The set of values of any finite iteration of Euler's φ function contains long arithmetic progressions

by
R. Balasubramanian (Chennai), Jean-Marc Deshouillers (Bordeaux) and Sanoli Gun (Chennai)
To Henryk Iwaniec, on his 75th birthday, with admiration and friendship

Abstract

Assuming the validity of Dickson's conjecture, we show that the set of values of iterated Euler's totient φ function $\varphi \circ \cdots \circ \varphi$ (n times) contains arbitrarily long arithmetic progressions with an explicitly given common difference D_{a} depending only on a. This extends a previous result (case $a=1$) of Deshouillers, Eyyunni and Gun. In particular, this implies that this set has upper Banach density at least $1 / D_{a}>0$.

1. Introduction. In an earlier article [2], the second and third authors along with Eyyunni investigated the existence of long arithmetic progressions among the set of values of the φ function over the natural numbers. In this article, we study the values of iterated Euler's totient φ function, defined by

$$
\varphi^{(0)}=\operatorname{Id}_{\mathbb{N}} \quad \text { and } \quad \forall a \geq 1: \quad \varphi^{(a)}=\varphi \circ \varphi^{(a-1)}
$$

at natural numbers. As in the previous article, we study this question under the assumption of Dickson's conjecture [3], which is a predecessor of the Hardy-Littlewood prime k-tuples conjecture and also of Schinzel's Hypothesis H. Let us recall its statement.

Conjecture 1 (Dickson's conjecture). Let s be a positive integer and F_{1}, \ldots, F_{s} be linear polynomials with integral coefficients and positive leading coefficients such that their product has no fixed prime divisor. Then there exist infinitely many natural numbers n such that $F_{1}(n), \ldots, F_{s}(n)$ are all primes.

[^0]Remark 1.1. The only case where Dickson's conjecture is known to be true is for $s=1$, thanks to Dirichlet.

Our main result is the following.
Theorem 1. Suppose that Dickson's conjecture is true and let $a \geq 2$ be a positive integer. There exists a positive integer D_{a} such that for any positive integer H there exist positive integers M, m_{1}, \ldots, m_{H} such that for all h in [1,H],

$$
\begin{equation*}
\varphi^{(a)}\left(m_{h}\right)=D_{a} h+M . \tag{1}
\end{equation*}
$$

Moreover, we can take

$$
\begin{equation*}
D_{a}=2^{2 a} P_{a} Q_{a}, \tag{2}
\end{equation*}
$$

where Q_{a} is the product of distinct primes dividing $2^{i}-1$ for $1 \leq i \leq a$, and P_{a} is the product of primes between 5 and $2 a+1$ which are coprime to Q_{a}.

Remark 1.2. Theorem 1 implies that the set $\varphi^{(a)}(\mathbb{N})$ has a positive upper Banach density, provided that Dickson's conjecture holds true.

Remark 1.3. It would be interesting to prove unconditionally that the set $\varphi^{(a)}(\mathbb{N})$ contains an arbitrarily long arithmetic progression with some fixed common difference, or even that $\varphi^{(a)}(\mathbb{N})$ has a positive upper Banach density, even for $a=1$.
2. Some intermediate results. From now on, the letters p and q, with or without index or subscript, will denote prime numbers, a an integer larger than 1 , and H an integer larger than 2^{a}.

In this section, we will prove a few lemmas leading to the proof of the theorem.

We start by defining hyper Sophie Germain primes and fixed prime divisors of a polynomial as they will play an important role in our proof.

Definition 1. Let v be a positive integer. A prime number p is said to be a v-hyper Sophie Germain prime if all the numbers

$$
\frac{p}{2}-\frac{1}{2}, p, 2 p+(2-1), \ldots, 2^{v-1} p+\left(2^{v-1}-1\right)
$$

are prime numbers.
Remark 2.1. With the standard definition, we can say that all the numbers $p / 2-1 / 2, p, 2 p+(2-1), \ldots, 2^{v-2} p+\left(2^{v-2}-1\right)$ are Sophie Germain primes ($\left.{ }^{1}\right)$ the sequence $p / 2-1 / 2, p, 2 p+(2-1), \ldots, 2^{v-1} p+\left(2^{v-1}-1\right)$ is called a Cunningham chain of first type with length v, after [1].

[^1]Definition 2. Let $F(t) \in \mathbb{Z}[t]$ be a polynomial with integer coefficients. A prime number p is called a fixed prime divisor of F if p divides $F(t)$ for all integers t.

2.1. Existence of infinitely many a-hyper Sophie Germain primes under Dickson's conjecture

Lemma 2. Suppose that Dickson's conjecture is true. Let $a \geq 2$ and c be positive integers and b be an integer such that $b, 2 b+(2-1), \ldots, 2^{a} b+\left(2^{a}-1\right)$ are coprime to c. The arithmetic progression with difference c and first term b contains infinitely many a-hyper Sophie Germain primes.

Proof. Consider the polynomial G defined by

$$
\begin{equation*}
G(t)=(c t+b)(2 c t+2 b+2-1) \cdots\left(2^{a} c t+2^{a} b+2^{a}-1\right) \tag{3}
\end{equation*}
$$

We claim that G has no fixed prime divisor.
If a prime number p divides c, it cannot be a fixed divisor of G as otherwise $G(0) \equiv 0(\bmod p)$, i.e.

$$
b(2 b+2-1) \cdots\left(2^{a} b+2^{a}-1\right) \equiv 0(\bmod p)
$$

implies that $\operatorname{gcd}\left(c, 2^{i} b+2^{i}-1\right)>1$ for some $1 \leq i \leq a-1$, a contradiction to the hypothesis.

If a prime number p does not divide c, then we choose an integer t_{0} such that

$$
c t_{0}+b+1 \equiv 0(\bmod p)
$$

and hence, for this choice of t_{0}, we have

$$
G\left(t_{0}\right) \equiv(-1)^{a+1} \not \equiv 0(\bmod p)
$$

Thus G has no fixed prime divisor. Hence, by Dickson's conjecture, there exist infinitely many n such that

$$
c n+b \text { and } 2^{i}(c n+b)+\left(2^{i}-1\right) \forall 1 \leq i \leq a
$$

are prime numbers.
Lemma 3. Suppose that Dickson's conjecture is true. Let $a \geq 2$ and c_{1} be positive integers and let d be an integer such that $d, 2 d+2-1, \ldots$, $2^{a} d+2^{a}-1$ are coprime to $c_{1} ;$ also let $\ell_{1}, \ldots, \ell_{g}$ be distinct prime numbers which are coprime to c_{1}. Choose b such that

$$
b \equiv\left\{\begin{array}{l}
d\left(\bmod c_{1}\right) \tag{4}\\
-1\left(\bmod \ell_{i}\right) \text { for all integers } i \in[1, g]
\end{array}\right.
$$

The arithmetic progression with difference $c=c_{1} \ell_{1} \cdots \ell_{g}$ and first term b contains infinitely many a-hyper Sophie Germain primes.

Proof. Consider again the polynomial G defined by (3). From the choice of b and the given assumptions, we see that $b, 2 b+2-1, \ldots, 2^{a} b+2^{a}-1$ are
coprime to c_{1} as well as to $\ell_{1}, \ldots, \ell_{g}$. Hence,

$$
b, 2 b+2-1, \ldots, 2^{a} b+2^{a}-1
$$

are coprime to c. Thus Lemma 3 follows from Lemma 2 .
2.2. Construction of a suitable family of primes. From now on, we assume that $a \geq 2$ and that H is an integer larger than $2^{a}-1$. Before proceeding further, let us fix some notation. Set

$$
\begin{equation*}
T_{a}=\left\{p: \exists i \in[1, a-1]: p \mid 2^{i}-1\right\}, \quad Q_{a}=\prod_{p \in T_{a}} p, \quad P_{a}=\prod_{\substack{p \leq 2 a+1 \\ \operatorname{gcd}\left(p, Q_{a}\right)=1}} p \tag{5}
\end{equation*}
$$

The proof of Theorem 1 will make use of a family of $(a+1)$-hyper Sophie Germain primes satisfying some congruences and size properties, the existence of which is asserted by the following proposition.

Proposition 4. Let

$$
\Pi_{H}=\prod_{\substack{2 a+3 \leq p \leq a H \\ \operatorname{gcd}\left(p, Q_{a}\right)=1}} p
$$

Let u be a positive integer such that

$$
u \equiv\left\{\begin{array}{l}
0\left(\bmod 2^{2 a} P_{a}\right) \tag{6}\\
2^{a+1}(\bmod p) \text { if } p \mid Q_{a}
\end{array}\right.
$$

Assuming Dickson's conjecture, one can find H many $(a+1)$-hyper Sophie Germain primes p_{1}, \ldots, p_{H} such that

$$
p_{1}>2^{2 a} P_{a} Q_{a} \Pi_{H}+1
$$

$$
\begin{equation*}
\forall 1 \leq h \leq H-1: p_{h+1}>2^{2 a} P_{a} Q_{a} \frac{p_{h}-1}{2} p_{h} \prod_{i=1}^{a}\left(2^{i} p_{h}+2^{i}+1\right) \tag{7}
\end{equation*}
$$

Further, for all $h, k \in[1, H]$ with $h \neq k$ and for all p in $[2 a+3, a H]$ with $\operatorname{gcd}\left(p, Q_{a}\right)=1$, these primes satisfy the following relations, for $1 \leq i \leq a$:

$$
\begin{align*}
& \operatorname{gcd}\left(2^{2 a+i-1} P_{a} Q_{a} h+2^{i-1} u+\left(2^{i}-1\right) \frac{p_{h}-1}{2^{-a+1}}, p\right)=1 \tag{8}\\
& \operatorname{gcd}\left(\frac{2^{2 a} P_{a} Q_{a}(k-h)}{2^{-i+1}}+\left(2^{i}-1\right) \frac{p_{k}-1}{2^{-a+1}}, \frac{p_{h}-1}{2}\right)=1 \tag{9}\\
& \forall p \mid Q_{a}: p_{h} \equiv-1(\bmod p) \tag{10}
\end{align*}
$$

Proof. Set $R_{a}=2^{2 a} P_{a} Q_{a}$. We prove by induction that for any h between 1 and H, we can find $(a+1)$-hyper Sophie Germain primes p_{1}, \ldots, p_{h} such
that

$$
\begin{align*}
& p_{1}>R_{a} \Pi_{H}+1 \\
& \forall \ell \in[1, h-1]: p_{\ell+1}>R_{a} \frac{p_{\ell}-1}{2} p_{\ell} \prod_{i=1}^{a}\left(2^{i} p_{\ell}+2^{i}+1\right) \tag{11}
\end{align*}
$$

Further, for all ℓ in $[1, h]$ and all primes p in $[2 a+3, a H]$ with $\operatorname{gcd}\left(p, Q_{a}\right)=1$, we have for $1 \leq i \leq a$:

$$
\begin{array}{r}
\operatorname{gcd}\left(\frac{R_{a} \ell+u}{2^{-i+1}}+\left(2^{i}-1\right) \frac{p_{\ell}-1}{2^{-a+1}}, p\right)=1 \\
\forall k<\ell \leq h: \operatorname{gcd}\left(\frac{R_{a}}{2^{-i+1}}(\ell-k)+\left(2^{i}-1\right) \frac{p_{\ell}-1}{2^{-a+1}}, \frac{p_{k}-1}{2}\right)=1 \\
\forall k<\ell \leq h: \operatorname{gcd}\left(\frac{R_{a}}{2^{-i+1}}(k-\ell)+\left(2^{i}-1\right) \frac{p_{k}-1}{2^{-a+1}}, \frac{p_{\ell}-1}{2}\right)=1 \tag{14}
\end{array}
$$

The construction of p_{1} proceeds as follows.
For $h=1$, conditions (13) and (14) are empty. Condition (11) will be satisfied as soon as we know that there are infinitely many $(a+1)$-hyper Germain primes satisfying 12 .

For p in $[2 a+3, a H]$, we can always find a residue class $r_{1}(p)$ modulo p such that none of the classes
$\frac{r_{1}(p)-1}{2}, r_{1}(p), \ldots, 2^{a} r_{1}(p)+\left(2^{a}-1\right), 2^{i-1}\left(R_{a}+u\right)+2^{a-2}\left(2^{i}-1\right)\left(r_{1}(p)-1\right)$
for $1 \leq i \leq a$ is equivalent to 0 modulo p. This is possible as we have to avoid at most $2 a+2$ residue classes modulo p.

For $p \mid Q_{a}$ we can choose $r_{1}(p) \equiv-1(\bmod p)$.
Having found suitable residue classes $r_{1}(p)$ for any prime p in $[2 a+3, a H]$, the Chinese remainder theorem permits us to find a positive integer $s(1)$ such that, for each prime p in $[2 a+3, a H]$ with $\operatorname{gcd}\left(p, Q_{a}\right)=1$, none of the numbers

$$
\begin{array}{r}
\frac{s(1)-1}{2}, s(1), \ldots, 2^{a} s(1)+\left(2^{a}-1\right),\left(R_{a}+u\right)+2^{a-1}(s(1)-1), \ldots \\
2^{a-1}\left(R_{a}+u\right)+2^{a-1}\left(2^{a}-1\right)(s(1)-1)
\end{array}
$$

is congruent to 0 modulo p. Further, for any p dividing Q_{a}, we have $s(1) \equiv$ $-1(\bmod p)$, and hence all the numbers

$$
\frac{s(1)-1}{2}, s(1), \ldots, 2^{a} s(1)+\left(2^{a}-1\right)
$$

are congruent to -1 modulo p. Thus, by Lemma 3 the arithmetic progression with difference $Q_{a} \Pi_{H}$ and first term $(s(1)-1) / 2$ contains infinitely many $(a+1)$-hyper Sophie Germain primes satisfying 12 , and thus we can find such a prime satisfying also (11).

We now apply induction to complete the proof of Proposition 4
Assume that for some h between 1 and $H-1$, we have constructed a family of h many $(a+1)$-hyper Sophie Germain primes satisfying (10) and (12)- (14). Now we would like to construct p_{h+1}. It is enough to show that there exist infinitely many $(a+1)$-hyper Sophie Germain primes p_{ℓ} satisfying (10) and (12)-(14), where ℓ and h are replaced by $h+1$. Our new relation (14) is trivially satisfied as soon as p_{h+1} is large enough. For each $\ell<h+1$, one can choose an integer $r_{h+1}(\ell)$ such that for all primes p in $[2 a+3, a H]$ with $\operatorname{gcd}\left(p, Q_{a}\right)=1$ we have
$\operatorname{gcd}\left(2^{i-1}\left(R_{a}(h+1)+u\right)+2^{a-1}\left(2^{i}-1\right)\left(r_{h+1}(\ell)-1\right), p\right)=1 \quad$ for $1 \leq i \leq a$. Further, $r_{h+1}(\ell)$ satisfies the relation

$$
\operatorname{gcd}\left(\frac{R_{a}(h+1-\ell)}{2^{-i+1}}+\left(2^{i}-1\right) \frac{r_{h+1}(\ell)-1}{2^{-a+1}}, \frac{p_{\ell}-1}{2}\right)=1 \quad \text { for } 1 \leq i \leq a .
$$

It is possible to find such $r_{h+1}(\ell)$ as we need to avoid at most $2 a+2$ residue classes modulo $\left(p_{\ell}-1\right) / 2$. Arguing as we did previously, we can find a positive integer $s(h+1)$ such that all the numbers

$$
\begin{aligned}
\frac{s(h+1)-1}{2}, s(h+1), \ldots, & 2^{a} s(h+1)+\left(2^{a}-1\right) \\
& 2^{i-1}\left(R_{a}+u\right)+2^{a-2}\left(2^{i}-1\right)(s(h+1)-1)
\end{aligned}
$$

for $1 \leq i \leq a$ are coprime to Π_{H} and $(s(h+1)-1) / 2$ satisfies 10$)$. By the Chinese remainder theorem and Dickson's conjecture, there exist infinitely many $(a+1)$-hyper Sophie Germain primes which satisfy $(10), 12)$ and (13), and we can choose one of them which is sufficiently large to also satisfy (11) and (14); we call such a prime p_{h+1}. This completes the induction.
3. Proof of Theorem 1. We notice that, without loss of generality, it is enough to prove Theorem 1 with $H \geq 2^{a}$, which we assume from now on, thus being in a position to apply Proposition 4.
3.1. Construction of an auxiliary polynomial F. We consider the set $\left\{p_{1}, \ldots, p_{H}\right\}$ introduced in Proposition 4. and for h in $[1, H]$ we define the integer n_{h} by

$$
\begin{equation*}
n_{h}=\left(p_{h}-1\right) 2^{a-1} . \tag{15}
\end{equation*}
$$

We notice that, thanks to (7), the numbers $n_{h} / 2^{a}$ as h varies from 1 to H are pairwise coprime. We recall Definition 5 and further let

$$
A=2^{2 a} Q_{a} \Pi_{H} \prod_{h=1}^{H} n_{h}^{2}
$$

We select a positive integer u satisfying (6) and a positive integer B satisfying

$$
B \equiv\left\{\begin{array}{l}
0\left(\bmod 2^{2 a} Q_{a} \Pi_{H}\right) \tag{16}\\
-\left(u+2^{2 a} Q_{a} h\right)\left(\bmod \left(n_{h} / 2^{a}\right)^{2}\right) \text { for all integers } h \text { in }[1, H]
\end{array}\right.
$$

For h in $[1, H]$ and i in $[1, a]$, we define the polynomials $F_{h, i}$ by

$$
\begin{equation*}
F_{h, i}(t)=\frac{A t+B+u+2^{2 a} P_{a} Q_{a} h}{2^{-i+1} n_{h}}+\left(2^{i}-1\right) \tag{17}
\end{equation*}
$$

and we let

$$
F=\prod_{h=1}^{H} \prod_{i=1}^{a} F_{h, i}
$$

Note that each $F_{h, i}$ is a linear polynomial with integer coefficients and positive leading coefficient.

Proposition 5. The polynomial F has no fixed prime divisor.
Proof. If p does not divide A, the congruence $F(t) \equiv 0(\bmod p)$ has at most $a H$ solutions in $\mathbb{Z} / p \mathbb{Z}$. Now if p is larger than $a H$, then p is not a fixed divisor of F.

If p divides A, then either p is in $[2, a H]$ or p divides Q_{a} or $p=\left(p_{h}-1\right) / 2$ for some $1 \leq h \leq H$. In this case, $F(t) \equiv 0(\bmod p)$ is equivalent to

$$
\begin{equation*}
\prod_{h=1}^{H} \prod_{i=1}^{a-1}\left(\frac{B+u+2^{2 a} P_{a} Q_{a} h}{2^{-i+1} n_{h}}+\left(2^{i}-1\right)\right) \equiv 0(\bmod p) \tag{18}
\end{equation*}
$$

Note that for any h in $[1, H]$, we have

$$
B+u+2^{2 a} P_{a} Q_{a} h \equiv 0\left(\bmod n_{h}^{2}\right)
$$

Hence, 2 is not a fixed divisor of F. In addition, if we apply (7), then we can also conclude that $\left(p_{h}-1\right) / 2$ does not divide

$$
\prod_{i=1}^{a-1}\left(\frac{B+u+2^{2 a} P_{a} Q_{a} h}{2^{-i+1} n_{h}}+\left(2^{i}-1\right)\right)
$$

If $p=\left(p_{h}-1\right) / 2$ divides

$$
\prod_{i=1}^{a-1}\left(\frac{B+u+2^{2 a} P_{a} Q_{a} k}{2^{-i+1} n_{k}}+\left(2^{i}-1\right)\right)
$$

for some $k \neq h$, then

$$
2^{2 a+i-1} P_{a} Q_{a}(k-h)+\left(2^{i}-1\right) n_{k} \equiv 0(\bmod p)
$$

for some $1 \leq i \leq a$, a contradiction to (9). If any prime p in $[2 a+3, a H]$ and coprime to Q_{a} satisfies (18), then

$$
2^{2 a+i-1} P_{a} Q_{a} h+2^{i-1} u+n_{h}\left(2^{i}-1\right) \equiv 0(\bmod p)
$$

for some $1 \leq i \leq a$ and $1 \leq h \leq H$, a contradiction to (8). Hence, the only possible fixed prime divisors of F satisfy $p \in[3,2 a+1]$ or $p \mid Q_{a}$. Now if $p \mid Q_{a}$, then 18 implies that

$$
\prod_{h=1}^{H} \prod_{i=1}^{p-2}\left(2^{i-1} u+\left(2^{i}-1\right) n_{h}\right) \equiv 0(\bmod p)
$$

Hence, for some $1 \leq i_{0} \leq p-2$ and $1 \leq h \leq H$, we have

$$
2^{i_{0}-a-1} u+\left(2^{i_{0}}-1\right) \frac{n_{h}}{2^{a}} \equiv 0(\bmod p)
$$

Since $u \equiv 2^{a+1}(\bmod p)$ and, by construction, $n_{h} / 2^{a} \equiv-1(\bmod p)$, we have

$$
2^{i_{0}-a-1} u+\left(2^{i_{0}}-1\right) \frac{n_{h}}{2^{a}} \equiv 1 \not \equiv 0(\bmod p)
$$

Since $a \geq 2$ and $2^{2}-1=3$, we see that 3 divides Q_{a}. Hence, we need to consider only primes in $[5,2 a+1]$ and coprime to Q_{a}. Finally, if p is in $[5,2 a+1]$ and coprime to Q_{a}, then

$$
2^{p+i-1} u+\left(2^{p+i}-1\right) n_{h} \equiv 2^{i} u+\left(2^{i+1}-1\right) n_{h}(\bmod p)
$$

for $0 \leq i \leq a-p$, and hence (18) can be written as

$$
\begin{equation*}
\prod_{h=1}^{H} \prod_{i=1}^{p-2}\left(2^{i-1} u+\left(2^{i}-1\right) n_{h}\right)^{d_{i}} \equiv 0(\bmod p) \tag{19}
\end{equation*}
$$

for some positive integers $d_{i} \geq 1$. Recalling (6), we deduce from (19) that

$$
\left(2^{i}-1\right) \frac{n_{h}}{2^{a}} \equiv 0(\bmod p)
$$

for some $1 \leq i \leq p-2$ and $1 \leq h \leq H$. This is a contradiction as p is coprime to $n_{h} / 2^{a}$ and Q_{a}. Thus the polynomial F has no fixed prime divisor.
3.2. End of the proof of Theorem 1. Since the polynomials $F_{h, i}$ have positive leading coefficients and F has no fixed prime divisor, Dickson's conjecture implies that we can find a positive integer t_{0} such that for each h in $[1, H]$ the value of $F_{h, i}$ for $1 \leq i \leq a$ at t_{0} is a prime number strictly larger than p_{H}.

Let us write $q_{h}=F_{h, 1}\left(t_{0}\right)$ and $M=A t_{0}+B+u$. Then for each $2 \leq i \leq a$, $F_{h, i}\left(t_{0}\right)=2^{i} q_{h}+\left(2^{i}-1\right)$ is a prime number and

$$
\begin{equation*}
q_{h}=\frac{M+2^{2 a} P_{a} Q_{a} h}{n_{h}}+1 \tag{20}
\end{equation*}
$$

For any $1 \leq h \leq H$, using 20, we can write

$$
\begin{aligned}
& \varphi^{(a)}\left(\left(2^{a-1} p_{h}+2^{a-1}-1\right)\left(2^{a-1} q_{h}+2^{a-1}-1\right)\right) \\
&=\varphi^{(a-1)}\left(2^{2}\left(2^{a-2} p_{h}+2^{a-2}-1\right)\left(2^{a-2} q_{h}+2^{a-2}-1\right)\right) \\
& \vdots \\
&=\varphi\left(2^{a} p_{h} q_{h}\right) \\
&=2^{2 a-1}\left(p_{h}-1\right)\left(q_{h}-1\right)
\end{aligned}
$$

The last equality follows from the fact that, by construction, q_{h} is a prime larger than p_{h} and thus coprime to it. Using (15) and 20), we can write, for any h in $[1, H]$,

$$
\varphi^{(a)}\left(\left(2^{a-1} p_{h}+2^{a-1}-1\right)\left(2^{a-1} q_{h}+2^{a-1}-1\right)\right)=M+2^{2 a} P_{a} Q_{a} h
$$

This completes the proof of Theorem 1.
Acknowledgements. The authors are grateful to Suhita Hazra, Rashi Lunia, Sunil L Naik and Purusottam Rath for some stimulating discussions.

This work benefitted from the support of the SPARC project 445 . The second author is grateful to the Institute of Mathematical Sciences, Chennai, and the Harish-Chandra Research Institute, Prayagraj, for providing excellent working conditions. All authors would also like to thank the Indo-French Program in Mathematics (IFPM). The third author would also like to thank DAE number theory plan project for partial financial support.

References

[1] A. Cunningham, On hyper-even numbers and on Fermat's numbers, Proc. London Math. Soc. (2) 5 (1907), 237-274.
[2] J.-M. Deshouillers, P. Eyyunni and S. Gun, On the local structure of the set of values of Euler's φ function, Acta Arith. 199 (2021), 103-109.
[3] L. E. Dickson, A new extension of Dirichlet's theorem on prime numbers, Messenger Math. 33 (1904), 155-161.
R. Balasubramanian, Sanoli Gun

The Institute of Mathematical Sciences
HBNI, C.I.T. Campus, Taramani
Chennai 600113, Tamil Nadu, India
E-mail: balu@imsc.res.in sanoli@imsc.res.in

Jean-Marc Deshouillers
Institut de Mathématiques de Bordeaux
Université de Bordeaux, CNRS, Bordeaux INP
33400 Talence, France
E-mail: jean-marc.deshouillers@math.u-bordeaux.fr

[^0]: 2020 Mathematics Subject Classification: Primary 11B83; Secondary 11B05, 11N32, 11N64.
 Key words and phrases: iterated values of Euler's totient φ function, Dickson's conjecture, long arithmetic progression, Banach density.
 Received 1 June 2023; revised 14 June 2023.
 Published online 24 January 2024.

[^1]: $\left({ }^{1}\right)$ Sophie Germain investigated those primes p such that $2 p+1$ is prime in the early 19th century in her study of Fermat's problem.

