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Iterative roots of multifunctions

by

B. V. Rajarama Bhat and Chaitanya Gopalakrishna (Bengaluru)

Abstract. Some easily verifiable sufficient conditions for the nonexistence of iterative
roots for multifunctions on arbitrary nonempty sets are presented. Typically if the graph
of the multifunction has a distinguished point with a relatively large number of paths
leading to it then such a multifunction does not admit any iterative root. These results
can be applied to single-valued maps by considering their pullbacks as multifunctions.
This is illustrated by showing the nonexistence of iterative roots of some specified orders
for certain complex polynomials.

1. Introduction. Given a map F : X → X on a nonempty set X and
an integer n ≥ 1, the iterative root problem is to find a map G : X → X such
that the functional equation

(1.1) Gn = F

is true on X, where Gn is the nth order iterate of G defined recursively by
Gn = G ◦ Gn−1 and G0 = id, the identity map on X. We call G an nth
order iterative root of F . Since the initial works of Babbage [3], Abel [1]
and Königs [18], the iterative root problem (1.1), which is a weak version
of the embedding flow problem [10] of dynamical systems and is applicable
to informatics [17] and neural networks [13], has been extensively studied in
various aspects. Many of the results are included in the monographs [19, 20],
the book [40], and the survey papers [4, 41, 43]. For some of the most recent
findings, see [5, 6, 9, 14, 23–28, 30, 42].

Many researchers [6, 7, 12, 38] have highlighted the difficulty in solving
equation (1.1), even in the class of continuous self-maps of an interval, ne-
cessitating the extension of the iterative root concept to multifunctions. By
a multifunction (or multivalued function) on a nonempty set X, we simply
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mean a function from X to the power set 2X . Given two multifunctions F
and G on X, their composition F ◦ G is defined by (F ◦ G)(x) = F (G(x)),
where the image F (A) of a set A ⊆ X is defined by F (A) =

⋃
x∈A F (x).

Then, as shown in [16], the nth order iterate Fn of F is defined recursively
by

Fn(x) =
⋃

y∈Fn−1(x)

F (y) and F 0(x) = {x},

the iterates satisfy Fn(Fm(A)) = Fn+m(A) = Fm(Fn(A)). As in [11], a
point x0 ∈ X is said to be a set-value point of F if #F (x0) ≥ 2, where
#A denotes the cardinality of a set A ⊆ X. Powierża [33–35] and Jarczyk
and Powierża [15] discussed the existence of the smallest set-valued iterative
roots G of bijections F in the inclusion sense, where F (x) ∈ Gn(x) for all
x ∈ X. Another approach (see [16, 21, 29, 31, 44] for example) is to look for
solutions G : X → 2X of (1.1) for a multifunction F , which is known as the
identity sense. In [16, 21], some sufficient conditions for the nonexistence of
iterative square roots of multifunctions F on X with exactly one set-value
point were obtained, and in [31], some of these results were improved and
generalized to any order n. The special case where X is a compact interval in
the real line R and F an increasing upper semicontinuous multifunction was
also studied, and results on the construction of iterative roots were presented
in [21, 22, 31, 32, 44]. However, it appears that no results have been found for
multifunctions with multiple set-value points, with the exception of [29] for
increasing upper semicontinuous multifunctions on compact intervals with
finitely many set-value points.

In Section 2 we investigate equation (1.1) in the identity sense for multi-
fuctions F on a general nonempty set X. The crucial observation we make
is that if there is a point x0 ∈ X with a large number of paths ending at it
in the graph of F , it creates a kind of bottleneck in the system F : X → 2X

(see Figure 1 for example) and thus the multifunction F will admit no roots
of any order. This is heavily inspired by a similar phenomenon observed
for single-valued maps in [5, 6]. We do impose a strong constraint that the
number of 2-paths ending at x0 is very large in comparison to the number
of 1-paths (edges) beginning or ending at other points, in addition to some
mild conditions such as F having domain X and that x0 is not a fixed point
of F . Some of the results also demand that F has image X. All of this is
made precise in Theorem 2.1 by quantifying the notion of largeness in vari-
ous ways. Notably, we put no constraints on the number of set-value points
for F . We present several examples to show that these results can be applied
in some situations where the known results in [16, 21, 31] fail.

Multifunctions appear naturally in topology, measure theory and other
fields when considering inverse images of single-valued maps. Keeping this
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in mind, in Section 3, we introduce a fundamental class of multifunctions
F called pullback multifunctions. An important example of such a multi-
function is the kth root function z := reiθ 7→ z1/k := {r1/kei(θ+2jπ)/k : j =
0, 1, . . . , k− 1} on the complex plane C. The iterative root problem for such
multifunctions can be reduced to the corresponding problem for single-valued
maps. We present several examples to demonstrate concrete applications of
our general results, particularly in determining the nonexistence of iterative
roots for certain complex polynomials.

2. General multifunctions. In this section we present several suffi-
cient conditions for the nonexistence of iterative roots for multifunctions on
arbitrary nonempty sets. First, we present some notions and notation re-
quired for our discussion. Recall that by a multifunction on a nonempty set
X, we mean a function from X to the power set 2X . Let X be a nonempty
set and let F(X) consist of all multifunctions F on X. For each set A ⊆ X,
F ∈ F(X), and k ≥ 1, let F−k(A) denote the kth order inverse image of A
by F defined by

F−k(A) = {x ∈ X : F k(x) ∩A ̸= ∅}.

As in [2, p. 34], the domain and image of F ∈ F(X) are defined by

Dom(F ) = {x ∈ X : #F (x) ≥ 1} and Im(F ) = F (X).

As in [2, p. 34], we define the graph of F ∈ F(X) as the directed graph
GF = (X,EF ), with vertex set X and edge set EF = {(x, y) ∈ X ×X : y ∈
F (x)}. For x, y ∈ X and k ∈ N, by a k-path (or length k path) in GF from x
to y, we mean a sequence ((x, u1), (u1, u2), . . . , (uk−2, uk−1), (uk−1, y)), where
u1, . . . , uk−1 ∈ X and u1 ∈ F (x), ui+1 ∈ F (ui) for i = 1, . . . , k − 2, and
y ∈ F (uk−1), of edges (not necessarily distinct) that joins a sequence of
vertices (x, u1, . . . , uk−1, y). For all F,G ∈ F(X), x, y, z ∈ X, A,B ⊆ X and
k, l ∈ N, let

PF (x, y; k) := {p : p is a k-path in GF from x to y},
PF (A, y; k) := {p : p is a k-path in GF that

begins at a point in A and ends at y},
PF (x,A; k) := {p : p is a k-path in GF that

begins at x and ends at a point in A},
PF (A,B; k) := {p : p is a k-path in GF that

begins at a point in A and ends at a point in B},

and

PF (x, y; k) ∨ PG(y, z; l) := {p ∨ q : p ∈ PF (x, y; k) and q ∈ PG(y, z; l)},
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where for any two paths

p := ((x, u1), (u1, u2), . . . , (uk−2, uk−1), (uk−1, y)) ∈ PF (x, y; k),

q := ((y, v1), (v1, v2), . . . , (vl−2, vl−1), (vl−1, z)) ∈ PG(y, z; l),

p∨ q is the (k+ l)-path in GF ∪GG obtained by concatenating them, defined
by

p ∨ q = ((x, u1), (u1, u2), . . . , (uk−2, uk−1), (uk−1, y),

(y, v1), (v1, v2), . . . , (vl−2, vl−1), (vl−1, z)).

Then it is easy to see that

PF (A, y; k) =
⋃
x∈A

PF (x, y; k), PF (x,A; k) =
⋃
y∈A

PF (x, y; k),

PF (A,B; k) =
⋃
y∈B

PF (A, y; k) =
⋃
x∈A

PF (x,B; k)

and

PF (x, y; k) ∨ PG(y, z; l) = PG◦F (x, z; k + l)

for all F,G ∈ F(X), x, y, z ∈ X, A,B ⊆ X and k, l ∈ N. Let

FM (X) := {F ∈ F(X) : #PF (x,X; 1) ≤ M for all x ∈ X} for each M ∈ N,
Ff(X) := {F ∈ F(X) : PF (x,X; 1) is finite for all x ∈ X},
Fc(X) := {F ∈ F(X) : PF (x,X; 1) is countable for all x ∈ X}.

In other words, FM (X) is the set of all multifunctions on X that have a
set-value of cardinality at most M at each point of X. Similarly, Ff(X)
(resp. Fc(X)) is the set of all multifunctions on X that have only finite
(resp. countable) sets as a value at each point of X. Further, note that
#PF (X,x; 1) = #F−1({x}) and #PF (X,x; k) ≥ #F−k({x}), and similarly
#PF (x,X; 1) = #F (x) and #PF (x,X; k) ≥ #F k(x) for all x ∈ X and
k ≥ 2.

Now we present our main result. It is motivated by analogous results for
single-valued maps in [5, 6]. We observe that, generally, if a multifunction
F has a special point x0 with a relatively large number of paths leading to
it, then F does not admit any iterative root. Actually, we only compare the
number of paths of length 2 reaching x0 with the number of edges at other
points. The comparison is made precise in the following theorem.

Theorem 2.1. Let F be a multifunction on X such that Dom(F ) = X
and x0 /∈ F (x0) for some x0 ∈ X.

(1) (Large finite sets vs small finite sets) Suppose that for some M,N ∈ N,

(1.a) #PF (X,x0; 2) > MN3,
(1.b) #PF (X,x; 1) ≤ N for all x ̸= x0 in X.
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Then F has no iterative roots of order n ≥ 2 in FM (X). If, in addition,
F ∈ FM (X) and Im(F ) = X, then F has no iterative roots of order
n ≥ 2 at all.

(2) (Infinite sets vs finite sets) Suppose that

(2.a) PF (X,x0; 2) is infinite,
(2.b) PF (X,x; 1) is finite for all x ̸= x0 in X.

Then F has no iterative roots of order n ≥ 2 in Ff(X). If, in addition,
F ∈ Ff(X) and Im(F ) = X, then F has no iterative roots of order
n ≥ 2 at all.

(3) (Uncountable sets vs countable sets) Suppose that

(3.a) PF (X,x0; 2) is uncountable,
(3.b) PF (X,x; 1) is countable for all x ̸= x0 in X.

Then F has no iterative roots of order n ≥ 2 in Fc(X). If, in addition,
F ∈ Fc(X) and Im(F ) = X, then F has no iterative roots of order
n ≥ 2 at all.

Proof. Suppose, on the contrary, that F has an iterative root G of some
order n ≥ 2 on X. The key to the proof is to estimate PG(G

n−1(X), x0;n+1)
in two different ways by observing that Gn+1 = F ◦ G = G ◦ F . We begin
by establishing relations (2.1)–(2.7) below, which are all true regardless of
whether we are proving (1), (2) or (3).

Since x0 /∈ F (x0), it is clear that x0 /∈ G(x0). Since PG(X,x0;n− 1) ̸= ∅
by (j.a), where j = 1, 2 or 3 depending on whether we are proving (1), (2)
or (3), and PG(x0, X; 1) ̸= ∅ as Dom(F ) = X, we have

(2.1) PG(X,x0;n− 1) ∨ PG(x0, X; 1) ̸= ∅.
Also, if n > 2, we have

PG(X,x0;n− 1) = PG(X,Gn−2(X);n− 2) ∨ PG(G
n−2(X), x0; 1),

implying that

(2.2) #PG(X,x0;n− 1) ≥ #PG(G
n−2(X), x0; 1).

Note that (2.2) is a triviality if n = 2. In particular, we see from (2.2) that

#
(
PG(X,x0;n− 1) ∨ PG(x0, X; 1)

)
≥ #PG(G

n−2(X), x0; 1).(2.3)

Further, we have

PG(X,x0;n− 1) ∨ PG(x0, X; 1) = PG(X,x0;n− 1) ∨ PG(x0, G(x0); 1)

(2.4)

⊆ PG(X,G(x0);n) = PF (X,G(x0); 1)

=
⋃

y∈G(x0)

PF (X, y; 1)
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and

PF (X,x; 1) =
⋃

y∈Gn−1(X)∩G−1({x})

PG(X, y;n− 1) ∨ PG(y, x; 1)(2.5)

for all x ̸= x0 with F−1({x}) ̸= ∅. Moreover, since Gn+1 = G ◦ F , we have

PG(X,x0;n+ 1) =
⋃

y∈F (X)∩G−1({x0})

PF (X, y; 1) ∨ PG(y, x0; 1),(2.6)

and since Gn+1 = F ◦G, we have

(2.7) PF (X,x0; 2) = PF (X,F (X); 1) ∨ PF (F (X), x0; 1)

=
(
PG(X,Gn−1(X);n− 1) ∨ PG(G

n−1(X), F (X); 1)
)
∨ PF (F (X), x0; 1)

= PG(X,Gn−1(X);n− 1) ∨
(
PG(G

n−1(X), F (X); 1) ∨ PF (F (X), x0; 1)
)

=
⋃

x∈F−1({x0})

⋃
y∈Gn−1(X)∩G−1({x})

PG(X, y;n−1) ∨
(
PG(y, x; 1) ∨ PF (x, x0; 1)

)
.

To prove the first part of (1), suppose that G ∈ FM (X). We pro-
ceed by showing the following two inequalities, which we use to estimate
PG(G

n−1(X), x0;n+ 1):

#PG(G
n−2(X), x0; 1) ≤ MN,(2.8)

#PG(X, y;n− 1) ≤ N if y ∈ Gn−1(X) ∩G−1({x}) and x ̸= x0.(2.9)

Since #G(x0) ≤ M as G ∈ FM (X), by using (2.3), (2.4) and (1.b) we have

#PG(G
n−2(X), x0; 1) ≤

∑
y∈G(x0)

#PF (X, y; 1) ≤ N ·#G(x0) ≤ NM,

proving (2.8). Further, by using (2.5) and (1.b) we see that

#PG(X, y;n− 1) ≤ #
(
PG(X, y;n− 1) ∨ PG(y, x; 1)

)
≤ #PF (X,x; 1) ≤ N

whenever y ∈ Gn−1(X) ∩G−1({x}) and x ̸= x0, proving (2.9).
We now estimate PG(G

n−1(X), x0;n + 1) in two different ways to get a
contradiction. Since Gn+1 = G ◦ F , by using (2.6), (1.b) and (2.8) we see
that

#PG(X,x0;n+ 1) ≤ N
∑

y∈F (X)∩G−1({x0})

#PG(y, x0; 1)

= N ·#PG(F (X) ∩G−1({x0}), x0; 1)
≤ N ·#PG(F (X), x0; 1) = N ·#PG(G

n(X), x0; 1)

≤ N ·#PG(G
n−2(X), x0; 1) ≤ N ·MN = MN2.

Therefore, as Gn−1(X) ⊆ X, we have

#PG(G
n−1(X), x0;n+ 1) ≤ MN2.(2.10)
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On the other hand, since Gn+1 = F ◦G, by using (2.7), (1.a) and (2.9) we
get

MN3 < #PF (X,x0; 2) ≤ N
∑

x∈F−1({x0})
y∈Gn−1(X)∩G−1({x})

#
(
PG(y, x; 1) ∨ PF (x, x0; 1)

)

= N
∑

y∈Gn−1(X)∩G−(n+1)({x0})

#PG(y, x0;n+ 1)

= N ·#PG(G
n−1(X) ∩G−(n+1)({x0}), x0;n+ 1)

≤ N ·#PG(G
n−1(X), x0;n+ 1),

implying that
#PG(G

n−1(X), x0;n+ 1) > MN2,

contrary to (2.10).
Now, to prove the second part of (1), let F ∈ FM (X) with Im(F ) = X,

and suppose that G ∈ F(X). Then Im(G) = X, and by the first part we
have #PG(x̃, X; 1) > M for some x̃ ∈ X. Let x̃ ∈ Gn−1(ỹ) for some ỹ ∈ X,
which exists because Gn−1(X) = X. Since

(2.11) F (ỹ) = G(Gn−1(ỹ)) ⊇ G(x̃)

and #PG(x̃, X; 1) > M , we obtain #PF (ỹ, X; 1) ≥ #PG(x̃, X; 1) > M ,
which contradicts F ∈ FM (X). This completes the proof of (1).

Next, to prove the first part of (2), suppose that G ∈ Ff(X). Then, as
seen above, we have x0 /∈ G(x0), and (2.1)–(2.7) are satisfied. Additionally,
since PG(x0, X; 1) is finite as G ∈ Ff(X), and PF (X, y; 1) is finite for all
y ̸= x0 by (2.b), we see from (2.4) that PG(X,x0;n − 1) ∨ PG(x0, X; 1) is
finite, which implies by (2.3) that PG(G

n−2(X), x0; 1) is finite. Further, it
follows from (2.5) and (2.b) that

PG(X, y;n− 1) is finite if y ∈ Gn−1(X) ∩G−1({x}) and x ̸= x0.(2.12)

We now estimate #PG(G
n−1(X), x0;n + 1) in two different ways, as

above, to find a contradiction. In fact, since Gn+1 = G ◦ F , by using
(2.6), (2.b) and the fact that PG(G

n−2(X), x0; 1) is finite, we see that
PG(G

n−1(X), x0;n + 1) is finite. On the other hand, since Gn+1 = F ◦ G,
by using (2.7), (2.12) and (2.a) it follows that PG(G

n−1(X), x0;n + 1) is
infinite.

In order to prove the second part of (2), let F ∈ Ff(X) with Im(F ) = X,
and suppose that G ∈ F(X). Then Im(G) = X, and by the first part
PG(x̃, X; 1) is infinite for some x̃ ∈ X. Since Gn−1(X) = X, we have
x̃ ∈ Gn−1(ỹ) for some ỹ ∈ X. Then, as #PF (ỹ, X; 1) ≥ #PG(x̃, X; 1) by
(2.11), and PG(x̃, X; 1) is infinite, it follows that PF (ỹ, X; 1) is infinite, con-
tradicting our assumption that F ∈ Ff(X).
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We see that this proof of (2) is based on the fact that a finite union of finite
sets is finite. The proof of (3) is similar, using the fact that a countable union of
countable sets is countable. In fact, a proof of (3) can be produced from that of
(2) simply by replacing “(2.a)”, “(2.b)”, “Ff(X)”, “finite”, and “infinite” with
“(3.a)”, “(3.b)”, “Fc(X)”, “countable”, and “uncountable”, respectively.

As a consequence of the above theorem, we have the following corollary.
Instead of counting paths, we now count the number of points in certain sets.

Corollary 2.2. Let F be a multifunction on X such that Dom(F ) = X
and x0 /∈ F (x0) for some x0 ∈ X.

(1) (Large finite sets vs small finite sets) Suppose that #F−2({x0}) > MN3

and #F−1({x}) ≤ N for all x ̸= x0 in X and for some M,N ∈ N.
Then F has no iterative roots of order n ≥ 2 in FM (X). If, in addition,
F ∈ FM (X) and Im(F ) = X, then F has no iterative roots of order
n ≥ 2 at all.

(2) (Infinite sets vs finite sets) Suppose that F−2({x0}) is infinite and
F−1({x}) is finite for all x ̸= x0 in X. Then F has no iterative roots
of order n ≥ 2 in Ff(X). If, in addition, F ∈ Ff(X) and Im(F ) = X,
then F has no iterative roots of order n ≥ 2 at all.

(3) (Uncountable sets vs countable sets) Suppose that F−2({x0}) is un-
countable and F−1(x) is countable for all x ̸= x0 in X. Then F has no
iterative roots of order n ≥ 2 in Fc(X). If, in addition, F ∈ Fc(X) and
Im(F ) = X, then F has no iterative roots of order n ≥ 2 at all.

Proof. Follows from Theorem 2.1, because #PF (X,x; 2) ≥ #F−2({x})
and #PF (X,x; 1) = #F−1({x}) for all x ∈ X and F ∈ F(X).

We stress that, unlike the known results in [16, 21, 31], the above results
and those that follow do not demand any restriction on the cardinality of the
set-value points of the map under consideration. Furthermore, in the special
case where M = 1, the above corollary reduces to [6, Theorem 2], valid for
single-valued maps. However, the present proof is different and simpler.

We now illustrate the above results with some examples.

Example 2.3. Let

X = {xi : i ≥ 0} ∪ {x(j)−1 : 1 ≤ j ≤ 4} ∪ {x(j)−i : i ≥ 2 and j = 1, 2}

and F1 : X → 2X be defined by

F1(xi) = {xi+1} for i ≥ 0,

F1(x
(j)
−1) = {x0} for 1 ≤ j ≤ 4,

F1(x
(j)
−2) = {x(2j−1)

−1 , x
(2j)
−1 } for j = 1, 2,

F1(x
(j)
−i ) = {x(j)−(i−1)} for i ≥ 3 and j = 1, 2
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x
(1)
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x
(2)
−2
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x0 x1 x2 · · ·

· · ·

· · ·

1

Fig. 1. F1

(see Figure 1). Then F1 has no iterative roots of order n ≥ 2 by Theo-
rem 2.1(1) with M = 2 and N = 1. Further, it is clear that Corollary 2.2 is
not applicable, because #F−2({x0}) = 2 = MN3.

Example 2.4. Consider

X = {x0} ∪ {x(j)i : i ≥ 1 and j = 1, 2} ∪ {x(j)−i : j ≥ 1 and j = 1, 2, 3}

and let F2 : X → 2X be defined by

F2(x0) = {x(1)1 , x
(2)
1 },

F2(x
(j)
i ) = {x(j)i+1} for i ≥ 1 and j = 1, 2,

F2(x
(j)
−1) = {x0} for j = 1, 2, 3,

F2(x
(j)
−i ) = {x(j)−(i−1)} for i ≥ 2 and j = 1, 2, 3

(see Figure 2). Then F2 has no iterative roots of order n ≥ 2 by Corol-
lary 2.2(1) (or Theorem 2.1(1)) with M = 2 and N = 1.

x
(2)
−2· · ·

x
(1)
−1

x
(2)
−1 x0

x
(1)
1 x

(1)
2 · · ·

x
(2)
1 x

(2)
2 · · ·

x
(1)
−2· · ·

x
(3)
−1x

(3)
−2· · ·

1

Fig. 2. F2

Example 2.5. Consider the multifunction F3 : [0, 1] → 2[0,1] given by

F3(x) =


{0, 1} if x = 0,

{1/4− x/2} if x ∈ (0, 1/4],

{1/8} if x ∈ [1/4, 1/2],

{2x− 1} if x ∈ (1/2, 1]
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with exactly one set-value point c = 0 (see Figure 3). Since {c} is not a value
of F3, not only Theorems 1 and 2 of [16] and Theorem 1 of [21] for iterative
square roots, but also Theorem 2 of [31] for iterative nth roots, do not work.
Furthermore, since F3(c) = {0, 1} and F3(1) = {1}, Theorem 2 of [21] is
not applicable either. However, F3 has no iterative roots of order n ≥ 2 by
Theorem 2.1(2) (or Corollary 2.2(2)) with x0 = 1/8.

�

�

�

◦

◦
0 1

4

1
4

1
2

1
8

1

1

1

Fig. 3. F3

Example 2.6. Consider the multifunction F4 : [0, 1] → 2[0,1] given by

F4(x) =



{3/4, 1} if x = 0,

{1/4− x} if x ∈ (0, 1/4],

{0} if x ∈ [1/4, 1/2),

{0} ∪ ([3/4, 1] ∩Q) if x = 1/2,

{2x− 1} if x ∈ (1/2, 1]

with the set-value points 0 and 1/2 (see Figure 4). Since F4 has more than

��

� �

◦

0 1
4

1
4

1
2

3
4

1

1

1

Fig. 4. F4
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one set-value point, none of the known results mentioned in Example 2.5
apply. However, F4 has no iterative roots of order n ≥ 2 by Theorem 2.1(3)
(or Corollary 2.2(3)) with x0 = 0.

When M = 1, the bound MN3 in Theorem 2.1(1) is optimal, as demon-
strated by the examples in [6, Section 4, (iv)]. Additionally, assuming the
axiom of choice, Theorem 2.1(2) and Theorem 2.1(3) can be further gen-
eralized to the context of infinite cardinal numbers to provide many more
similar results on nonexistence of iterative roots. More precisely, we have
the following result, where ℵα’s are precisely the infinite cardinal numbers
indexed by the ordinal numbers α, ≤ is the order among cardinal numbers,
and

Fℵα(X) := {F ∈ F(X) : #PF (x,X; 1) < ℵα for all x ∈ X}
for each ordinal number α.

Theorem 2.7 (Sets of cardinality at least ℵα vs those less than ℵα). Let
F be a multifunction on X such that Dom(F ) = X and x0 /∈ F (x0) for some
x0 ∈ X. Further, suppose that #PF (X,x0; 2) ≥ ℵα and #PF (X,x; 1) < ℵα

for all x ̸= x0 in X and for some infinite cardinal number ℵα. Then F has
no iterative roots of order n ≥ 2 in Fℵα(X). If, in addition, F ∈ Fℵα(X)
and Im(F ) = X, then F has no iterative roots of order n ≥ 2 at all.

Proof. The proof of Theorem 2.1(2) is based on the fact that a finite
union of finite sets is finite. The proof of this result is similar, using the
result that a union of a collection of cardinality ℵα of sets of cardinality ℵα

has cardinality ℵα.

As a consequence of the above theorem, we have the following result,
with a proof similar to that of Corollary 2.2.

Corollary 2.8 (Sets of cardinality at least ℵα vs those less than ℵα).
Let F be a multifunction on X such that Dom(F ) = X and x0 /∈ F (x0)
for some x0 ∈ X. Further, suppose that #F−2({x0}) ≥ ℵα and #F−1({x})
< ℵα for all x ̸= x0 in X and for some infinite cardinal number ℵα. Then F
has no iterative roots of order n ≥ 2 in Fℵα(X). If, in addition, F ∈ Fℵα(X)
and Im(F ) = X, then F has no iterative roots of order n ≥ 2 at all.

3. Inverse and pullback multifunctions. To describe the continu-
ity or measurability of single-valued maps, we look at their inverse images.
We may think of them as multivalued functions. It is clearly an important
class, and we refer to them as pullback multifunctions. Unfortunately they
are not covered by the results of the previous section due to some trivial
reasons suggesting that we should be analyzing the inverses of general mul-
tifunctions. The graph of the inverse of a multifunction is obtained simply
by reversing arrows/directions of the original graph. Almost all the results
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of the previous section translate to this setting, and we present them here
first without proofs. Then we specialize to pullback multifunctions and see
the implications of these results.

As in [2, p. 34], the inverse of any F ∈ F(X) is the multifunction F−1 ∈
F(X) defined by x ∈ F−1(y) if y ∈ F (x). The image of F is thus the domain
of F−1, and symmetrically, the domain of F is the image of F−1. Also, the edge
setEF−1 equals {(y, x) : (x, y) ∈ EF }. Furthermore, F = G1◦G2 if and only if
F−1 = G−1

2 ◦G−1
1 for all multifunctions G1, G2 ∈ F(X) as shown in [2, p. 37],

implying that F has an iterative root of order n in E ⊆ F(X) if and only if
F−1 has an iterative root of order n in E−1 := {H : H−1 ∈ E}. Consequently,
we can deduce the following corollary from Theorems 2.1 and 2.7, with

F−1
M (X) := {F ∈ F(X) : F−1 ∈ FM (X)} for each M ∈ N,

F−1
f (X) := {F ∈ F(X) : F−1 ∈ Ff(X)},

F−1
c (X) := {F ∈ F(X) : F−1 ∈ Fc(X)},

F−1
ℵα

(X) := {F ∈ F(X) : F−1 ∈ Fℵα(X)} for each ordinal number α,

and we assume the axiom of choice in (4).

Corollary 3.1. Let F be a multifunction on X such that Im(F ) = X
and x0 /∈ F (x0) for some x0 ∈ X.

(1) (Large finite sets vs small finite sets) Suppose that #PF (x0, X; 2) >
MN3 and #PF (x,X; 1)≤N for all x ̸= x0 in X and for some M,N ∈N.
Then F has no iterative roots of order n ≥ 2 in F−1

M (X). If, in addition,
F ∈ F−1

M (X) and Dom(F ) = X, then F has no iterative roots of order
n ≥ 2 at all.

(2) (Infinite sets vs finite sets) Suppose that PF (x0, X; 2) is infinite and
PF (x,X; 1) is finite for all x ̸= x0 in X. Then F has no iterative roots of
order n ≥ 2 in F−1

f (X). If, in addition, F ∈ F−1
f (X) and Dom(F ) = X,

then F has no iterative roots of order n ≥ 2 at all.
(3) (Uncountable sets vs countable sets) Suppose that PF (x0, X; 2) is un-

countable and PF (x,X; 1) is countable for all x ̸= x0 in X. Then F has
no iterative roots of order n ≥ 2 in F−1

c (X). If, in addition, F ∈ F−1
c (X)

and Dom(F ) = X, then F has no iterative roots of order n ≥ 2 at all.
(4) (Sets of cardinality at least ℵα vs those less than ℵα) Suppose that

#PF (x0, X; 2) ≥ ℵα and #PF (x,X; 1) < ℵα for all x ̸= x0 in X and
for some infinite cardinal number ℵα. Then F has no iterative roots of
order n ≥ 2 in F−1

ℵα
(X). If, in addition, F ∈ F−1

ℵα
(X) and Dom(F ) = X,

then F has no iterative roots of order n ≥ 2 at all.

As a consequence of the above corollary, analogous to the respective
Corollaries 2.2 and 2.8 of Theorems 2.1 and 2.7, we have the following.
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Corollary 3.2. Let F be a multifunction on X such that Im(F ) = X
and x0 /∈ F (x0) for some x0 ∈ X.

(1) (Large finite sets vs small finite sets) Suppose that #F 2(x0) > MN3

and #F (x) ≤ N for all x ̸= x0 in X and for some M,N ∈ N. Then
F has no iterative roots of order n ≥ 2 in F−1

M (X). If, in addition,
F ∈ F−1

M (X) and Dom(F ) = X, then F has no iterative roots of order
n ≥ 2 at all.

(2) (Infinite sets vs finite sets) Suppose that F 2(x0) is infinite and F (x) is
finite for all x ̸= x0 in X. Then F has no iterative roots of order n ≥ 2
in F−1

f (X). If, in addition, F ∈ F−1
f (X) and Dom(F ) = X, then F has

no iterative roots of order n ≥ 2 at all.
(3) (Uncountable sets vs countable sets) Suppose that F 2(x0) is uncount-

able and F (x) is countable for all x ̸= x0 in X. Then F has no iterative
roots of order n ≥ 2 in F−1

c (X). If, in addition, F ∈ F−1
c (X) and

Dom(F ) = X, then F has no iterative roots of order n ≥ 2 at all.
(4) (Sets of cardinality at least ℵα vs those less than ℵα) Suppose that

#F 2(x0) ≥ ℵα and #F (x) < ℵα for all x ̸= x0 in X and for some
infinite cardinal number ℵα. Then F has no iterative roots of order n ≥ 2
in F−1

ℵα
(X). If, in addition, F ∈ F−1

ℵα
(X) and Dom(F ) = X, then F has

no iterative roots of order n ≥ 2 at all.

The examples below illustrate the above results.

Example 3.3. Let F = F−1
1 (see Figure 5), where F1 is the map consid-

ered in Example 2.3. Then it is easy to see that

#PF (X,x; 1) =

{
2 if x ∈ {x(1)−2, x

(2)
−2},

1 otherwise

and

#PF (x,X; 1) =

{
4 if x = x0,

1 otherwise.

If we wish to apply Theorem 2.1(1) to F , then we must consider M and N

x
(2)
−1

x
(3)
−1

x0 x1 x2 · · ·

x
(4)
−1

x
(1)
−1

x
(1)
−2

x
(2)
−2

x
(1)
−3

x
(2)
−3

· · ·

· · ·

1

Fig. 5. F−1
1
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such that M ≥ 4 and N ≥ 2; but, in that case, there is no x ∈ X such
that condition (1.a) is satisfied. Therefore Theorem 2.1(1) does not apply
to F directly. Additionally, since PF (X,x; 2) is finite for all x ∈ X, neither
(2) nor (3) of Theorem 2.1 apply. Consequently, the results of Corollary 2.2
do not work either. However, F has no iterative roots of order n ≥ 2 by
Corollary 3.1(1) with M = 2 and N = 1.

Example 3.4. Consider the multifunction F : [0, 1] → 2[0,1] defined by

F (x) =


{4x} if x ∈ [0, 1/4),

[1/2, 3/4] if x = 1/4,

{(4x− 1)/3} if x ∈ (1/4, 1]

with exactly one set-value point c = 1/4 (see Figure 6). Then F has no
iterative roots of order n ≥ 2 by Corollary 3.1(2) (or Corollary 3.2(2)) with
x0 = 1/4.

◦

•

•

◦

0 1
4

3
4

1
2

1

1

1

Fig. 6. F

So far, we have been looking at iterative roots of inverses of general
multifunctions. We now restrict ourselves to a subclass of such multifunctions
that arise from single-valued maps for further investigation. In what follows,
let F(X) denote the set of all maps f : X → X, and for each set A ⊆ X,
f ∈ F(X) and k ≥ 1, let f−k(A) denote the kth order inverse image of A
by f defined by f−k(A) = {x ∈ X : fk(x) ∈ A}. An F ∈ F(X) is said to
be
(i) the pullback of a map f ∈ F(X) if F (x) = f−1({x}) for all x ∈ X,
(ii) a pullback multifunction if it is the pullback of some f ∈ F(X).
Let Fp(X) denote the set of all pullback multifunctions in F(X). The fol-
lowing proposition provides a characterization of such multifunctions.
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Proposition 3.5. Let F ∈ F(X) such that Dom(F ) = X. Then F ∈
Fp(X) if and only if the following conditions are satisfied:

(a) F (x) ∩ F (y) = ∅ for x ̸= y in X;
(b) Im(F ) = X.

Proof. Suppose that F is the pullback of an f ∈ F(X). Then F clearly
satisfies condition (a) because f−1({x}) ∩ f−1({y}) = ∅ for x ̸= y in X.
Further, since f : X → X is a map, for each x ∈ X there exists a unique
y ∈ X such that x ∈ f−1({y}) = F (y) ⊆ F (X), implying that X ⊆ F (X).
The reverse inclusion follows trivially. Therefore F satisfies condition (b).

Conversely, assume that F satisfies conditions (a) and (b). Define a map
f : X → X by f(x) = y if x ∈ F (y). Since for each x ∈ X there exists a
unique y ∈ X such that x ∈ F (y), where the existence is guaranteed by (b)
and uniqueness by (a), f is clearly well-defined. Further, it is easy to check
that F (x) = f−1({x}) for all x ∈ X. Therefore F is the pullback of f .

We recall that Theorem 2.1 (resp. Corollary 2.2) does not directly apply
to pullback multifunctions F for the following reason. In fact, for any mul-
tifunction F on X the assumption in Theorem 2.1 (resp. Corollary 2.2) that
#PF (X,x0; 2) (resp.#F−2({x0})) is very large in comparison to#PF (X,x; 1)
(resp. #F−1({x})) for all x ̸= x0 in X implies that there exist x ̸= y in X
such that x0 ∈ F (x) ∩ F (y), violating the necessary condition (a) of Propo-
sition 3.5 that F must satisfy for it to be a pullback multifunction. However,
we can certainly use Corollaries 3.1 and 3.2 for F . Here Corollary 3.1 is
derived from Theorem 2.1 and Corollary 3.2 follows from Corollary 2.2. It is
also worth noting that the class of pullback multifunctions is closed under
the operation of taking iterative roots, as shown in the following.

Proposition 3.6. Let F ∈ Fp(X) be such that F (x) = (G1 ◦ G2)(x)
for all x ∈ X and some multifunctions G1, G2 ∈ F(X), where Dom(F ) =
Dom(G1) = Dom(G2) = X. Then

(i) Im(G1) = X,
(ii) G2(x) ∩G2(y) = ∅ for x ̸= y in X.

Further, if F ∈ Fp(X) and F (x) = Gn(x) for all x ∈ X and some multi-
function G ∈ F(X) such that Dom(G) = X, where n ≥ 2, then G ∈ Fp(X).

Proof. Since X = F (X) = G1(G2(X)) ⊆ G1(X), (i) is trivial. If z ∈
G2(x) ∩ G2(y) for some x ̸= y in X, then ∅ ̸= G1(z) ⊆ F (x) ∩ F (y), which
is a contradiction. Therefore (ii) follows. The second part follows from the
first and the “if” part of Proposition 3.5, because F (x) = (G ◦ Gn−1)(x) =
(Gn−1 ◦G)(x) for all x ∈ X.

The discussion just before Corollary 3.1 shows that a multifunction F ∈
Fp(X) with domain X, which is a pullback of an f ∈ F(X), has an iterative
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root of order n on X if and only if f has an iterative root of order n in F(X).
More precisely, it is easy to check the following.

Theorem 3.7. Let F ∈ Fp(X) be the pullback of an f ∈ F(X) such that
Dom(F ) = X. Then G is an iterative root of F of order n in Fp(X) if and
only if g is an iterative root of f of order n in F(X), where G is the pullback
of g.

Thus, pullback multifunctions provide numerous examples of multifunc-
tions with or without iterative roots, based on the known results on iterative
roots for single-valued maps. An easy example is that the 4th root multi-
function z 7→ z1/4 has the square root multifunction z 7→ z1/2 as its iterative
square root on C because the square function z 7→ z2 is an iterative square
root of the 4th power function z 7→ z4. We now give a brief summary of
known results on iterative roots of pullbacks of complex polynomials.

Corollary 3.8.

(1) The pullback of any complex quadratic polynomial has no iterative roots
of order n ≥ 2 on C. In particular, the square root multifunction z 7→
z1/2 has no iterative roots of order n ≥ 2 on C.

(2) The dth root multifunction z 7→ z1/d has no iterative roots of order n ≥ 2
on C provided dp ̸≡ d (mod p2) for all primes p ≤ d. The first 25 such d
are 2, 3, 6, 11, 14, 15, 34, 39, 47, 58, 59, 66, 83, 86, 87, 95, 102, 103, 106, 111,
114, 119, 123, 139 and 142.

(3) Let F be the pullback of a complex cubic polynomial f , where f is not
linearly conjugate to p(z) = z3−z2+z (i.e., f = h◦p◦h−1 for no linear
function h(z) = αz + β, α ̸= 0 on C) and has less than three distinct
fixed points. Then F has no iterative roots of order n ≥ 2 on C.

(4) Let F be the pullback of a complex polynomial of degree d ≥ 2. Then F
has no iterative roots of order n > d(d− 1) on C.

(5) Let F be the pullback of a complex polynomial of degree d ≥ 2. If n > d
is a prime, then F has no iterative roots of order n on C.

Proof. Follows from the following known results on complex polynomials,
respectively, and the discussions above.

(i) ([37, Theorem 1] or [8, Theorem 2]) Complex quadratic polynomials
have no iterative roots of any order n ≥ 2 on C. In particular, the
square function z 7→ z2 has no iterative roots of any order n ≥ 2 on C.

(ii) ([39]) The polynomial function z 7→ zd has no iterative roots of order
n ≥ 2 on C provided dp ̸≡ d (mod p2) for all primes p ≤ d. The first 25
such d are those listed above in result (2), as shown in [36].

(iii) ([8, Theorem 6]) Let f be a complex cubic polynomial which is not
linearly conjugate to p(z) = z3−z2+z and has less than three distinct
fixed points. Then f has no iterative roots of order n ≥ 2 on C.
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(iv) ([37, Theorem 4]) Let f be a complex polynomial of degree d ≥ 2.
Then f has no iterative roots of order n > d(d− 1) on C.

(v) ([8, Theorem 1]) Let f be a complex polynomial of degree d ≥ 2. If
n > d is a prime, then f has no iterative roots of order n on C.

In this circle of ideas, we now make some general remarks, for which
we require some additional terminology and notation. A fixed point x ∈ X
of an f ∈ F(X) is said to be isolated if there is no y ̸= x in X such that
f(y) = x. Let Tx(f) := f−1({x})\{x} for each fixed point x of f , with Tx(f)
being nonempty if and only if x is nonisolated. It is important to note that
Theorem 4 in [37] for complex polynomials cited above is a consequence of
the general result in that paper, which is stated as follows.

Theorem 3.9 ([37, Lemma 11]). Suppose f ∈ F(X) has a nonisolated
fixed point x ∈ X such that f−1({y}) ̸= ∅ for some y ∈ Tx(f). Then f has
no iterative roots of order n > L, where L := #(

⋃
x′ Tx′(f)) with the union

taken over all nonisolated fixed points x′ of f .

On the other hand, Theorem 1 in [8], as seen in item (v), is based on the
degrees of the polynomials under consideration and applies only to iterative
roots of prime orders. We now prove a similar but more general result for
general single-valued maps based on the number of nonisolated fixed points.
It can also be applied to show the nonexistence of iterative roots of nonprime
orders.

Theorem 3.10. Suppose f ∈ F(X) has k ≥ 2 nonisolated fixed points
x1, . . . , xk such that

(a) #Txj (f) ≤ l for all 1 ≤ j ≤ k,
(b) f−1({y}) ̸= ∅ for all y ∈ Txj (f) and 1 ≤ j ≤ k.

Then f has no iterative roots of order n> l such that m ∤ n for all 2 ≤ m≤ k.

Proof. Suppose, on the contrary, that f = gn for some g ∈ F(X), where
n > l and m ∤ n for all 2 ≤ m ≤ k. First, we assert that g(xj) is a nonisolated
fixed point of f for all 1 ≤ j ≤ k.

Since f(g(xj)) = g(f(xj)) = g(xj), clearly g(xj) is a fixed point of f for
all 1 ≤ j ≤ k. Suppose that g(xj0) is isolated for some 1 ≤ j0 ≤ k, and
let yj0 , zj0 ∈ X be such that yj0 ∈ Txj0

(f) and zj0 ∈ f−1({yj0}), where yj0
exists by the assumption that xj0 is nonisolated and zj0 exists by (b). Then,
as g(xj0) is isolated and

f2(g(zj0)) = g(f2(zj0)) = g(f(yj0)) = g(xj0),

we have g(zj0) = g(xj0), implying that

yj0 = f(zj0) = gn−1(g(zj0)) = gn−1(g(xj0)) = f(xj0) = xj0 .
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This contradicts our assumption that yj0 ∈ Txj0
(f). Therefore our assertion

holds.
Now, since x1, . . . , xk are the only nonisolated fixed points of f by hy-

pothesis, we have

g({x1, . . . , xk}) ⊆ {x1, . . . , xk}.(3.1)

We discuss the following two cases.

Case (i): Suppose that g(xj0) = xj0 for some 1 ≤ j0 ≤ k. Without loss
of generality, let j0 = 1. We first prove by induction that elements of Tx1(f)
can be arranged in a sequence y1, . . . , yl1 such a way that

(3.2) g(yi) ∈ {x1, y1, . . . , yi−1} for all 1 ≤ i ≤ l1,

where l1 := #Tx1(f).
Since f(g(y)) = g(f(y)) = g(x1) = x1 for all y ∈ Tx1(f), it is clear that

g(Tx1(f)) ⊆ Tx1(f) ∪ {x1}.
Further, since f = gn, we cannot have g(Tx1(f)) ⊆ Tx1(f) (otherwise,
gi(Tx1(f)) ⊆ Tx1(f) for all i ∈ N, and in particular f(Tx1(f)) = gn(Tx1(f)) ⊆
Tx1(f), which contradicts the definition of Tx1(f)). Therefore there exists a
y1 ∈ Tx1(f) such that g(y1) = x1, proving (3.2) for i = 1. Next, assume that
we have already defined y1, . . . , yi for some 1 ≤ i ≤ l1 − 1. Then, using a
similar argument, we see that

g(Tx1(f) \ {y1, . . . , yi}) ⊈ Tx1(f) \ {y1, . . . , yi}.
Therefore there exists a yi+1 ∈ Tx1(f) \ {y1, . . . , yi} such that g(yi+1) = x1,
proving (3.2) for i + 1. Thus, the existence of a desired rearrangement of
Tx1(f) follows by induction.

Now, since f−1({y1}) ̸= ∅ by (b), there exists a z1 ∈ X such that
f(z1) = y1. Then

f(g(z1)) = g(f(z1)) = g(y1) = x1,

implying that g(z1) ∈ Tx1(f)∪ {x1}. Also, from (3.2) we see that gi(y) = x1
for all y ∈ Tx1(f)∪{x1} and i ≥ l1. Therefore, as n−1 ≥ l and l ≥ l1 by (a),
we obtain

y1 = f(z1) = gn−1(g(z1)) = x1,

contrary to our assumption that y1 ∈ Tx1(f).

Case (ii): Suppose that Case (i) does not hold. Then, as g(xj) ̸= xj for
all 1 ≤ j ≤ k, by using (3.1) we see that g has a q-periodic point xj0 in
{x1, . . . , xk} for some 1 ≤ j0 ≤ k and 2 ≤ q ≤ k. As in Case (i), without loss
of generality we assume that j0 = 1. By our assumption on x1, we have

(3.3) gq(x1) = x1 and gi(x1) ̸= x1 for all 1 ≤ i ≤ q − 1.
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Further, since 2 ≤ q ≤ k, and m ∤ n for all 2 ≤ m ≤ k by hypothesis, we see
from the division algorithm that n = sq+r for some s ∈ N and 1 ≤ r ≤ q−1.
Therefore, by (3.3) we have

f(x1) = g(x1) = gsq+r(x1) = gr(x1) ̸= x1,

which contradicts our assumption that x1 is a fixed point of f .
Thus, we get a contradiction in both the cases, proving that f has no

iterative roots of order n > l such that m ∤ n for all 2 ≤ m ≤ k.

It is worth noting that the assumption on n that n > l and m ∤ n for
all 2 ≤ m ≤ k in the above theorem cannot be relaxed, as shown in the
following.

Example 3.11. Let

X = {xj : 1 ≤ j ≤ 4} ∪ {y(i)j : i = 1, 2 and 1 ≤ j ≤ 4}

∪ {z(i)j : i = 1, 2 and 1 ≤ j ≤ 4}
and f : X → X be defined by

f(xj) = xj for 1 ≤ j ≤ 4,

f(y
(i)
j ) = xj for i = 1, 2 and 1 ≤ j ≤ 4,

f(z
(i)
j ) = y

(i)
j for i = 1, 2 and 1 ≤ j ≤ 4

(see Figure 7). Then it is clear that x1, x2, x3, x4 are the only nonisolated
fixed points of f , and #Txj (f) = 2 and f−1({y}) ̸= ∅ for all y ∈ Txj (f) and
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1 ≤ j ≤ 4. Therefore, it follows from Theorem 3.10 with k = 4 and l = 2
that f has no iterative roots of order n > l such that m ∤ n for all 2 ≤ m ≤ k.
However, f has an iterative root g of order n = 4 > l on X, given by

g(xj) = xj+1 (mod 4) for 1 ≤ j ≤ 4,

g(y
(i)
j ) = y

(i)
j+1 for i = 1, 2 and 1 ≤ j ≤ 3,

g(y
(i)
j ) = x1 for i = 1, 2 and j = 4,

g(z
(i)
j ) = z

(i)
j+1 for i = 1, 2 and 1 ≤ j ≤ 3,

g(z
(i)
j ) = y

(i)
1 for i = 1, 2 and j = 4

(see Figure 8), which is divisible by m = 2 < k.
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Since every complex polynomial of degree d ≥ 2 can have at most one
isolated fixed point as seen from [8, Lemma 4], the only possible values for the
pair (k, l) considered in Theorem 3.10 are (d, d−1) and (d−1, d−1). However,
if (k, l) = (d, d−1), then, in light of [37, Theorem 4], both Theorem 3.10 and
[8, Theorem 1] provide the same results because every composite number n
between k− 1 and k(k− 1) is divisible by m for some 2 ≤ m ≤ k. Thus, the
actual contribution of our Theorem 3.10 to complex polynomials f is limited
to the case (k, l) = (d− 1, d− 1), where f has the form α(z − β)d + β with
α ̸= 0. In fact, Theorem 3.10 implies that for all primes p, no pth power has
pth roots which is not guaranteed by either [37, Theorem 4] or [8, Theorem 1].
More precisely, we have the following.

Corollary 3.12. If d ≥ 2 is a prime, then the complex polynomial
function z 7→ α(z − β)d + β with α ̸= 0 has no iterative roots of order d
on C.

Proof. Let f(z) = α(z − β)d + β for all z ∈ C, where α ̸= 0 and d ≥ 2
is a prime. Then f has d − 1 nonisolated fixed points, which are precisely
β+α−1/d−1, where α−1/d−1 denote any of the d−1 possible values. Therefore
we see from Theorem 3.10 that f has no iterative roots of order n > d − 1
on C with m ∤ n for all 2 ≤ m ≤ d− 1. In particular, as d ≥ 2 is a prime, it
follows that f has no iterative roots of order d on C.

The following example illustrates the above corollary.
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Example 3.13. Consider the polynomial function f(z) = z5 on C, to
which the result in [39] does not apply, as seen in item (ii) of the proof of
Corollary 3.8. Then it follows from the above corollary that f has no iterative
roots of order 5 on C, which is not guaranteed by [8, Theorem 1].

Finally, we point out that, while Theorem 3.10 and Corollary 3.12 are
concerned with single-valued maps, we can use Theorem 3.7 to obtain simi-
lar results for their pullback multifunctions. These results differ from those
obtained for general multifunctions in Section 2 in the following sense: The
former are based on a fixed point of the map under consideration, whereas
the latter are based on a point that is not a fixed point.
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