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Abstract. Assuming the validity of Dickson’s conjecture, we show that the set of
values of iterated Euler’s totient φ function φ ◦ · · · ◦ φ (n times) contains arbitrarily long
arithmetic progressions with an explicitly given common difference Da depending only
on a. This extends a previous result (case a = 1) of Deshouillers, Eyyunni and Gun. In
particular, this implies that this set has upper Banach density at least 1/Da > 0.

1. Introduction. In an earlier article [2], the second and third authors
along with Eyyunni investigated the existence of long arithmetic progressions
among the set of values of the φ function over the natural numbers. In this
article, we study the values of iterated Euler’s totient φ function, defined by

φ(0) = IdN and ∀a ≥ 1: φ(a) = φ ◦ φ(a−1)

at natural numbers. As in the previous article, we study this question un-
der the assumption of Dickson’s conjecture [3], which is a predecessor of the
Hardy–Littlewood prime k-tuples conjecture and also of Schinzel’s Hypoth-
esis H. Let us recall its statement.

Conjecture 1 (Dickson’s conjecture). Let s be a positive integer and
F1, . . . , Fs be linear polynomials with integral coefficients and positive leading
coefficients such that their product has no fixed prime divisor. Then there exist
infinitely many natural numbers n such that F1(n), . . . , Fs(n) are all primes.
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Remark 1.1. The only case where Dickson’s conjecture is known to be
true is for s = 1, thanks to Dirichlet.

Our main result is the following.

Theorem 1. Suppose that Dickson’s conjecture is true and let a ≥ 2 be a
positive integer. There exists a positive integer Da such that for any positive
integer H there exist positive integers M,m1, . . . ,mH such that for all h in
[1, H],

(1) φ(a)(mh) = Dah+M.

Moreover, we can take

(2) Da = 22aPaQa,

where Qa is the product of distinct primes dividing 2i − 1 for 1 ≤ i ≤ a, and
Pa is the product of primes between 5 and 2a+ 1 which are coprime to Qa.

Remark 1.2. Theorem 1 implies that the set φ(a)(N) has a positive
upper Banach density, provided that Dickson’s conjecture holds true.

Remark 1.3. It would be interesting to prove unconditionally that the
set φ(a)(N) contains an arbitrarily long arithmetic progression with some
fixed common difference, or even that φ(a)(N) has a positive upper Banach
density, even for a = 1.

2. Some intermediate results. From now on, the letters p and q, with
or without index or subscript, will denote prime numbers, a an integer larger
than 1, and H an integer larger than 2a.

In this section, we will prove a few lemmas leading to the proof of the
theorem.

We start by defining hyper Sophie Germain primes and fixed prime divi-
sors of a polynomial as they will play an important role in our proof.

Definition 1. Let v be a positive integer. A prime number p is said to
be a v-hyper Sophie Germain prime if all the numbers

p

2
− 1

2
, p, 2p+ (2− 1), . . . , 2v−1p+ (2v−1 − 1)

are prime numbers.

Remark 2.1. With the standard definition, we can say that all the num-
bers p/2 − 1/2, p, 2p + (2 − 1), . . . , 2v−2p + (2v−2 − 1) are Sophie Germain
primes (1); the sequence p/2− 1/2, p, 2p+ (2− 1), . . . , 2v−1p+ (2v−1 − 1) is
called a Cunningham chain of first type with length v, after [1].

(1) Sophie Germain investigated those primes p such that 2p+1 is prime in the early
19th century in her study of Fermat’s problem.
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Definition 2. Let F (t) ∈ Z[t] be a polynomial with integer coefficients.
A prime number p is called a fixed prime divisor of F if p divides F (t) for
all integers t.

2.1. Existence of infinitely many a-hyper Sophie Germain primes
under Dickson’s conjecture

Lemma 2. Suppose that Dickson’s conjecture is true. Let a ≥ 2 and c be
positive integers and b be an integer such that b, 2b+(2−1), . . . , 2ab+(2a−1)
are coprime to c. The arithmetic progression with difference c and first term b
contains infinitely many a-hyper Sophie Germain primes.

Proof. Consider the polynomial G defined by

(3) G(t) = (ct+ b)(2ct+ 2b+ 2− 1) · · · (2act+ 2ab+ 2a − 1).

We claim that G has no fixed prime divisor.
If a prime number p divides c, it cannot be a fixed divisor of G as other-

wise G(0) ≡ 0 (mod p), i.e.

b(2b+ 2− 1) · · · (2ab+ 2a − 1) ≡ 0 (mod p)

implies that gcd(c, 2ib+ 2i − 1) > 1 for some 1 ≤ i ≤ a− 1, a contradiction
to the hypothesis.

If a prime number p does not divide c, then we choose an integer t0 such
that

ct0 + b+ 1 ≡ 0 (mod p)

and hence, for this choice of t0, we have

G(t0) ≡ (−1)a+1 ̸≡ 0 (mod p).

Thus G has no fixed prime divisor. Hence, by Dickson’s conjecture, there
exist infinitely many n such that

cn+ b and 2i(cn+ b) + (2i − 1) ∀1 ≤ i ≤ a

are prime numbers.

Lemma 3. Suppose that Dickson’s conjecture is true. Let a ≥ 2 and
c1 be positive integers and let d be an integer such that d, 2d + 2 − 1, . . . ,
2ad+ 2a − 1 are coprime to c1; also let ℓ1, . . . , ℓg be distinct prime numbers
which are coprime to c1. Choose b such that

(4) b ≡

{
d (mod c1),

−1 (mod ℓi) for all integers i ∈ [1, g].

The arithmetic progression with difference c = c1ℓ1 · · · ℓg and first term b
contains infinitely many a-hyper Sophie Germain primes.

Proof. Consider again the polynomial G defined by (3). From the choice
of b and the given assumptions, we see that b, 2b+2− 1, . . . , 2ab+2a− 1 are
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coprime to c1 as well as to ℓ1, . . . , ℓg. Hence,

b, 2b+ 2− 1, . . . , 2ab+ 2a − 1

are coprime to c. Thus Lemma 3 follows from Lemma 2.

2.2. Construction of a suitable family of primes. From now on,
we assume that a ≥ 2 and that H is an integer larger than 2a − 1. Before
proceeding further, let us fix some notation. Set

(5) Ta = {p : ∃i ∈ [1, a−1] : p | 2i−1}, Qa =
∏
p∈Ta

p, Pa =
∏

p≤2a+1
gcd(p,Qa)=1

p.

The proof of Theorem 1 will make use of a family of (a+1)-hyper Sophie Ger-
main primes satisfying some congruences and size properties, the existence
of which is asserted by the following proposition.

Proposition 4. Let

ΠH =
∏

2a+3≤p≤aH
gcd(p,Qa)=1

p.

Let u be a positive integer such that

(6) u ≡

{
0 (mod 22aPa),

2a+1 (mod p) if p |Qa.

Assuming Dickson’s conjecture, one can find H many (a + 1)-hyper Sophie
Germain primes p1, . . . , pH such that

(7)

p1 > 22aPaQaΠH + 1,

∀1 ≤ h ≤ H − 1 : ph+1 > 22aPaQa
ph − 1

2
ph

a∏
i=1

(2iph + 2i + 1).

Further, for all h, k ∈ [1, H] with h ̸= k and for all p in [2a + 3, aH] with
gcd(p,Qa) = 1, these primes satisfy the following relations, for 1 ≤ i ≤ a:

gcd

(
22a+i−1PaQah+ 2i−1u+ (2i − 1)

ph − 1

2−a+1
, p

)
= 1,(8)

gcd

(
22aPaQa(k − h)

2−i+1
+ (2i − 1)

pk − 1

2−a+1
,
ph − 1

2

)
= 1,(9)

∀p |Qa : ph ≡ −1 (mod p).(10)

Proof. Set Ra = 22aPaQa. We prove by induction that for any h between
1 and H, we can find (a + 1)-hyper Sophie Germain primes p1, . . . , ph such
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that

(11)

p1 > RaΠH + 1,

∀ℓ ∈ [1, h− 1] : pℓ+1 > Ra
pℓ − 1

2
pℓ

a∏
i=1

(2ipℓ + 2i + 1).

Further, for all ℓ in [1, h] and all primes p in [2a+3, aH] with gcd(p,Qa) = 1,
we have for 1 ≤ i ≤ a:

gcd

(
Raℓ+ u

2−i+1
+ (2i − 1)

pℓ − 1

2−a+1
, p

)
= 1,(12)

∀k < ℓ ≤ h : gcd

(
Ra

2−i+1
(ℓ− k) + (2i − 1)

pℓ − 1

2−a+1
,
pk − 1

2

)
= 1,(13)

∀k < ℓ ≤ h : gcd

(
Ra

2−i+1
(k − ℓ) + (2i − 1)

pk − 1

2−a+1
,
pℓ − 1

2

)
= 1.(14)

The construction of p1 proceeds as follows.
For h = 1, conditions (13) and (14) are empty. Condition (11) will be

satisfied as soon as we know that there are infinitely many (a + 1)-hyper
Germain primes satisfying (12).

For p in [2a+ 3, aH], we can always find a residue class r1(p) modulo p
such that none of the classes
r1(p)− 1

2
, r1(p), . . . , 2

ar1(p)+(2a−1), 2i−1(Ra+u)+2a−2(2i−1)(r1(p)−1)

for 1 ≤ i ≤ a is equivalent to 0 modulo p. This is possible as we have to
avoid at most 2a+ 2 residue classes modulo p.

For p |Qa we can choose r1(p) ≡ −1 (mod p).
Having found suitable residue classes r1(p) for any prime p in [2a+3, aH],

the Chinese remainder theorem permits us to find a positive integer s(1)
such that, for each prime p in [2a+ 3, aH] with gcd(p,Qa) = 1, none of the
numbers

s(1)− 1

2
, s(1), . . . , 2as(1) + (2a − 1), (Ra + u) + 2a−1(s(1)− 1), . . . ,

2a−1(Ra + u) + 2a−1(2a − 1)(s(1)− 1)

is congruent to 0 modulo p. Further, for any p dividing Qa, we have s(1) ≡
−1 (mod p), and hence all the numbers

s(1)− 1

2
, s(1), . . . , 2as(1) + (2a − 1)

are congruent to −1 modulo p. Thus, by Lemma 3 the arithmetic progression
with difference QaΠH and first term (s(1) − 1)/2 contains infinitely many
(a + 1)-hyper Sophie Germain primes satisfying (12), and thus we can find
such a prime satisfying also (11).
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We now apply induction to complete the proof of Proposition 4.
Assume that for some h between 1 and H − 1, we have constructed a

family of h many (a + 1)-hyper Sophie Germain primes satisfying (10) and
(12)–(14). Now we would like to construct ph+1. It is enough to show that
there exist infinitely many (a+1)-hyper Sophie Germain primes pℓ satisfying
(10) and (12)–(14), where ℓ and h are replaced by h + 1. Our new relation
(14) is trivially satisfied as soon as ph+1 is large enough. For each ℓ < h+1,
one can choose an integer rh+1(ℓ) such that for all primes p in [2a+ 3, aH]
with gcd(p,Qa) = 1 we have

gcd
(
2i−1(Ra(h+ 1)+ u) + 2a−1(2i − 1)(rh+1(ℓ)− 1), p

)
= 1 for 1 ≤ i ≤ a.

Further, rh+1(ℓ) satisfies the relation

gcd

(
Ra(h+ 1− ℓ)

2−i+1
+ (2i − 1)

rh+1(ℓ)− 1

2−a+1
,
pℓ − 1

2

)
= 1 for 1 ≤ i ≤ a.

It is possible to find such rh+1(ℓ) as we need to avoid at most 2a+2 residue
classes modulo (pℓ−1)/2. Arguing as we did previously, we can find a positive
integer s(h+ 1) such that all the numbers

s(h+ 1)− 1

2
, s(h+ 1), . . . , 2as(h+ 1) + (2a − 1),

2i−1(Ra + u) + 2a−2(2i − 1)(s(h+ 1)− 1)

for 1 ≤ i ≤ a are coprime to ΠH and (s(h+ 1)− 1)/2 satisfies (10). By the
Chinese remainder theorem and Dickson’s conjecture, there exist infinitely
many (a+1)-hyper Sophie Germain primes which satisfy (10), (12) and (13),
and we can choose one of them which is sufficiently large to also satisfy (11)
and (14); we call such a prime ph+1. This completes the induction.

3. Proof of Theorem 1. We notice that, without loss of generality, it
is enough to prove Theorem 1 with H ≥ 2a, which we assume from now on,
thus being in a position to apply Proposition 4.

3.1. Construction of an auxiliary polynomial F . We consider the
set {p1, . . . , pH} introduced in Proposition 4, and for h in [1, H] we define
the integer nh by

(15) nh = (ph − 1)2a−1.

We notice that, thanks to (7), the numbers nh/2
a as h varies from 1 to H

are pairwise coprime. We recall Definition 5 and further let

A = 22aQaΠH

H∏
h=1

n2
h.
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We select a positive integer u satisfying (6) and a positive integer B satisfying

(16) B ≡

{
0 (mod 22aQaΠH),

−(u+ 22aQah) (mod (nh/2
a)2) for all integers h in [1, H].

For h in [1, H] and i in [1, a], we define the polynomials Fh,i by

(17) Fh,i(t) =
At+B + u+ 22aPaQah

2−i+1nh
+ (2i − 1)

and we let

F =

H∏
h=1

a∏
i=1

Fh,i.

Note that each Fh,i is a linear polynomial with integer coefficients and pos-
itive leading coefficient.

Proposition 5. The polynomial F has no fixed prime divisor.

Proof. If p does not divide A, the congruence F (t) ≡ 0 (mod p) has at
most aH solutions in Z/pZ. Now if p is larger than aH, then p is not a fixed
divisor of F .

If p divides A, then either p is in [2, aH] or p divides Qa or p = (ph−1)/2
for some 1 ≤ h ≤ H. In this case, F (t) ≡ 0 (mod p) is equivalent to

(18)
H∏

h=1

a−1∏
i=1

(
B + u+ 22aPaQah

2−i+1nh
+ (2i − 1)

)
≡ 0 (mod p).

Note that for any h in [1, H], we have

B + u+ 22aPaQah ≡ 0 (mod n2
h).

Hence, 2 is not a fixed divisor of F . In addition, if we apply (7), then we can
also conclude that (ph − 1)/2 does not divide

a−1∏
i=1

(
B + u+ 22aPaQah

2−i+1nh
+ (2i − 1)

)
.

If p = (ph − 1)/2 divides
a−1∏
i=1

(
B + u+ 22aPaQak

2−i+1nk
+ (2i − 1)

)
for some k ̸= h, then

22a+i−1PaQa(k − h) + (2i − 1)nk ≡ 0 (mod p)

for some 1 ≤ i ≤ a, a contradiction to (9). If any prime p in [2a+3, aH] and
coprime to Qa satisfies (18), then

22a+i−1PaQah+ 2i−1u+ nh(2
i − 1) ≡ 0 (mod p)
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for some 1 ≤ i ≤ a and 1 ≤ h ≤ H, a contradiction to (8). Hence, the only
possible fixed prime divisors of F satisfy p ∈ [3, 2a + 1] or p |Qa. Now if
p |Qa, then (18) implies that

H∏
h=1

p−2∏
i=1

(2i−1u+ (2i − 1)nh) ≡ 0 (mod p).

Hence, for some 1 ≤ i0 ≤ p− 2 and 1 ≤ h ≤ H, we have

2i0−a−1u+ (2i0 − 1)
nh

2a
≡ 0 (mod p).

Since u ≡ 2a+1 (mod p) and, by construction, nh/2
a ≡ −1 (mod p), we have

2i0−a−1u+ (2i0 − 1)
nh

2a
≡ 1 ̸≡ 0 (mod p).

Since a ≥ 2 and 22 − 1 = 3, we see that 3 divides Qa. Hence, we need
to consider only primes in [5, 2a + 1] and coprime to Qa. Finally, if p is in
[5, 2a+ 1] and coprime to Qa, then

2p+i−1u+ (2p+i − 1)nh ≡ 2iu+ (2i+1 − 1)nh (mod p)

for 0 ≤ i ≤ a− p, and hence (18) can be written as

(19)
H∏

h=1

p−2∏
i=1

(
2i−1u+ (2i − 1)nh

)di ≡ 0 (mod p)

for some positive integers di ≥ 1. Recalling (6), we deduce from (19) that

(2i − 1)
nh

2a
≡ 0 (mod p)

for some 1 ≤ i ≤ p−2 and 1 ≤ h ≤ H. This is a contradiction as p is coprime
to nh/2

a and Qa. Thus the polynomial F has no fixed prime divisor.

3.2. End of the proof of Theorem 1. Since the polynomials Fh,i

have positive leading coefficients and F has no fixed prime divisor, Dickson’s
conjecture implies that we can find a positive integer t0 such that for each
h in [1, H] the value of Fh,i for 1 ≤ i ≤ a at t0 is a prime number strictly
larger than pH .

Let us write qh = Fh,1(t0) and M = At0+B+u. Then for each 2 ≤ i ≤ a,
Fh,i(t0) = 2iqh + (2i − 1) is a prime number and

(20) qh =
M + 22aPaQah

nh
+ 1.



Iterated Euler’s totient function 9

For any 1 ≤ h ≤ H, using (20), we can write

φ(a)((2a−1ph + 2a−1 − 1)(2a−1qh + 2a−1 − 1))

= φ(a−1)(22(2a−2ph + 2a−2 − 1)(2a−2qh + 2a−2 − 1))
...
= φ(2aphqh)

= 22a−1(ph − 1)(qh − 1).

The last equality follows from the fact that, by construction, qh is a prime
larger than ph and thus coprime to it. Using (15) and (20), we can write, for
any h in [1, H],

φ(a)((2a−1ph + 2a−1 − 1)(2a−1qh + 2a−1 − 1)) = M + 22aPaQah.

This completes the proof of Theorem 1.
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