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in celebration of his 75th birthday

1. Introduction. It was shown by Linnik [11, 12] that every large in-
teger N may be represented as N = p + m2 + n2 with p prime. His work
built on a method of Hooley [7], who had established this result subject to
the Generalized Riemann Hypothesis. In fact, there is a positive constant δ
such that

#{(p,m, n) : p+m2 + n2 = N} =
N

logN
C(N) +O(N(logN)−1−δ)

with

C(N) = π
∏
p>2

(
1 +

χ4(p)

p(p− 1)

)∏
p|N

(p− 1)(p− χ4(p))

p2 − p+ χ4(p)
,

(where χ4 is the non-trivial character modulo 4) – see Hooley [8, Chapter 5],
for example. We remark here that

(log logN)−1/2 ≪ C(N) ≪ (log logN)1/2,

so that the asymptotic formula saves a power of logN over the main term.
In this paper we examine the distribution of the solutions p,m, n. There

are various ways to do this, but the approach we describe appears to be very
flexible. It should be stressed however that most of the results we describe
in the context of the equation N = p+m2 + n2 and its generalizations can
be obtained by a different route, given by Bredikhin and Linnik [2].
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There is no difficulty in controlling the size of the variable p, and it is an
easy matter to adapt Hooley’s argument to show that

#{(p,m, n) : p+m2 + n2 = N, aN < p ≤ bN}

= (b− a)
N

logN
C(N) +O(N(logN)−1−δ)

uniformly for 0 ≤ a < b ≤ 1. If aN < p ≤ bN then (m,n) will lie in
the annulus (1 − b)N ≤ m2 + n2 ≤ (1 − a)N . In order to describe the
equidistribution of (m,n) within this annulus it is natural to write α =
m+ in ∈ Z[i], with N(α) = m2 + n2, and to consider arg(α). We then have
the following result.

Theorem 1.1. There is an absolute constant δ > 0 with the following
property. Let real numbers a, b, c, d be given, with 0 ≤ a < b ≤ 1 and 0 ≤ c <
d ≤ 2π. Let N ∈ N be given. Then

#{(p, α) : p prime, α ∈ Z[i], p+N(α) = N, aN < p ≤ bN, c < arg(α) ≤ d}

=
(b− a)(d− c)

2π

N

logN
C(N) +O(N(logN)−1−δ).

The natural way to handle the restriction on arg(α) is via the Erdős–
Turán inequality. For any finite subset A of Z[i] and any H ∈ N we have

#{α ∈ A : c < arg(α) ≤ d}

=
d− c

2π
#A+O(H−1#A) +O

(
H−1

∑
h≤H

∣∣∣∣∑
α∈A

(
α

|α|

)h∣∣∣∣).
In our setting the term O(H−1#A) will contribute O(NC(N)/(H logN))
in Theorem 1.1, and so we see that the required result will follow from the
following estimate, on taking H = logN , for example.

Theorem 1.2. Define

gh(n) =
1

4

∑
N(α)=n

(
α

|α|

)h

and fh(n) = |gh(n)|. Then∑
p<N

fh(N − p) ≪ε N(logN)−5/4+ε

for any fixed ε > 0, uniformly for 1 ≤ h ≤ logN .

We remark that the exponent 5/4 can be improved to 2− 2/π, but this
has no qualitative benefit for us.

The reader may be surprised that it is sufficient to consider the average
of fh(N − p), rather than gh(N − p). The fact that this is indeed enough is
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the fundamental observation behind this paper. As motivation, we point out
that for most primes p the number N − p will not be a sum of two squares,
and gh(N − p) will therefore vanish. However, when N − p is a sum of two
squares, the sum for gh(N − p) will typically contain many terms α, so that
we may expect some cancellation to occur.

The above idea, that we can obtain enough cancellation by considering
|gh(n)| rather than gh(n), has occurred previously in other contexts. (We
are grateful to Valentin Blomer for this observation.) Thus, for example,
Holowinsky’s work [6] on Quantum Unique Ergodicity looks at shifted con-
volution sums ∑

n≤x

|λ1(n)λ2(n+ l)|,

which can be handled non-trivially using Erdős’ method. In Holowinsky’s
application, one takes λ1 = λ2 to be the Fourier coefficients of a holomorphic
modular cusp form.

The above ideas can be applied in many other situations. For example,
one may consider the equidistribution of points on Châtelet surfaces given
by equations

F (u, v) = x2 − ay2,

where F ∈ Z[u, v] is a separable quartic polynomial and a ∈ Z is not a square.
Investigations into Manin’s Conjecture for these surfaces have focused on the
case a = −1, but in this situation the conjecture has been established for
all forms F . The most difficult case, in which F is irreducible over Q(i), has
been handled by de la Bretèche and Tenenbaum [4]. Since one is interested
in rational points, it is natural to consider solutions to

(1.1) t2F (u, v) = x2 + y2

with

(1.2) t, u, v, x, y ∈ Z, gcd(u, v) = gcd(t, x, y) = 1, t > 0.

The counting function considered by de la Bretèche and Tenenbaum is one
half the number of solutions satisfying the height condition

(1.3) t1/2max(|u|, |v|) ≤ B1/2.

They then obtain an asymptotic formula

σ∞(F )S(F )B logB +OF (B(logB)99/100),

where
σ∞(F ) =

π

2
meas {(u, v) ∈ [−1, 1]2 : F (u, v) > 0}

and S(F ) is a product of p-adic densities. There is no difficulty in adapting
the argument to replace (1.3) with a condition

(1.4) t1/2(u, v) ∈ B1/2R
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for an arbitrary rectangle R ⊆ [−1, 1]2. This produces an analogous asymp-
totic formula with σ∞(F ) replaced by

σ∞(F ;R) =
π

2
meas {(u, v) ∈ R : F (u, v) > 0}.

We then have the following result, which controls the argument of x+ iy, in
addition to the location of (u, v).

Theorem 1.3. Suppose one is given a rectangle R ⊆ [−1, 1]2 and real
numbers a < b in [0, 2π]. Let N(B) be half the number of 5-tuples (t, u, v, x, y)
∈ Z5 satisfying (1.1) and (1.2), and with

t1/2(u, v) ∈ B1/2R and arg(x+ iy) ∈ [a, b].

Then

N(B) =
b− a

2π
σ∞(F ;R)S(F )B logB +OF (B(logB)99/100).

The key input here is the following estimate, which we will prove in §3.

Lemma 1.4. For any fixed ε > 0 we have∑
t1/2 max(|u|,|v|)≤B1/2

∣∣∣∣ ∑
x2+y2=t2F (u,v)
gcd(t,x,y)=1

(
x+ iy

|x+ iy|

)4h
∣∣∣∣∣≪F,ε B(logB)3/4+ε

uniformly for 1 ≤ h ≤ logB.

These ideas are not restricted to the use of Grössencharacters. For exam-
ple we can consider the equation N = p+m2+n2 subject to congruence con-
ditions on m and n by looking at N = p+N(α) subject to α ≡ α0 (mod k),
say, with α0 ∈ Z[i] coprime to k ∈ N. This condition can be detected with
Dirichlet characters χ (mod k) over Z[i]. With these we have the following
estimate.

Theorem 1.5. Let k ∈ N and ε > 0 be given. Then∑
p<N

∣∣∣∣14 ∑
N(α)=N−p

χ(α)

∣∣∣∣≪k,ε N(logN)−5/4+ε

for every non-principal Dirichlet character χ (mod k) over Z[i] such that
χ(i) = 1.

We leave the details of the proof to the reader. In order to apply this to
examine N = p+N(α) with α ≡ α0 (mod k) (for α0 coprime to k), we need
to know ∑

N=p+N(α)

χ0(α)
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where χ0 is the principal character modulo k. However, α and k are coprime
if and only if N(α) and k are coprime, so that it is enough to consider

#{(p,m, n) : N = p+m2 + n2, gcd(N − p, k) = 1}.
This may be tackled by a trivial variant of Hooley’s method, in which one
puts congruence conditions on p.

One can also handle congruence conditions α ≡ α0 (mod k) when α0

shares a common factor with k. If α0 = βα1 and k = βγ with α1 and γ
coprime then the congruence α ≡ α0 (mod k) implies that α = βα′, say,
with

(1.5) α′ ≡ α1 (mod γ).

The equation N = p + N(α) then requires p ≡ N (mod N(β)), so that we
have to solve

N − p

N(β)
= N(α′) with p ≡ N (mod N(β)),

subject to the congruence condition (1.5). We can tackle this with the
machinery described above, using a version of Theorem 1.5 in which one
restricts to primes p ≡ N (mod N(β)) and replaces the summation condi-
tion N(α) = N − p by N(α) = (N − p)/N(β). In particular, this is enough
to give an asymptotic formula for the number of solutions to

N = p+ a4m2 + b4n2

for any fixed a, b ∈ N, and thereby to count solutions of

N = p+m2 + n2, m, n square-free.

This is the problem for which Hooley [9] proves a positive lower bound. The
reader should note though that Hooley [9, p. 202] suggests that the necessary
asymptotic formulae “can probably be established . . . by a different method
involving an elaborate use of the arithmetic of binary quadratic forms.”

One can also replace m2 + n2 by other quadratic forms, and this was
the main achievement (in the context of the equation N = p+m2 + n2) in
the work of Bredikhin and Linnik [2] mentioned earlier. As an example, we
consider the Châtelet surface

F (u, v) = x2 − 2y2,

where F (u, v) ∈ Z[u, v] is a quartic form, assumed now to be irreducible over
Q(

√
2). The function

r2(n) =
∑
d|n
d odd

(
2

d

)
, n ∈ Z \ {0},

counts solutions of n=x2−2y2 once from each set of associates of x+y
√
2.
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Equivalently, r2(n) counts integral ideals I of Q(
√
2) having norm N(I)= |n|.

(Previously we had used N(∗) for the norm function on Q(i), but here it is the
norm on Q(

√
2). We trust this will cause no confusion.) A moment’s reflection

shows that if t2 |x2−2y2 then gcd(t, x, y) = 1 if and only if gcd(t, α, ασ) = 1,
where α = x + y

√
2 and σ is the non-trivial automorphism of Q(

√
2). One

therefore wants to count solutions to

(1.6) t2|F (u, v)| = N(I)

subject to gcd(u, v) = gcd(t, I, Iσ) = 1, lying in a region (1.4), these be-
ing the natural analogues of (1.1)–(1.2). The method of de la Bretèche and
Tenenbaum [4] can be readily adapted to show that the number of solutions
takes the form

c(R)B logB +OF (B(logB)99/100),

with a constant c(R) depending on F as well as R. However, one would
wish to control the location of the corresponding points (x, y) for which
I = (x+ y

√
2). If R is suitably small, one will know the product(

|x− y
√
2|

t

)(
|x+ y

√
2|

t

)
= t−2N(I) = |F (u, v)|

to a good degree of approximation, and hence it is enough to control the
quotient (

|x− y
√
2|

t

) / ( |x+ y
√
2|

t

)
=

|x− y
√
2|

|x+ y
√
2|
.

We can do this, and indeed slightly more, by using the Grössencharacter

χ(I) = sgn(x2 − 2y2) exp

{
πi

log |x− y
√
2| − log |x+ y

√
2|

2 log(1 +
√
2)

}
,

where I = (x + y
√
2). (The reader who is unfamiliar with such things may

readily check that this is at least well-defined.) In analogy to Lemma 1.4 we
have the following bound.

Lemma 1.6. For any fixed ε > 0 we have∑
t1/2 max(|u|,|v|)≤B1/2

∣∣∣ ∑
N(I)=t2F (u,v)
gcd(t,I,Iσ)=1

χ(I)h
∣∣∣≪F,ε B(logB)3/4+ε

uniformly for 1 ≤ h ≤ logB.

This allows us to count solutions to (1.6) asymptotically, with χ(I) re-
stricted to any given arc of the unit circle. A moment’s thought shows that
this corresponds to having I = (x + y

√
2) with (x − y

√
2)/(x + y

√
2) in a

given interval (a, b) ⊂ (−∞, 0)∪ (0,∞). We are then able to count solutions
to t2F (u, v) = x2 − 2y2 in which both (u, v) and (x, y) lie in prescribed
regions.
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Lastly, we mention that one can work analogously with class group char-
acters. Suppose, for example, that we are interested in the Châtelet surface

F (u, v) = x2 + 14y2,

for a quartic form F ∈ Z[u, v] which is irreducible over Q(
√
−14) (1).

There are four classes of positive definite binary quadratic forms of dis-
criminant −56, with representatives x2 + 14y2, 2x2 + 7y2, 3x2 + 2xy + 5y2,
and 3x2 − 2xy + 5y2. Since the first two of these lie in the same genus, it is
not possible to separate out representations by these two forms using only
congruence conditions. The combined number of representations of n ∈ N by
all four classes of forms is twice the number of integral ideals I of Q(

√
−14)

with norm N(I) = n; and the number of representations by x2+14y2 is twice
the number of such I that are principal. As above, we will want to consider
solutions to t2F (u, v) = N(I) with gcd(u, v) = 1 and gcd(t, I, Iσ) = 1, where
σ is now complex conjugation. We may obtain an asymptotic formula for the
problem in which we count both principal and non-principal ideals I, based
on the formula

#{I : N(I) = n} =
∑
d|n

gcd(d,14)=1

(
−14

d

)
,

and following the method laid out by de la Bretèche and Tenenbaum [4].
Then, to restrict the count to principal ideals we use class group charac-
ters. Following our previous argument we then see that the following lemma
suffices:

Lemma 1.7. Let χ be a non-trivial class group character for Q(
√
−14),

and let N be the norm function for Q(
√
−14). Then for any fixed ε > 0 we

have ∑
t1/2 max(|u|,|v|)≤B1/2

∣∣∣ ∑
N(I)=t2F (u,v)
gcd(t,I,Iσ)=1

χ(I)
∣∣∣≪F,ε B(logB)3/4+ε,

where I runs over integral ideals of Q(
√
−14).

This may be proved following the same reasoning as for Lemma 1.6, the
key information input being the Prime Ideal Theorem for ideal classes.

2. Proof of Theorem 1.2. It is clear that gh(n) vanishes unless 4 |h,
since each α has associates α, iα,−α,−iα, and 1 + ih + (−1)h + (−i)h = 0
unless 4 |h. We therefore henceforth assume that 4 |h. We now claim that
gh(n) is multiplicative, whence fh(n) is also multiplicative. To establish the

(1) We are grateful to Evan O’Dorney for pointing out an error in the discussion of
this problem in an earlier version of this paper.
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claim, suppose that n = uv with coprime factors u, v. Then it merely suffices
to observe that each α of norm n can be written as α = βγ with N(β) = u
and N(γ) = v in exactly four ways, corresponding to the four associate
choices of β = gcd(α, u). (We leave it to the reader to check this.)

We now call on a general result that gives accurate order of magnitude
estimates for sums of non-negative multiplicative functions. Such bounds go
back to Erdős [5], and were investigated further by Barban and Vehov [1]
and Shiu [14] amongst others. For our application we need a version that
applies to sums of functions over sifted sequences, and this has been given
by Pollack [13, Theorem 1.1]. In his notation we take k = 1, β = 1/4 and
y = x.

Lemma 2.1. Let f(n) be a multiplicative function satisfying 0 ≤ f(n) ≤
d(n) for all n ∈ N. Suppose that for each prime p ≤ x the set Ep is either
the empty set or a non-zero residue class modulo p, and write ν(p) = 0 or
ν(p) = 1 accordingly. Let

S =
⋂
p≤x

Ec
p.

Then ∑
n≤x
n∈S

f(n) ≪ x

log x
exp

(∑
p≤x

f(p)− ν(p)

p

)
.

The reader should observe that our requirement that 0 ≤ f(n) ≤ d(n)
implies Pollack’s condition f ∈ M.

We apply this lemma with x = N and f = fh. We take Ep to consist of
the residue class N (mod p) when p ≤

√
N does not divide N , and to be the

empty set otherwise. Then if p ≥
√
N is prime we will have N − p ∈ S. The

lemma then tells us that∑
√
N≤p≤N

fh(N − p) ≪ N

logN
exp

(∑
p≤N

fh(p)− ν(p)

p

)
.

Here we note that

(2.1)
∑
p≤N

p−1ν(p) ≥
∑

p≤
√
N

p−1 −
∑
p|N

p−1

≥ log logN +O(1)−
∑

p≤ω(N)

p−1

≥ log logN +O(1)−
∑

p≤logN

p−1

= log logN − log log logN +O(1),
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so that ∑
√
N≤p≤N

fh(N − p) ≪ N log logN

(logN)2
exp

(∑
p≤N

fh(p)

p

)
,

and hence

(2.2)
∑
p≤N

fh(N − p) ≪
√
N +

N log logN

(logN)2
exp

(∑
p≤N

fh(p)

p

)
.

It remains to consider ∑
p≤N

fh(p)

p
.

Of course fh(p) = 0 if p ≡ 3 (mod 4), while if p ≡ 1 (mod 4) we may write
p = N(α) for some particular α, in which case fh(p) = 2|cos(h arg(α))|. We
now use the famous inequality 3 + 4 cos θ + cos 2θ ≥ 0, which implies

2|cos θ| ≤ 3
2 + 1

2 cos(2θ)

for all real θ, and hence

(2.3) fh(p) ≤ 3
2 + 1

4g2h(p)

for p ≡ 1 (mod 4). Since fh(p) and g2h(p) vanish for p ≡ 3 (mod 4), it follows
that ∑

3≤p≤N

fh(p)

p
≤ 3

2

∑
p≤N

p≡1(mod 4)

1

p
+

1

4

∑
3≤p≤N

g2h(p)

p
.

The first sum on the right is 1
2 log logN +O(1), whence

(2.4)
∑

3≤p≤N

fh(p)

p
≤ 3

4
log logN +O(1) +

1

4

∑
3≤p≤N

g2h(p)

p
.

To estimate the sum on the right we call on the Prime Number Theorem for
primes over Q(i) with Grössencharacter, in the following form.

Lemma 2.2. There is an absolute constant c > 0 such that∑
α∈Z[i]
N(α)≤x

Λ(α)

(
α

|α|

)4k

≪ x exp

{
−c

log x√
log x+ log k

}
(log xk)4

uniformly for x ≥ 2 and k ∈ N.

This is a special case of Theorem 5.13 in Iwaniec and Kowalski [10],
as the reader may confirm. Using partial summation we may deduce from
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Lemma 2.2 that if N0 = exp{(log 3k)2} then∑
α∈Z[i]

N0<N(α)≤N

Λ(α)

N(α) logN(α)

(
α

|α|

)4k

≪ 1

uniformly for N ≥ N0 and k ∈ N. A trivial bound shows that we may include
terms with N(α) ≤ N0 at a cost O(log log k), and that we may remove terms
in which N(α) is not a prime at a cost O(1). Taking 4k = 2h we then deduce
that ∑

3≤p≤N

g2h(p)

p
≪ log log h

whenever 4 |h. Substituting this into (2.4) we find that∑
3≤p≤N

fh(p)

p
≤ 3

4
log logN +O(log log h).

Inserting this bound into (2.2) we have∑
p≤N

fh(N − p) ≪
√
N +

N log logN

(logN)5/4
(log h)A

for some absolute constant A. This is sufficient for Theorem 1.2.

3. Proof of Theorem 1.3. In analogy to the argument that leads from
Theorem 1.2 to Theorem 1.1, we see that Lemma 1.4 will suffice for the proof
of Theorem 1.3. To establish the lemma we first note that t is composed
entirely of primes p ≡ 1 (mod 4) whenever t2 |x2 + y2 with gcd(t, x, y) = 1.
Moreover if pe | t with a prime p = N(π) over Z[i], then we must have either
πe |x+ iy or πe |x− iy. Furthermore, if πe |x+ iy with e ≥ 1 it follows that
x+ iy must be coprime to π. Thus x+ iy must be divisible by some µ with
N(µ) = t such that gcd(µ, µ) = 1, and with gcd(x + iy, µ) = 1. In order to
count each set of associates inµ just once, we restrict µ to be primary; that
is, we require that µ ≡ 1 (mod 2 + 2i).

We now write x+ iy = µα, so that∑
x2+y2=t2F (u,v)
gcd(t,x,y)=1

(
x+ iy

|x+ iy|

)4h

=
∑
µ

(
µ

|µ|

)4h ∑
N(α)=F (u,v)
gcd(α,µ)=1

(
α

|α|

)4h

,

where the sum over µ is taken over solutions of N(µ) = t subject to gcd(µ, µ)
= 1 and µ ≡ 1 (mod 2 + 2i). We therefore set

fk(n;µ) =
1

4

∣∣∣∣ ∑
N(α)=n

gcd(α,µ)=1

(
α

|α|

)k∣∣∣∣,
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which differs from our previous function fh(n) only in the condition gcd(α, µ)
= 1. It now follows that

(3.1)
∑

t1/2 max(|u|,|v|)≤B1/2

∣∣∣∣ ∑
x2+y2=t2F (u,v)
gcd(t,x,y)=1

(
x+ iy

|x+ iy|

)4h∣∣∣∣
≤ 4

∑
gcd(µ,µ)=1

µ≡1 (mod 2+2i)

∑
max(|u|,|v|)≤(B/N(µ))1/2

f4h(F (u, v);µ).

The inner sum above can now be bounded by an Erdős type estimate, a suit-
able version of which is given in the next lemma, which is an immediate
consequence of de la Bretèche and Browning [3, Corollary 1].

Lemma 3.1. Let F (u, v) ∈ Z[u, v] be an irreducible binary form of degree
d ≥ 2, and let f(n) be a multiplicative function satisfying 0 ≤ f(n) ≤ d(n)
for all n ∈ N. Then∑

max(|u|,|v|)≤X

f(|F (u, v)|) ≪F X2
∏

d<p≤X

(
1 +

ρ(p)(f(p)− 1)

p

)
,

where

ρ(p) =
1

p− 1
#{(u, v) ∈ (0, p]2 : p |F (u, v), gcd(u, v, p) = 1}.

The reader should note that we have d1 = d2 = 0 and F = G in the
notation of [3]. We should also stress that the implied constant in Lemma
3.1 depends only on F , and is uniform over all functions f satisfying 0 ≤
f(n) ≤ d(n).

In our situation, ρ(p) is the number of zeros modulo p of the polynomial
F (X, 1) as long as p > |F (1, 0)|. Since ρ(p) and f4h(p;µ) are absolutely
bounded, we see that Lemma 3.1 yields∑

max(|u|,|v|)≤(B/N(µ))1/2

f4h(F (u, v);µ)

≪F
B

N(µ)
exp

{ ∑
2<p≤B

ρ(p)(f4h(p;µ)− 1)

p

}
.

However,∑
2<p≤B

ρ(p)(f4h(p;µ)− 1)

p
=

∑
2<p≤B

ρ(p)(f4h(p)− 1)

p
+O

( ∑
p|N(µ)

1

p

)
.
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The error term is O(log log logN(µ)), by the argument used for (2.1), whence∑
max(|u|,|v|)≤(B/N(µ))1/2

f4h(F (u, v);µ)

≪F
B(log logN(µ))A

N(µ)
exp

{ ∑
2<p≤B

ρ(p)(f4h(p)− 1)

p

}
for a suitable constant A, so that (3.1) yields∑

t1/2 max(|u|,|v|)≤B1/2

∣∣∣∣ ∑
x2+y2=t2F (u,v)
gcd(t,x,y)=1

(
x+ iy

|x+ iy|

)4h∣∣∣∣
≪F B(log logB)A(logB) exp

{ ∑
2<p≤B

ρ(p)(f4h(p)− 1)

p

}
.

We now apply the inequality (2.3) to estimate f4h(p) when p ≡ 1 (mod 4),
and deduce that

(3.2)
∑

t1/2 max(|u|,|v|)≤B1/2

∣∣∣∣ ∑
x2+y2=t2F (u,v)
gcd(t,x,y)=1

(
x+ iy

|x+ iy|

)4h∣∣∣∣
≪F B(log logB)A(logB) exp

{
−S1 +

3
2S2 +

1
4S3

}
with

S1 =
∑

2<p≤B

ρ(p)

p
,

S2 =
∑

2<p≤B
p≡1(mod 4)

ρ(p)

p
,

S3 =
∑

2<p≤B

ρ(p)g8h(p)

p
.

We observed above that ρ(p) is just the number of solutions of F (X, 1)
modulo p, if p is large enough in terms of F . Indeed, if we write K = Q(θ)
where θ is a root of F (X, 1), we see from Dedekind’s Theorem that ρ(p) is
the number of first degree prime ideals P of K above p, at least if p is large
enough in terms of F . It follows that

S1 =
∑

2<N(P )≤B

1

N(P )
+OF (1),

since prime ideals of degree 2 or more contribute OF (1). The Prime Ideal
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Theorem then shows that
(3.3) S1 = log logB +OF (1).

In order to examine S2 and S3, we will consider the factorization of rational
primes in the field L = K(i). This must be a quadratic extension of K, since
if Q(i) ⊂ K it would follow that θ is quadratic over Q(i), which is impossible
since F (X, 1) was assumed to be irreducible over Q(i). When p ≡ 1 (mod 4)
is a norm N(π) over Q(i), one sees that each prime ideal P of K lying above p
will split as (P, π)(P, π) over L, so that ρ(p) is half the number of first degree
prime ideals of L lying over p. On the other hand, there cannot be a first
degree prime ideal P of L lying above a rational prime p ≡ 3 (mod 4), since
then NL/Q(i)(P ) would be a first degree prime ideal of Q(i) above p, which
is impossible. It follows that

S2 =
1

2

∑
2<p≤B

ρL(p)

p
,

where ρL(p) counts first degree primes of L above p. The Prime Ideal The-
orem for L then yields
(3.4) S2 =

1
2 log logB +OF (1).

To handle S3 we define a non-trivial Hecke Grössencharacter on prime ideals
of L by setting χh(P ) = (π/|π|)4h if NL/Q(i)(P ) = (π). With this definition,
we have

ρ(p)g8h(p) =
∑

NL/Q(P )=p

χ2h(P ).

In analogy with Lemma 2.2, we deduce from the Prime Ideal Theorem with
Grössencharacter that∑

N(A)≤x

Λ(A)χh(A) ≪F x exp

{
−c

log x√
log x+ log h

}
(log xh)4

uniformly for x ≥ 2 and k ∈ N, where A runs over non-zero integral ideals
of L. Following a similar argument to that used in §2, we now deduce that

S3 =
∑

3≤p≤N

ρ(p)g8h(p)

p
≪F log log h.

We can now feed this estimate, along with (3.3) and (3.4), into (3.2) to
deduce that∑

t1/2 max(|u|,|v|)≤B1/2

∣∣∣∣ ∑
x2+y2=t2F (u,v)
gcd(t,x,y)=1

(
x+ iy

|x+ iy|

)4h∣∣∣∣
≪F B(log logB)A(log h)A(logB)3/4,

for a suitable numerical constant A, and Lemma 1.4 follows.
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