

(ρ− µ2(1))βb
.

Similarly, if w2 = βs − βby, then

(ρ+ λ2 − L2)w2(y) = (ρ+ λ2 − µ1(2))βs − (ρ+ λ2 − µ2(2))βby.

Therefore, (ρ+ λ2 − L2)w2(y)− λ2w1(y) ≥ 0 on Γ1 is equivalent to

k1 ≤
(ρ− µ1(2))βs

(ρ− µ2(2))βb
.

The inequalities on Γ1 are equivalent to

k1 ≤ min
{

(ρ− µ1(1))βs

(ρ− µ2(1))βb
,

(ρ− µ1(2))βs

(ρ− µ2(2))βb

}
. (22)

Similarly, the second inequality in (21) on Γ2 is equivalent to

w1(y) ≤ βs − βby + 1
λ2

[
(ρ− µ1(2))βs − (ρ− µ2(2))βby

]
. (23)

To see an equivalent condition for the first inequality on Γ2, let φ(y) = w1(y)−βs+βby.
Then φ(k1) = 0, φ′(k1) = 0. Note that φ′′(y) can have at most one zero on Γ2. This implies
φ(y) ≥ 0 on Γ2 is equivalent to φ′′(k1) ≥ 0 and φ(k2) ≥ 0. Namely,{

φ′′(k1) = C3γ1(γ1 − 1)kγ1−2
1 + C4γ2(γ2 − 1)kγ2−2

1 ≥ 0 and
φ(k2) = C3k

γ1
2 + C4k

γ2
2 + a1 + a2k2 − βs + βby ≥ 0.

(24)
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Finally, to see an equivalent condition of the second inequality in (21) on Γ3, let
ψ(y) = w2(y) − βs + βby. Then, ψ(k2) = 0, ψ′(k2) = 0, ψ(∞) = ∞, and ψ′(∞) > 0.
Note also that ψ(y) can have at most one zero on Γ3. It follows that ψ(y) ≥ 0 on Γ3 is
equivalent to ψ′′(k2) ≥ 0. So, the second inequality on Γ3 in (21) is equivalent to

ψ′′(k2) = C1η3δ3(δ3 − 1)kδ3−2
2 + C2η4δ4(δ4 − 1)kδ4−2

2 ≥ 0. (25)
The other inequality on Γ3 is w1(y) ≥ βs − βby. Hence,

C1y
δ3 + C2y

δ4 ≥ βs − βby. (26)

We assume these equivalent inequalities.
(A3) The inequalities in (22), (23), (24), (25), and (26) hold.

Case 2: k1 = k2. In this case, let k0 = k1 = k2. We have w1 = w2 = βs − βby on (0, k0]
and

w1 = C1y
δ3 + C2y

δ4 and w2 = C1η3y
δ3 + C2η4y

δ4

on [k0,∞). Then, smooth-fit conditions imply at k0

βs − βbk0 = C1k
δ3
0 + C2k

δ4
0 ,

−βb = δ3C1k
δ3−1
0 + δ4C2k

δ4−1
0 ,

βs − βbk0 = η3C1k
δ3
0 + η4C2k

δ4
0 ,

−βb = η3δ3C1k
δ3−1
0 + η4δ4C2k

δ4−1
0 .

This implies C1 = C1η3 and C2 = C2η4. Hence w1(y) = w2(y) = w(y). Then w(y)
satisfies

(ρ+ λ1 − L1)w(y) = λ1w(y) and (ρ+ λ2 − L2)w(y) = λ2w(y)
for y > k0. This yields (ρ − L1)w(y) = 0 and (ρ − L2)w(y) = 0. Since both ρ − L1 and
ρ − L2 are of Euler type, we have w(y) = C1y

γ0 with γ0 satisfying the two quadratic
equations:

σ1γ0(γ0 − 1) + [µ2(1)− µ1(1)]γ0 + µ1(1)− ρ = 0
σ2γ0(γ0 − 1) + [µ2(2)− µ1(2)]γ0 + µ1(2)− ρ = 0

and taking the value:

γ0 = 1
2 + µ1(1)− µ2(1)

2σ1
−

√(
1
2 + µ1(1)− µ2(1)

2σ1

)2
+ ρ− µ1(1)

σ1

= 1
2 + µ1(2)− µ2(2)

2σ2
−

√(
1
2 + µ1(2)− µ2(2)

2σ2

)2
+ ρ− µ1(2)

σ2
.

(27)

The second equality is the necessary and sufficient condition for k1 = k2. Now the smooth
fitting conditions yield

βs − βbk0 = C1k
γ0
0 and − βbk0 = C1γ0k

γ0
0 .

We can solve this system and obtain

k0 = −γ0βs

(1− γ0)βb
, C1 = −k0βb

γ0k
γ0
0

= (−γ0)−γ0

(1− γ0)1−γ0
· β

1−γ0
s

β−γ0
b

= β1−γ0
s βγ0

b
(−γ0)γ0(1− γ0)1−γ0

. (28)
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Note that γ0 < 0, which implies that both k0 and C1 are positive. Finally the solution to
the HJB equations is given by

w1(y) = w2(y) = w(y) =
{
βs − βby for y ∈ (0, k0],
C1y

γ0 for y ∈ (k0,∞).

Next we prove that the variational inequalities hold in this case. We need to show
(ρ− L1)w(y) ≥ 0 and (ρ− L2)w(y) ≥ 0 on (0, k0],
w(y) ≥ βs − βby on (k0,∞).

(29)

We first prove the second inequality. Let φ0(y) = w(y) − βs + βby = C1y
γ0 − βs + βby.

Then, φ0(k0) = 0, φ′0(k0) = 0, and φ′′0(y) > 0. It follows that φ0(y) is increasing on
(k0,∞). Therefore, φ0(y) ≥ 0 on this interval.

To show the first inequality in (29), note that on (0, k0], for i = 1, 2,

(ρ− Li)w(y) = (ρ− Li)(βs − βby) = (ρ− µ1(i))βs − (ρ− µ2(i))βby.

Therefore,

(ρ− Li)w(y) ≥ 0 on (0, k0]⇐⇒ k0 ≤
(ρ− µ1(i))βs

(ρ− µ2(i))βb
.

We have

k0 ≤
(ρ− µ1(i))βs

(ρ− µ2(i))βb
⇐⇒ −γ0

1− γ0
≤ ρ− µ1(i)
ρ− µ2(i) ⇐⇒ γ0(µ2(i)− µ1(i)) ≤ ρ− µ1(i).

If µ2(i) ≥ µ1(i), then using (27), we have γ0 ≤ 1/2. It follows that

(µ2(i)− µ1(i))γ0 ≤
µ2(i)− µ1(i)

2 ≤ ρ− µ1(i)

because of assumption (A1). So (ρ− Li)w(y) ≥ 0 on (0, k0] in this case.
If µ2(i) < µ1(i), then we have

γ0(µ2(i)− µ1(i)) ≤ ρ− µ1(i)

⇐⇒ (µ2(i)− µ1(i))

√(
1
2 + µ1(i)− µ2(i)

2σi

)2
+ ρ− µ1(i)

σi

≤ ρ− µ1(i) + µ1(i)− µ2(i)
2 + (µ1(i)− µ2(i))2

2σi

⇐⇒

√(
1
2 + µ1(i)− µ2(i)

2σi

)2
+ ρ− µ1(i)

σi
≤ 2ρ− µ1(i)− µ2(i)

2(µ1(i)− µ2(i)) + µ1(i)− µ2(i)
2σi

⇐⇒
(

1
2 + µ1(i)− µ2(i)

2σi

)2
+ ρ− µ1(i)

σi
≤
(

2ρ− µ1(i)− µ2(i)
2(µ1(i)− µ2(i)) + µ1(i)− µ2(i)

2σi

)2

⇐⇒ µ1(i)− µ2(i)
2σi

+ 1
4 + ρ− µ1(i)

σi
≤
(

2ρ− µ1(i)− µ2(i)
2(µ1(i)− µ2(i))

)2
+ 2ρ− µ1(i)− µ2(i)

2σi

⇐⇒ 1
4 ≤

(
2ρ− µ1(i)− µ2(i)
2(µ1(i)− µ2(i))

)2
⇐⇒ 1

2 ≤
2ρ− µ1(i)− µ2(i)
2(µ1(i)− µ2(i)) ⇐⇒ ρ ≥ µ1(i),

which holds due to (A1). Therefore, the inequalities in (29) hold.
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A verification theorem. We provide a verification theorem for both Cases 1 and 2.

Theorem 3.1. In Case 1, assume (A1), (A2), and (A3). In Case 2, assume (A1). Then,
v(x1, x2, α) = x1wα(x2/x1) = V (x1, x2, α), α = 1, 2. Let D = {(x1, x2, 1) : x2 > k1x1} ∪
{(x1, x2, 2) : x2 > k2x1}. Let τ∗ = inf{t : (X1

t , X
2
t , αt) 6∈ D}. Then τ∗ is optimal.

Proof. The proof is similar to that of [GZ, Theorem 2]. We only sketch the main steps
for the sake of completeness. First, for any stopping time τ , following Dynkin’s formula,
we have

v(x1, x2, α) ≥ Ee−ρτv(X1
τ , X

2
τ , ατ ) ≥ Ee−ρτ (βsX

1
τ − βbX

2
τ ) = J(x1, x2, α, τ).

So, v(x1, x2, α) ≥ V (x1, x2, α). The equality holds when τ = τ∗. Hence, v(x1, x2, α) =
J(x1, x2, α, τ

∗) = V (x1, x2, α).

4. Numerical examples. In this section, we give three examples, one for each case:
k1 < k2, k1 = k2, or k1 > k2.

Example 4.1 (k1 < k2). In this example, we take
µ1(1) = 0.20, µ2(1) = 0.25, µ1(2) = −0.30, µ2(2) = −0.35,
σ11(1) = 0.30, σ12(1) = 0.10, σ21(1) = 0.10, σ22(1) = 0.35,
σ11(2) = 0.40, σ12(2) = 0.20, σ21(2) = 0.20, σ22(2) = 0.45,
λ1 = 6.0, λ2 = 10.0, K = 0.001, ρ = 0.50.

Then, we use the function f(r) in (19) and find the unique zero r0 = 1.020254 > 1.
Using this r0 and (20), we obtain k1 = 0.723270 and k2 = 0.737920. Then, we calculate
and get C1 = 0.11442, C2 = −0.00001, C3 = 0.29121, C4 = 0.00029, η3 = 0.985919,
and η4 = −1.541271. With these numbers, we verify all variational inequalities required
in (A3). The graphs of the value functions are given in Figure 1.

Fig. 1. Value functions V (x1, x2, 1) and V (x1, x2, 2)

Example 4.2 (k1 = k2). In this example, we take
µ1(1) = µ1(2) = 0.20, µ2(1) = µ2(2) = 0.25,
σ11(1) = σ11(2) = 0.30, σ12(1) = σ12(2) = 0.10,
σ21(1) = σ21(2) = 0.10, σ22(1) = σ22(2) = 0.35,
λ1 = 6.0, λ2 = 10.0, K = 0.001, ρ = 0.50.

Clearly, the second equality in (27) holds, which leads to k1 = k2 = k0. Use (28) to obtain
k0 = 0.705098 and C1 = 0.126431. This gives the corresponding value function. Its graph
is given in Figure 2.
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Fig. 2. Value function V (x1, x2) = V (x1, x2, 1) = V (x1, x2, 2)

Example 4.3 (k1 > k2). Finally, we take a different set of parameters from those used
in Example 4.1:

µ1(1) = −0.10, µ2(1) = 0.20, µ1(2) = 0.25, µ2(2) = −0.15,
σ11(1) = 0.35, σ12(1) = 0.15, σ21(1) = 0.15, σ22(1) = 0.30,
σ11(2) = 0.20, σ12(2) = 0.10, σ21(2) = 0.10, σ22(2) = 0.15,
λ1 = 6.0, λ2 = 10.0, K = 0.001, ρ = 0.50.

In this example, if we apply the procedure used in Example 4.1 for k1 and k2, we notice
some of the variational inequalities in (A3) will be violated. This means the condition
k1 < k2 does not apply. Based on the symmetry of the problem in α = 1 and α = 2,
we switch the set of parameters about α = 1 and α = 2 and obtain k̃1 = 0.379300 and
k̃2 = 0.824070. The ‘new’ value functions (Ṽ (x1, x2, 1), Ṽ (x1, x2, 2)) can be obtained in
a similar way. So are the verification of the variational inequalities in (A3). Then, we
switch back to obtain k1 = k̃2 = 0.824070 and k2 = k̃1 = 0.379300. The same for the
value functions (V (x1, x2, 1) = Ṽ (x1, x2, 2) and V (x1, x2, 2) = Ṽ (x1, x2, 1)). Their graphs
are given in Figure 3.

Fig. 3. Value functions V (x1, x2, 1) and V (x1, x2, 2)

5. Conclusions. The main focus of this paper is on a pairs trade selling rule. It extends
the results of McDonald and Siegel [MS] and Hu and Øksendal [HO] by incorporating
models with regime switching. It would be interesting to extend the results to include the
buying side of optimal timing. Besides, it would also be interesting to consider models in
which the market mode αt is not directly observable. In this case, the Wonham filter can
be used for calculation of the conditional probabilities of α = 1 given the stock prices up
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to time t. Some ideas along this line have been used in Dai et al. [DZZ] in connection
with trend following trading.
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