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On Mahler’s inequality
and small integral generators of
totally complex number fields
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Murray Child and Martin Widmer (London)

Abstract. We improve Mahler’s lower bound for the Mahler measure in terms of the
discriminant and degree for a specific class of polynomials: complex monic polynomials of
degree d ≥ 2 such that all roots with modulus greater than some fixed value r ≥ 1 occur
in equal modulus pairs. We improve Mahler’s exponent 1

2d−2
on the discriminant to 1

2d−3
.

Moreover, we show that this value is sharp, even when restricting to minimal polynomials
of integral generators of a fixed non-totally-real number field.

An immediate consequence of this new lower bound is an improved lower bound for
integral generators of number fields, generalising a simple observation of Ruppert from
imaginary quadratic to totally complex number fields of arbitrary degree.

1. Introduction. In this short note we prove a new lower bound for the
Mahler measure of a monic polynomial in C[x] whose “large” roots come in
pairs of equal modulus. The bound is expressed in terms of the degree and
the discriminant, and the dependence on the discriminant is best-possible.
The result implies a new lower bound for the smallest integral generator of
a totally complex number field.

We refer the reader to Smyth’s survey article [14] (see also [9]) for a
detailed account on the Mahler measure and its significance.

Our proofs are completely elementary and straightforward but the results
seem to close a gap in the literature.

Let f = a0(x − α1) · · · (x − αd) ∈ C[x] be of degree d ≥ 2. The Mahler
measure M(f) and the discriminant ∆f of f are defined by
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M(f) := |a0|
d∏

i=1

max {1, |αi|} and ∆f := a2d−2
0

∏
1≤i<j≤d

(αi − αj)
2.

Mahler’s classical inequality bounds the former from below in terms of the
latter.

Theorem 1 (Mahler, 1964 [8]). Let f ∈ C[x] be a polynomial of degree
d ≥ 2. Then

M(f)2d−2 ≥ d−d|∆f |.

Moreover, Mahler showed that we have equality if and only if f =
a0x

d + ad with |a0| = |ad| > 0. Note that for irreducible f ∈ Z[x] this
only happens when f = ±(xd+1) and d is a power of 2. However, for primes
p the irreducible polynomials f = (p+ 1)xd − p in Z[x] satisfy (1)

M(f)2d−2 = d−d|∆f |
(
p+ 1

p

)d−1

,

and thus, even when restricting to irreducible polynomials, neither the ex-
ponent 2d− 2 nor the constant d−d can be improved. What if we restrict
to monic irreducible polynomials in Z[x]? Using Swan’s discriminant for-
mula for trinomials [15, Theorem 2] we get, for the p-Eisenstein polynomial
f = xd + pxd−1 + (−1)d+1p,

|∆f | = pd−1
(
dd + ((d− 1)p)d−1

)
> (d− 1)d−1p2d−2.

On the other hand, M(f) ≤ (2 + 1/p)p < 3p (using inequality (1.2) below),
and therefore

M(f)2d−2 <

(
9

d− 1

)d−1

|∆f |.

Hence, at least the exponent 2d− 2 is sharp, even when restricting to monic
irreducible polynomials in Z[x].

Next, let us consider a monic quadratic polynomial f = x2 + bx+ c with
coefficients b, c ∈ R and no real roots. Then, as noted by Ruppert [12],

(1.1) M(f) = max

{
1,

b2 + |∆f |
4

}
≥

|∆f |
4

.

So instead of Mahler’s exponent 2d− 2 = 2 one obtains the much better
exponent 1. This raises the question: can one improve Mahler’s exponent
2d− 2 when restricting to monic f ∈ R[x] with no real roots – and in par-
ticular, what is the sharp exponent in this case? We have been unable to
find the answer in the literature but our next result shows that for such
polynomials the exponent can be improved to 2d− 3.

(1) A simple calculation gives |∆f | = dd(p(p+ 1))d−1 and M(f) = p+ 1.
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Theorem 2. Let m be non-negative and even, let r ≥ 1, and let

f(x) =
(m/2∏

i=1

(x− αi)(x− α′
i)
)( d−m/2∏

i=m/2+1

(x− αi)
)
∈ C[x]

be a monic polynomial of degree d ≥ 2, with |αi| = |α′
i| for all i = 1, . . . ,m/2

and |αi| ≤ r for all i = m/2 + 1, . . . , d−m/2. Then

M(f)2d−3 ≥ (2r)d(1−d)|∆f |.
The exponent 2d−3 in Theorem 2 is sharp, even when restricting to min-

imal polynomials of integral generators of a given non-totally-real number
field.

Let K be a number field of degree d, and OK its ring of integers. For
α ∈ K we write fα,Z for the minimal polynomial (2) of α over Z. Recall that
α ∈ OK if and only if fα,Z is monic.

Proposition 1. Let K be a number field of degree d with a non-real
embedding. Then there exists cK > 0 depending only on K such that there
are infinitely many α ∈ OK with K = Q(α),

M(fα,Z)
2d−3 ≤ cK |∆fα,Z |,

and all roots of fα,Z, except one pair of complex conjugate roots, have modulus
at most cK .

Under the hypothesis that the number field K possesses a real embedding
one can prove in the same way that there are infinitely many α ∈ OK with
K = Q(α) and M(fα,Z)

2d−2 ≤ cK |∆fα,Z |, and all roots of fα,Z, except one,
have modulus at most cK .

Next we apply Theorem 2 to get a new lower bound for integral generators
of totally complex number fields.

Let K be a number field. Then every α ∈ K with K = Q(α) is called a
generator of K. It is natural to ask: how “large” must a generator of K be in
terms of the degree d and the modulus of the discriminant |∆K |? And what
happens if we restrict to integral generators? This problem has been studied
by several authors, including Cochrane et al. [2], Dubickas [3], Eldredge &
Petersen [4], Kihel & Lizotte [6], Pierce & Turnage-Butterbaugh & Wood
[11], Ruppert [12], and Vaaler & Widmer [17, 16].

A good measure for size here is the Mahler measure M(fα,Z) of the
minimal polynomial fα,Z of α over Z. Following Eldredge & Petersen [4] and
Dubickas [3] we use the following notation:

M(K) := min {M(fα,Z) : α ∈ K, Q(α) = K}

(2) The minimal polynomial fα,Z of α over Z is the unique polynomial in Z[x] of
minimal degree with positive leading coefficient and coprime coefficients, vanishing at α.
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and
M(OK) := min {M(fα,Z) : α ∈ OK , Q(α) = K}.

Writing ∥f∥1 for the L1-norm of the coefficient vector of f , by a result of
Mahler [7] one has

(1.2) 2−d∥f∥1 ≤ M(f) ≤ ∥f∥1
for each f ∈ C[x] of degree d ≥ 1. Hence there are only finitely many
polynomials f ∈ Z[x] of degree at most D and M(f) ≤ T , irrespective of
how large D and T are. This shows that the minima in the definitions of
M(K) and M(OK) exist.

Now recall that if α ∈ OK with K = Q(α) then fα,Z is monic and
∆fα,Z = ∆K [OK : Z[α]]2, where the positive integer [OK : Z[α]] is the index
of the order Z[α] in the maximal order OK . Therefore Mahler’s inequality
(Theorem 1) implies

(1.3) M(OK) ≥ d−
d

2d−2 |∆K |
1

2d−2 .

Silverman [13] proved this bound holds even for M(K), and it is known (3)
(cf. [12]) that the exponent 1

2d−2 on |∆K | is sharp for M(K) and every
d ≥ 2.

Ruppert [12] showed that M(K) ≪d |∆K |
1

2d−2 when d = 2 and asked [12,
Question 1] whether this remains true when d > 2. This was answered in
the negative by Vaaler & Widmer [17] for composite d, and by Dubickas [3]
for prime d ≥ 3. Ruppert [12, Question 2] also asked the analogous ques-
tion with exponent 1/2 instead of 1/(2d− 2). This question is still open but
has been affirmatively answered for non-totally-complex number fields, and,
conditionally under GRH, also for general number fields [16].

Less is known for M(OK). The best general upper bound is

M(OK) ≤ |∆K |,

which follows easily from Minkowski’s convex body theorem (cf. [10, Lemma
7.1]). The question of whether the exponent 1/(2d−2) in (1.3) is sharp seems
more delicate than its counterpart for M(K). The cubic case was affirma-
tively answered by Eldredge & Petersen [4, Theorem 1.1]. Motivated by a
different question, Jones published a result [5, Theorem 1.5(3)] that gives
an affirmative answer for all d ∈ {3, 4, 5, 7, 9}. He shows that if (d,w) ∈
{(3, 1), (4, 2), (5, 1), (7, 1), (9, 2)} then there are infinitely many primes t such
that

Pt(x) = xd − 16d(dt+ w)xd−1 + dt+ w ∈ Z[x]

(3) If p < q < 2p are two primes and K = Q((p/q)1/d) then M(K) ≤ q < (2pq)1/2 ≤
21/2|∆K |1/(2d−2).
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is irreducible and monogenic, i.e., OK = Z[α] where K = Q(α) and α is any
root of Pt(x). Hence, ∆Pt = ∆K , and Swan’s discriminant formula shows
that |∆Pt | ≫ t2d−2 while (1.2) implies that M(OK) ≤ M(Pt) ≪ t.

However, just as for M(K), the exponent 2d− 2 is certainly not always
sharp when d > 2. Eldredge & Petersen [4, Theorem 1.2] proved for cubic,
and Dubickas (4) [3, Theorem 2] for arbitrary degrees d ≥ 2, that there are
infinitely many number fields K of degree d such that

1

30
|∆K |1/d < M(OK) <

4

3
|∆K |1/d.

These fields K are very special and are all of the form Q(p1/d) for certain
primes p. It would be interesting to find improved lower bounds that apply
to more general families of number fields. Ruppert [12] observed that for all
imaginary quadratic fields K,

(1.4) M(OK) ≥ 1

4
|∆K |.

The bound (1.4) suggests that such improvements of Mahler’s exponent
1/(2d − 2) might hold for the family of totally complex fields of any fixed
degree d ≥ 2.

Theorem 2 with m = d/2 and r = 1 applied to the minimal polynomial
of integral generators yields a generalisation of Ruppert’s observation (1.4)
to totally complex number fields of arbitrary degree d.

Corollary 1. Let K be a totally complex number field of degree d ≥ 2.
Then

M(OK) ≥ 2
d(1−d)
2d−3 |∆K |

1
2d−3 .

From number fields K back to polynomials f ∈ C[x], here is another
application of Theorem 2. Mahler [8, Corollary to Theorem 1] combined
Theorem 1 and formula (1.2) to get

(1.5) |∆f | ≤ dd∥f∥2d−2
1 .

For polynomials f as in Theorem 2 we get a better bound whenever ∥f∥1 is
sufficiently large.

Corollary 2. For polynomials f ∈ C[x] satisfying the conditions in
Theorem 2 we have

|∆f | ≤ (2r)d(d−1)∥f∥2d−3
1 .

Note that if K is a non-totally-real number field of degree d, and f = fα,Z
is as in Proposition 1, then

∥f∥2d−3
1 ≪K |∆f |.

(4) Dubickas proves the sharper inequality (1 − ϵ)|∆K |1/d < M(OK) < |∆K |1/d for
arbitrary ϵ > 0.
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2. Discrete logarithmic energy for point configurations. Theo-
rem 2 is proved by considering the complex roots of f as points in R2, and
then bounding the logarithmic energy of this point configuration in R2 from
below in terms of the number of points and the product of their Euclidean
norms (ignoring those points inside the unit disc). Our simple argument is
agnostic to the dimension and thus works for point configurations in arbi-
trary dimensions.

Let k, d ∈ N, d ≥ 2, let a1, . . . ,ad be points in Rk, and set α =
(a1, . . . ,ad). We define

M(α) :=
d∏

i=1

max {1, |ai|},

and
|∆α| :=

∏
1≤i<j≤d

|ai − aj |2,

where | · | on the right-hand side denotes the Euclidean norm on Rk.
Note that − log |∆α| is the discrete logarithmic energy Elog(α) of a d-

point configuration α in Rk (cf. [1]), and thus our goal is to bound Elog(α)
from below in terms of M(α) and d. Mahler’s inequality shows that Elog(α)
for a d-point configuration α on the closed unit disc in R2 is at least −d log d,
and that this value is attained if and only if the points are equidistributed
on the unit circle. But finding the minimal logarithmic energy E0(d; k) for
a d-point configuration in the closed unit ball in Rk for higher dimensions
k ≥ 3 is a difficult open problem about which we have nothing to say.

Let r ≥ 1 be a real number, and let m ∈ {0, 1, . . . , d} be the number of
points ai in α with Euclidean norm strictly greater than r. We prove the
following generalisation of Theorem 2.

Theorem 3. Suppose m is even and that the points in α with Euclidean
norm greater than r occur in pairs of equal Euclidean norm. Then

(2.1) M(α)2d−3 ≥ (2r)d(1−d)|∆α|.

Moreover, the exponent 2d− 3 is sharp.

The case m = 0 corresponds to an arrangement of d points in a closed
ball of radius r in Rk. In this case our theorem only yields the trivial lower
bound d(1− d) · log(2r) for the logarithmic energy. On the other hand, it is
clear from the proof that good lower bounds for E0(d−m; k) can be used to
refine the constant (2r)d(1−d) in our theorem, at least if d ≥ m+2. However,
in this work we are only concerned with the exponent of the discriminant and
for simplicity we have decided to record only the simplest possible explicit
constant which is (2r)d(1−d).
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Proof of Theorem 3. Without loss of generality, we can relabel the points
a1, . . . ,ad in α in the order of decreasing Euclidean norm:

α1,α
′
1, . . . ,αm/2,α

′
m/2,αm/2+1,αm/2+2, . . . ,αd−m/2,

where |αi| = |α′
i| (i = 1, . . . , m2 ). Note that the points of Euclidean norm

strictly greater than r are exactly the m points α1,α
′
1, . . . ,αm/2,α

′
m/2, so

|α1| = |α′
1| ≥ |α2| = |α′

2| ≥ . . . ≥ |αm/2| = |α′
m/2|

> r ≥ |αm/2+1| ≥ . . . ≥ |αd−m/2|.

If any two of these points are equal then |∆α| = 0, and (2.1) is trivially
true. Hence, we can assume that all of them are distinct.

Recall that

α = (a1, . . . ,ad) = (α1,α
′
1, . . . ,αm/2,α

′
m/2,αm/2+1, . . . ,αd−m/2),

so by definition of the discriminant we have

(2.2) |∆α| =
∏

1≤i<j≤d

|ai − aj |2

=

m/2∏
i=1

(
|αi −α′

i|2
∏
β∈βi

|αi − β|2|α′
i − β|2

) ∏
m/2+1≤i<j≤d−m/2

|αi −αj |2,

where βi means the set {αi+1,αi+2, . . . ,αd−m/2,α
′
i+1,α

′
i+2, . . . ,α

′
m/2}.

Let us start by evaluating the right-most product here, which we denote
by C0 for convenience (5). We have |αi|, |αj | ≤ r whenever m

2 +1 ≤ i < j ≤
d− m

2 , so by the triangle inequality for all terms in this product,

|αi −αj |2 ≤ (|αi|+ |αj |)2 ≤ (2r)2.

Hence,

C0 ≤
∏

m+1≤i<j≤n

(2r)2 = (2r)2(
d−m

2 ) = (2r)(d−m)(d−m−1).

Now let us evaluate the left-most product in (2.2). Recalling that |αi| = |αi
′|

(i = 1, . . . ,m/2), we have

|αi −α′
i|2 ≤ (|αi|+ |α′

i|)2 = (2|αi|)2 = 22|αi|2.
Likewise, noting that |β| ≤ |αi| = |α′

i| for all β ∈ βi (i = 1, . . . ,m/2), we
have

|αi − β|2 ≤ 22|αi|2 and |α′
i − β|2 ≤ 22|αi|2.

(5) Of course the sharp upper bound here is C0 ≤ r(d−m)(d−m−1)e−E0(d−m;k) where
E0(d − m; k) denotes the minimal logarithmic energy of a (d − m)-configuration in the
unit ball in Rk.



8 M. Child and M. Widmer

Combining this all, we get

|∆α| ≤ C0 ·
m/2∏
i=1

(
22|αi|2

∏
β∈βi

22|αi|2 · 22|αi|2
)

= C0 ·
m/2∏
i=1

(
22|αi|2 · (24|αi|4)|βi|

)
.

Now consider the number of elements in βi. This is straightforward to cal-
culate:

|βi| = (d−m/2− i) + (m/2− i) = d− 2i.

So

|∆α| ≤ C0 ·
m/2∏
i=1

(
22|αi|2 · (24|αi|4)d−2i

)
= C0 · 2m · 22dm ·

m/2∏
i=1

(2−8i|αi|4d−8i+2)

= C0 · 2m(2d+1) ·
m/2∏
i=1

2−8i ·
m/2∏
i=1

|αi|4d−6−8i+8

= C0 · 2m(2d−m−1)

m/2∏
i=1

|αi|4d−6 ·
m/2∏
i=1

|αi|−8i+8.

Let
C(d,m) := C0 · 2m(2d−m−1).

Then we see that
C(d,m) ≤ (2r)d

2+m2−2dm−d+m · 2m(2d−m−1)

= (2r)d(d−1)+m(m+1−2d) · 2m(2d−m−1)

≤ (2r)d(d−1) · 2m(m+1−2d+2d−m−1) = (2r)d(d−1),

where we have used r ≥ 1 and m+ 1− 2d ≤ d+ 1− 2d ≤ 0. Hence,

|∆α| ≤ (2r)d(d−1)

m/2∏
i=1

|αi|4d−6 ·
m/2∏
i=1

|αi|−8i+8

= (2r)d(d−1)

m/2∏
i=1

(|αi|2)2d−3

m/2∏
i=1

|αi|−8i+8

≤ (2r)d(d−1)M(α)2d−3

m/2∏
i=1

|αi|−8i+8.
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Consider the remaining product here. We have |αi| > r ≥ 1 for all
i = 1, . . . ,m/2; and −8i + 8 ≤ 0 also for all i = 1, . . . ,m/2. Hence, 0 <

|αi|−8i+8 ≤ 1 for all i = 1, . . . ,m/2, and thus 0 <
∏m/2

i=1 |αi|−8i+8 ≤ 1. We
conclude that

|∆α| ≤ (2r)d(d−1)M(α)2d−3,

which proves inequality (2.1).
Finally, to see that the exponent 2d − 3 is sharp it suffices to consider

d−2 distinct fixed points on the (k−1)-sphere of radius r centred at the origin
and to take the remaining two points α1 and α′

1 = −α1 with arbitrarily large
Euclidean distance. This completes the proof of Theorem 3.

3. Upper bounds for the Mahler measure of minimal polynomi-
als of integral generators. In this section we prove Proposition 1. Let K
be a number field of degree d. Let σi : K → R for 1 ≤ i ≤ r be the r real
embeddings, and let σi, σi+s : K → C for r + 1 ≤ i ≤ r + s be the s pairs of
complex conjugate embeddings, so that d = r + 2s. Let

σ : K → Rr × Cs, α 7→ (σ1(α), . . . , σr(α), σr+1(α), . . . , σr+s(α))

be the Minkowski embedding of K, and set Λ = σOK ⊆ Rr×Cs. Identifying
C ∼= R2 via the isomorphism α 7→ (Re(α), Im(α)) turns Λ into a lattice in Rd.
For the convenience of the reader we recall Proposition 1.

Proposition 1. Let K be a number field of degree d with a non-real
embedding (i.e. s ≥ 1). Then there exists cK > 0 depending only on K such
that there are infinitely many α ∈ OK with K = Q(α),

M(fα,Z)
2d−3 ≤ cK |∆fα,Z |,

and all roots of fα,Z, except one pair of complex conjugate roots, have modulus
at most cK .

Proof. For real c, T ≥ 1 we define the subset Sc,T of Rr × Cs as the set
of points x = (x1, . . . , xr+s) ∈ Rr × Cs such that

(2i− 2)c < xi < (2i− 1)c for i = 1, . . . , r,

(2i− 2)c < Re(xi) < (2i− 1)c for i = r + 1, . . . , r + s− 1,

c < Im(xi) < 2c for i = r + 1, . . . , r + s− 1,

T < Re(xr+s) < T + c,

3c+ T < Im(xr+s) < T + 4c.

If we identify Rr × Cs with Rd like before, then Sc,T is a box with sides
parallel to the axes, each of length c. Therefore, there exists cΛ such that
Sc,T contains a point of the lattice Λ whenever c ≥ cΛ.
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Furthermore, for all x = (x1, . . . , xr+s) ∈ Sc,T ,

|xi − xj | > c (1 ≤ i < j ≤ r + s).

This implies that for α ∈ K and σ(α) ∈ Sc,T ,

(3.1) |σi(α)− σj(α)| > c (1 ≤ i < j ≤ r + s).

If r + s+ 1 ≤ i < j ≤ r + 2s, then |σi(α)− σj(α)| = |σi−s(α)− σj−s(α)| =
|σi−s(α)− σj−s(α)| > c, by (3.1). If 1 ≤ i ≤ r + s and j ≥ r + s+ 1 then

|σi(α)− σj(α)| ≥ |Im(σi(α))− Im(σj(α))| > |0− (−c)| = c.

We have shown that if α ∈ K and σ(α) ∈ Sc,T then

(3.2) |σi(α)− σj(α)| > c

whenever 1 ≤ i < j ≤ d.
Take c = cΛ ≥ 1 as before. Then there exists α ∈ OK such that σ(α) ∈

Λ∩Sc,T . Let fα,Z ∈ Z[x] be the minimal polynomial of α. Now (3.2) implies
that σi(α) ̸= σj(α) for all 1 ≤ i < j ≤ d. Hence, we conclude Q(α) = K.
Finally, using (3.2) we get

|∆fα,Z | =
∏
i ̸=j

|σi(α)− σj(α)|

=
∏
i ̸=j

i,j ̸=r+s,r+2s

|σi(α)− σj(α)| ·
∏

i ̸=r+s

|σi(α)− σr+s(α)|2

·
∏

i ̸=r+2s
i ̸=r+s

|σi(α)− σr+2s(α)|2

≥ c(d−3)(d−2) · T 2(d−1) · T 2(d−2) = c(d−3)(d−2) · T 2(2d−3).

On the other hand, using |z| ≤ |Re(z)|+ |Im(z)| for z ∈ C, we get

M(fα,Z) =
d∏

i=1

max {1, |σi(α)|}(3.3)

≤
(
(2(r + s− 1) + 1)c

)d−2
(2T + 5c)2

≤ (2dc)d−2(3T )2 ≤ (2dc)dT 2,

provided T ≥ 5c. Hence,

M(fα,Z)
2d−3 ≤ (2dc)d(2d−3)c−(d−3)(d−2)|∆fα,Z | ≤ (2dc)d(2d−3)|∆fα,Z |

= cK |∆fα,Z |,

where cK :=(2dc)d(2d−3) depends only on K, as cΛ depends only on σOK=Λ.
Choosing a sequence of T ’s, say T1, T2, . . . with Ti+1 > Ti + c, yields a

sequence of disjoint boxes Sc,Ti , each box containing an admissible αi ∈ OK

with K = Q(αi) and M(fαi,Z)
2d−3 ≤ cK |∆(fαi,Z)|. Moreover, as observed
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in (3.3), all roots of fαi,Z have modulus at most 2dc ≤ cK , except one pair
of complex conjugate roots. This proves Proposition 1.

It is clear that the above proof can be adapted to show that for any given
number field K of degree d ≥ 2 with at least one real embedding there exist
infinitely many α ∈ OK with K = Q(α),

M(fα,Z)
2d−2 ≤ cK |∆fα,Z |,

and all roots of fα,Z, except one, have modulus at most cK .
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