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PCF theory and the Tukey spectrum

by

Thomas Gilton (Pittsburgh, PA)

Abstract. We investigate the relationship between the Tukey order and PCF theory,
as applied to sets of regular cardinals. We show that it is consistent that for all sets A
of regular cardinals, the Tukey spectrum of A, denoted spec(A), is equal to the set of
possible cofinalities of A, denoted pcf(A); this is to be read in light of the ZFC fact that
pcf(A) ⊆ spec(A) holds for all A. We also prove results about when regular limit cardinals
must be in the Tukey spectrum or must be out of the Tukey spectrum of some A, and
we show the relevance of these for forcings which might separate spec(A) from pcf(A).
Finally, we show that the strong part of the Tukey spectrum can be used in place of
PCF-theoretic scales to lift the existence of Jónsson algebras from below a singular to
hold at its successor. We close with a list of questions.

1. Introduction. The Tukey order has become a very useful tool for
comparing directed, partially ordered sets. The order is sufficiently coarse
that is allows us to compare many different partial orders, yet it is fine
enough to preserve a number of order-theoretic properties of interest (such
as calibre properties; see Proposition 2.4 below). The Tukey order works by
comparing partial orders in terms of what happens “eventually”, or more
precisely, in terms of what happens cofinally.

The Tukey order arose in the study of Moore–Smith convergence in topol-
ogy [22, 35], with [2] and [5] following shortly after. Schmidt [25] and Isbell
[15, 16] later studied cofinal types among the class of directed posets. Later,
Todorčević [32] showed that it is consistent that there are only five cofinal
types of directed sets of size ≤ ℵ1. Todorčević also showed that under the
CH, there are 2c-many such cofinal types, and in [34] he extended this result
to all transitive relations on ω1.
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Since then, there has been a tremendous amount of research on the Tukey
order in a variety of circumstances. Some results concern definable directed
sets [31, 30]. Others concern cofinal types of ultrafilters [20, 6, 7, 8, 24, 23, 18].
Additional research concerns the Tukey order on various sets in topological
spaces [11, 13, 12]. Yet another batch of results studies the number of cofinal
types of partial orders of various sizes below ℵω [19, 26]. See also [10] and [21].

Cofinal structure has been studied by set theorists coming from a different
angle. Especially important for us is Shelah’s theory of possible cofinalities,
or PCF theory for short. The main objects of study in PCF theory are
reduced products of sets of regular cardinals, modulo an ideal. Shelah has
developed this theory in a series of papers which culminated in the book [29].
PCF theory has had dramatic implications for our understanding of cardinal
arithmetic (see [1]), as well as plenty of applications both inside and outside
of set theory, such as [17]. See [27] for a discussion of further applications.

These two ways of studying cofinal structure are related (and we will
discuss this more later): given a set A of regular cardinals, we consider the
Tukey spectrum of A, which consists of all regular cardinals which are Tukey
below (

∏
A,<) (i.e.,

∏
A with the pointwise domination ordering). We de-

note this by spec(A). It follows quickly from the definitions (which we give
later) that for any set A of regular cardinals, pcf(A) ⊆ spec(A). In this
paper, we are concerned with the following general question:

Question 1.1. Does ZFC prove that for any set A of regular cardinals,
pcf(A) = spec(A)?

To our knowledge, the only result, so far, which addresses this question is
due to Gartside and Mamatelashvili [12] who have a proof showing that if A is
any progressive set of regular cardinals, then pcf(A) = spec(A) (“progressive”
is a common assumption when doing PCF theory). However, there is a gap in
their proof. We address this gap later, observing that their argument rather
shows that if A is progressive, then spec(A) ⊆ pcf(A) ∪ lim(pcf(A)) (1).
Additional assumptions on pcf(A) then guarantee equality. However, the
status of Question 1.1 when A is not progressive is far from clear.

In this work, we prove various results related to Question 1.1. After a
review of the basics of the Tukey order and PCF theory in Section 2, we
turn in Section 3 to the question of how much bigger spec(A) can be than
pcf(A). We review the theorem from [12] and address the gap in their proof.
Then we turn to showing that Question 1.1 has a consistent positive answer.
We also discuss circumstances under which, for all A, spec(A) is no worse
than pcf(A) ∪ lim(A). In Section 4 we address the role that small large car-
dinals (Mahlo and weakly compact) have in excluding a regular limit κ from

(1) Since spec(A) consists, by definition, of regular cardinals, if A is progressive and
spec(A) ̸= pcf(A), then pcf(A) has a regular limit point.
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spec(A) (where A ⊆ κ) or for ensuring that κ ∈ spec(A). The upshot of these
results is that they may reduce the options for showing that Question 1.1
has a consistent negative answer which is witnessed by a forcing separating
spec(A) and pcf(A) (if such exists). In the last main section, Section 5, we
show that a subset of the Tukey spectrum (what we call the “strong part” of
the Tukey spectrum) is sufficiently strong to be able to “lift” the existence of
Jónsson algebras; this generalizes Shelah’s celebrated result [28] that scales
in PCF theory can lift the existence of Jónsson algebras.

2. A quick overview of Tukey and PCF. In this section we review
the basics of the Tukey order and PCF theory which are relevant for this
paper.

Remark 2.1. Throughout the paper, all posets are assumed to be di-
rected.

First we recall the definition of the Tukey order (see [11] for a detailed
development of these ideas).

Definition 2.2. A poset Q is said to be a Tukey quotient of P if there
exists a function φ : P → Q which preserves cofinal sets. We denote this by
P ≥T Q.

P ≥T Q is equivalent to the existence of a map ψ : Q → P which
preserves unbounded sets.

Definition 2.3. Suppose that κ ≥ λ ≥ µ are cardinals. We say that
a poset P has calibre (κ, λ, µ) if for all κ-sized P ′ ⊆ P there is a λ-sized
R ⊆ P ′ such that every µ-sized B ⊆ R is bounded in P .

We say simply that P has calibre κ if P has calibre (κ, κ, κ).

Note that the definition of P having calibre κ simplifies to the following:
every κ-sized P ′ ⊆ P has a κ-sized subset which is bounded in P .

The following proposition connects the ideas of ≥T and calibre.

Proposition 2.4. Suppose that κ is regular, that P has calibre (κ, λ, µ),
and that P ≥T Q. Then Q also has calibre (κ, λ, µ).

The next item is particularly relevant for us.

Proposition 2.5. For a regular cardinal κ, a poset P fails to have calibre
κ iff P ≥T κ.

Now we define the Tukey spectrum of a poset.

Definition 2.6. The Tukey spectrum of a poset P is denoted by spec(P )
and is defined to be spec(P ) := {κ : P ≥T κ ∧ κ is regular}.

When A is a set of regular cardinals, we abbreviate spec(
∏
A,<) by

spec(A).
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Remark 2.7. The set spec(P ) consists of all regular κ such that P does
not have calibre κ.

It is helpful to get a better handle on what κ ∈ spec(A) means in the
specific case when A is a set of regular cardinals. Indeed, κ ∈ spec(A) iff
there exists a set F of κ-many functions in

∏
A such that every F0 ∈ [F ]κ

is unbounded in (
∏
A,<), i.e., A with the pointwise domination ordering.

That is to say, there is at least one coordinate a ∈ A such that

{f(a) : f ∈ F0}
is unbounded in the regular cardinal a. We give a name to these coordinates
in the next definition.

Definition 2.8. Suppose that A is a set of regular cardinals F ⊆
∏
A.

A cardinal a ∈ A is called an unbounded coordinate of F if {f(a) : f ∈ F}
is unbounded in a.

We let ub(F) denote the set of unbounded coordinates of F . We address
the question of how many coordinates are in ub(F) in Section 5.

The following lemma is a standard part of Tukey-ology.

Lemma 2.9. spec(P × Q) = spec(P ) ∪ spec(Q). Hence if A and B are
sets of regular cardinals, spec(A ∪B) = spec(A) ∪ spec(B).

This captures all of the basics of the Tukey order that we need. We now
review some of the central results in PCF theory, beginning with the central
definition (see [1] for a clear and detailed exposition of these and related
ideas).

Definition 2.10. Let A be a set of regular cardinals. We define

pcf(A) :=
{
cf
(∏

A/D
)
: D is an ultrafilter on A

}
.

The following are routine facts about the pcf function.

Fact 2.11. Suppose that A and B are sets of regular cardinals.

(1) A ⊆ pcf(A) (by using principal ultrafilters).
(2) If A ⊆ B, then pcf(A) ⊆ pcf(B) (since any ultrafilter on A can be

extended to one on B).
(3) pcf(A ∪ B) = pcf(A) ∪ pcf(B) (since any ultrafilter on A ∪ B contains

either A or B).

The next lemma follows almost immediately from the definitions:

Lemma 2.12. For any set A of regular cardinals, pcf(A) ⊆ spec(A).

A very useful assumption when doing PCF theory is the following:

Definition 2.13. A set A of regular cardinals is progressive if |A| <
min(A).
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We next define certain ideals which are naturally associated to the car-
dinals in pcf(A). The set A being progressive plays an important role in the
development of the ideas that follow.

Definition 2.14. Let A be a set of regular cardinals and λ a cardinal
(singular or regular). Define the ideal J<λ[A] to consist of all B ⊆ A such
that for any ultrafilter D on A with B ∈ D, cf(

∏
A/D) < λ.

If the setA is clear from context, we write J<λ instead of J<λ[A]. A crucial
fact about the ideal J<λ is the following:

Proposition 2.15. Suppose thatA is progressive. Then for any cardinal λ,∏
A/J<λ is < λ-directed (that is, any set of fewer than λ-many functions in∏
A has an upper bound modulo J<λ).

A major theorem in PCF theory is the existence of generators, which we
define now.

Definition 2.16. Let A be a set of regular cardinals and λ ∈ pcf(A).
A generator for λ is a set Bλ ⊆ A in J<λ+ such that J<λ ∪ {Bλ} generates
J<λ+ . In other words, given X ⊆ A, X ∈ J<λ+ iff X \Bλ ∈ J<λ.

Thus a generating set Bλ is a maximal set in J<λ+ , modulo J<λ; they
are unique modulo J<λ. The following is often proven using universal cofinal
sequences:

Proposition 2.17. Suppose that A is progressive. Then for any λ ∈
pcf(A), there is a generator for λ.

Generators give an instance of compactness:

Proposition 2.18. Suppose that A is progressive and B ⊆ A. Fix a se-
quence ⟨Bλ : λ ∈ pcf(A)⟩ of generators. Then there exists a finite decreasing
sequence λ0 > · · · > λn of elements of pcf(A) with λ0 = maxpcf(B) such
that

B ⊆
⋃
i≤n

Bλi
.

Another application of generators and related ideas is the following fact:

Proposition 2.19. Suppose that A is progressive. Then pcf(A) has a
maximum element, and moreover

maxpcf(A) = cf
(∏

A,<
)
.

The last collection of background facts to review concerns weak compact-
ness.

Definition 2.20. Let α be an inaccessible cardinal. We say that a tran-
sitive set M is an α-model if M |= ZFC−, M has size α, M is closed under
<α-sequences, and α ∈M .
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Now we recall the following characterization of weak compactness
(see [14]):

Fact 2.21. An inaccessible cardinal κ is weakly compact if and only if
for any κ-model M , there exist a κ-model N and an elementary embedding
j :M → N with crit(j) = κ.

In the context of the previous fact, note that j : M → N gives rise to
an M -normal ultrafilter Uj := {X ∈ M : X ⊆ κ ∧ κ ∈ j(X)} on P(κ)
∩M (recall that an M -ultrafilter U is M -normal if for any A ∈ U and any
regressive f : A→ κ with f ∈M , f is constant on a set in U). Moreover, since
M is closed under <κ-sequences (by definition of a κ-model), this ultrafilter
is <κ-closed in V (but of course it only measures subsets of κ in M).

3. How bad can spec be? In this section, we study various conditions
which guarantee that either spec(A) is no worse than pcf(A) together with
(regular) limit points of pcf(A), or spec(A) is no worse than pcf(A) together
with regular limit points of A. These results, when coupled with anti large
cardinal hypotheses, give a consistent positive answer to Question 1.1.

We begin by looking at the theorem from [12] which we mentioned in
the introduction. Addressing a small gap in their argument, what the proof
shows is that for any progressive A, spec(A) can at worst add regular limits
of pcf(A). Additional assumptions on pcf(A) then give the equality of pcf(A)
and spec(A). We first have some notation.

Notation 3.1. Given functions g0, . . . , gn in some product
∏
A of reg-

ular cardinals, we let max(g0, . . . , gn) be the function h ∈
∏
A defined by

h(a) := max {g0(a), . . . , gn(a)}.
Theorem 3.2 (Almost entirely [12]). Suppose that A is a progressive set

of regular cardinals. Then spec(A) ⊆ pcf(A) ∪ lim(pcf(A)) (2).
In particular, if pcf(A) is closed under regular limits, or if pcf(A) has

no regular limits (for example, if pcf(A) is itself progressive), then pcf(A) =
spec(A).

Proof. We begin with some set-up. Since A is progressive, we may ap-
ply Proposition 2.17 to fix a sequence ⟨Bλ : λ ∈ pcf(A)⟩ of generators for
pcf(A). For each λ ∈ pcf(A), Bλ is progressive, being a subset of the pro-
gressive set A. Thus λ = maxpcf(Bλ) = cf(

∏
Bλ, <), using Bλ ∈ J<λ+ \J<λ

for the first equality and applying Proposition 2.19 for the second equality.
Therefore, for each λ ∈ pcf(A), we may choose a sequence f⃗ λ = ⟨fλα : α < λ⟩
of functions in

∏
A such that ⟨fλα↾Bλ : α < λ⟩ is cofinal in (

∏
Bλ, <).

(2) The original statement of their theorem applies to A which are finite unions of
progressive sets and uses what we are calling Lemma 2.9 to reduce to the case of a single
progressive set.
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Fix a cardinal κ ∈ spec(A), suppose that κ is not a limit point of pcf(A),
and we will show that κ ∈ pcf(A). Because κ is not a limit point of pcf(A),
we know that |pcf(A) ∩ κ| < κ; this will permit us to apply a pigeonhole
argument at a crucial step later in the proof.

Since κ ∈ spec(A), let ⟨fγ : γ < κ⟩ enumerate a set F of κ-many functions
in

∏
A so that every κ-sized subset of F is unbounded in (

∏
A,<). To show

that κ ∈ pcf(A), it suffices to show that J<κ ̸= J<κ+ . Since F is bounded
in

∏
A/J<κ+ (because this reduced product is <κ+-directed, by Proposition

2.15), it in turn suffices to show that F is unbounded in
∏
A/J<κ.

Indeed, suppose that F is bounded in
∏
A/J<κ. Our goal is to define

a set X of fewer than κ-many functions in
∏
A such that every f ∈ F is

pointwise below some g ∈ X . Supposing we can define such an X , we obtain
a contradiction as follows: since κ is regular, there is a single g ∈ X which
is pointwise above κ-many elements of F , and this contradicts the fact that
F witnesses that κ ∈ spec(A).

We begin the construction ofX as follows. SinceF is bounded in
∏
A/J<κ,

let g be a bound. For each n ∈ ω, each sequence λ⃗ = λ0 > · · · > λn in
pcf(A) ∩ κ, and each sequence α⃗ = ⟨α0, . . . , αn⟩ with αi ∈ λi for all i ≤ n,
we let h(α⃗, λ⃗) be the function max {fλ0

α0
, . . . , fλn

αn
, g}; see Notation 3.1. We

let X be the set of such h. Since by assumption pcf(A)∩κ is bounded below
κ, we see that X consists of fewer than κ-many functions.

Now we verify that X has the desired property. Recalling that ⟨fα : α < κ⟩
enumerates F , fix some α < κ. Since fα <J<κ g, we know that

zα := {a ∈ A : fα(a) ≥ g(a)}
is in J<κ. Thus maxpcf(zα) < κ, and so by Proposition 2.18, we may find
a sequence λ0 > · · · > λn in pcf(A) ∩ κ such that zα ⊆

⋃
i≤nBλi

. Then, for
each i ≤ n, pick αi < λi so that

fα↾Bλi
< fλi

αi
↾Bλi

(i.e., this holds pointwise on Bλi
). Then we see that

fα < max {fλ0
α0
, . . . , fλn

αn
, g}.

Indeed, if a /∈ zα, then fα(a) < g(a). On the other hand, if a ∈ zα, there is
some i ≤ n so that a ∈ Bλi

, and hence fα(a) < fλi
αi
(a). Since the function

max{fλ0
α0
, . . . , fλn

αn
, g} is in X , this completes the main part of the proof.

For the “in particular” part of the theorem, observe that if pcf(A) is
progressive, then there are no regular limit κ in lim(pcf(A)). Otherwise,
|pcf(A)| ≥ κ > min pcf(A), contradicting that pcf(A) is progressive.

In the rest of this section, we work to isolate a condition (Theorem 3.5)
which is consistent with ZFC and which implies that spec(A) ⊆ pcf(A) ∪
lim(pcf(A)) for all A. In fact, it implies the stronger result that spec(A) ⊆
pcf(A) ∪ lim(A) for all A. We have some preliminary lemmas. The first of
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these illustrates a “dropping” phenomenon in the Tukey spectrum; we will
use this lemma as part of a later inductive argument.

Lemma 3.3. Suppose that A is a set of regular cardinals. Let κ∈ spec(A)∩
sup(A). Then κ ∈ spec(A ∩ (κ+ 1)).

Proof. Set µ := sup(A); note that we are making no assumption about
whether or not µ ∈ A. Since κ ∈ spec(A), let F be a set of κ-many functions
in

∏
A such that for all F0 ∈ [F ]κ, F0 is unbounded in (

∏
A,<). Let

F≤κ := {f↾(κ+ 1) : f ∈ F}, F>κ := {f↾(κ+ 1, µ] : f ∈ F}.
Note that since κ < µ = sup(A), A \ (κ + 1) is a non-empty set of regular
cardinals. Also, F>κ is bounded in

∏
(A \ (κ+ 1), <), since F>κ consists of

at most κ-many functions, and we can take a sup of κ-many elements on
each coordinate in A \ (κ+ 1).

We next argue that F≤κ has size κ and that every κ-sized subset is
unbounded in (

∏
A ∩ (κ + 1), <); this will show the desired result. First

suppose for a contradiction that F≤κ has size < κ. Then there is a single
f̄ ∈

∏
A∩ (κ+1) such that for κ-many g ∈ F , g↾(κ+1) = f̄ . Let F0 be this

set of g ∈ F . But then F0 is bounded in the entire product (
∏
A,<), using

the observation from the previous paragraph to bound the elements of F0

on coordinates above κ in A. A nearly identical argument shows that F≤κ

must satisfy that every κ-sized subset is unbounded in (
∏
A∩ (κ+1), <).

The next lemma will also be used in the proof of Theorem 3.5:

Lemma 3.4. Suppose that κ is a regular limit cardinal. Let A ⊆ κ be a
non-stationary set of regular cardinals which is unbounded in κ, and let D be
an ultrafilter on A which extends the tail filter on A. Then cf(

∏
A/D) ≥ κ+.

Proof. To begin, let ⟨µν : ν < κ⟩ be the increasing enumeration of A,
and let ⟨ζi : i < κ⟩ enumerate a club C ⊆ κ with C ∩ A = ∅. By relabeling
if necessary, we take ζ0 = 0.

Suppose for a contradiction that cf(
∏
A/D) ≤ κ; then the cofinality must

equal exactly κ since D extends the tail filter on A. Let f⃗ = ⟨fα : α < κ⟩
be a sequence of functions in

∏
A which is increasing and cofinal modulo D.

We obtain our contradiction by showing that f⃗ is bounded in
∏
A modulo

the tail filter on A, and hence modulo D.
Given ν < κ (corresponding to µν), let i < κ so that ν ∈ [ζi, ζi+1) (such

an i exists since C is club and ζ0 = 0). The following observation, though
simple, is crucial: for each i < κ, µζi > ζi.

Indeed, µζi ≥ ζi since the enumeration of A is increasing. But ζi ∈ C and
µζi ∈ A ⊆ κ \ C, so µζi > ζi. Therefore µν is also strictly above ζi, and so

sup {fα(µν) : α ≤ ζi}
is below µν . We let g(µν) < µν be above this sup; g is then a member of

∏
A.
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We finish the proof by showing that g bounds each of the fξ on a tail. To
this end, fix α < κ, and let i < κ be such that α ≤ ζi. We claim that for all
ν ≥ ζi, g(µν) > fα(µν). Fix ν ≥ ζi, and let j ≥ i be such that ν ∈ [ζj , ζj+1).
Then

g(µν) > sup {fβ(µν) : β ≤ ζj} ≥ fα(µν),

where the last inequality follows since α ≤ ζi ≤ ζj .

Theorem 3.5. Let V be a model of ZFC in which 2µ = µ+ for all limit
cardinals µ and in which there are no Mahlo cardinals. Then V satisfies
spec(A) ⊆ pcf(A) ∪ lim(A) for any set A of regular cardinals.

Consequently, if 2µ = µ+ for all singular µ and if there are no regular
limit cardinals, then spec(A) = pcf(A) for all A.

Proof. Fix such a V (for example, work in L up to the first λ which is
Mahlo in L, if such a λ exists, and otherwise work in all of L). Let A be a
set of regular cardinals; we will prove the result by induction on the order
type of A.

We first dispense with the case when max(A) exists. Let λ := max(A).
Then, applying Lemma 2.9 and Fact 2.11, as well as our inductive assump-
tion, we get

spec(A) = spec((A ∩ λ) ∪ {λ}) = spec(A ∩ λ) ∪ spec({λ})︸ ︷︷ ︸
={λ}

⊆ pcf(A ∩ λ) ∪ lim(A ∩ λ) ∪ {λ}
= pcf(A ∩ λ) ∪ pcf({λ}) ∪ lim(A ∩ λ)
= pcf(A) ∪ lim(A ∩ λ) ⊆ pcf(A) ∪ lim(A).

Now we suppose that A does not have a max. Let µ := sup(A), and fix
κ ∈ spec(A). We have a few cases depending on κ.

First suppose that κ < µ. Then by Lemma 3.3, κ ∈ spec(A ∩ (κ + 1)).
Since the order type of Ā := A∩ (κ+1) is less than the order type of A, we
apply the induction hypothesis to conclude that

κ ∈ spec(Ā) ⊆ pcf(Ā) ∪ lim(Ā) ⊆ pcf(A) ∪ lim(A).

Now suppose that κ ≥ µ. If κ = µ (and in particular µ is a regular limit
cardinal), then because A is unbounded in µ, we have κ = µ ∈ lim(A).

The final case is that κ > µ (here µ may be either regular or singular).
Since µ is a limit cardinal, our cardinal arithmetic assumption implies that∏
A has size µµ = µ+. Hence no cardinal greater than µ+ is in spec(A) or

in pcf(A).
To finish the proof in this final case, we will argue that µ+ ∈ pcf(A). To-

wards this end, let D be an ultrafilter on A which extends the tail filter on A.
Then cf(

∏
A/D) ≥ µ = sup(A). If µ is singular, then the regular cardinal

cf(
∏
A/D) is greater than µ. On the other hand, if µ is regular, then µ is not
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a Mahlo cardinal by assumption. This in turn, with the help of Lemma 3.4,
implies that cf(

∏
A/D) > µ. Thus in either case on µ, cf(

∏
A/D) > µ. This

cofinality must be exactly µ+, however, since
∏
A has size µ+.

For the “consequently” part of the theorem, recall that spec(A) consists,
by definition, of regular cardinals. Thus if there are no regular limit cardinals,
lim(A) contains no regular cardinals, and this implies spec(A) ⊆ pcf(A). By
Lemma 2.12, we conclude that pcf(A) = spec(A).

Thus Question 1.1 has a consistent positive answer.

4. Small large cardinals and the Tukey spectrum. In this section,
we prove some results showing the relationship between certain small large
cardinals (Mahlo and weakly compact) and the Tukey spectrum. The first
of them gives a sufficient condition for including a regular limit cardinal
in the Tukey spectrum. After this, we prove Theorem 4.2 which gives a
sufficient condition for excluding a cardinal from spec(A). After the proof of
Theorem 4.2, we comment on applications.

Proposition 4.1. Suppose that κ is a Mahlo cardinal and that A ⊆ κ is
any stationary set of regular cardinals. Then κ ∈ spec(A).

Proof. We show that functions which are constant on a tail witness the
result. For each α < κ, let fα be the function in

∏
A which takes value 0 on

all a ∈ A with a ≤ α, and which takes value α on all a ∈ A with α < a. We
claim that the sequence ⟨fα : α < κ⟩ enumerates a set which witnesses that
κ ∈ spec(A).

Towards this end, let X ∈ [κ]κ, and we will show that ⟨fα : α ∈ X⟩
is unbounded in (

∏
A,<). Since A is stationary, we may find some a ∈

A∩ lim(X). Then fα(a) = α for all α ∈ X ∩ a. Since a is a limit point of X,
it follows that {fα(a) : α ∈ X∩a} is cofinal in a. This completes the proof.

The next result shows that we can use weak compactness to exclude a
regular limit κ from spec(A), for certain A.

Theorem 4.2. Suppose that κ is weakly compact and that A ⊆ κ is a
non-stationary set of regular cardinals which is unbounded in κ. Then κ /∈
spec(A).

Therefore, if κ is weakly compact and A ⊆ κ is an unbounded set of
regular cardinals, κ ∈ spec(A) iff A is stationary.

Proof. Let C ⊆ κ be a club with C ∩A = ∅. Enumerate C in increasing
order as ⟨ζi : i < κ⟩, where we assume ζ0 = 0. Also, enumerateA in increasing
order as ⟨µi : i < κ⟩. As in the proof of Lemma 3.4, for each i < κ we have
µζi > ζi.

Next, let ⟨fα : α < κ⟩ be an enumeration of a set F of κ-many functions
in

∏
A, and we will show that F does not witness that κ ∈ spec(A). Fix a
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κ-model M (see Definition 2.20) which contains A, C, and ⟨fα : α < κ⟩ as
elements. By the weak compactness of κ, let U be an M -normal ultrafilter
on P(κ) ∩M .

Our strategy is to use U to successively freeze out longer and longer
initial segments of many functions on the sequence ⟨fα : α < κ⟩. We will
then bound their tails using the non-stationarity of A.

For each i < κ, the product ∏
ν∈[ζi,ζi+1)

µν

is a member of M , and hence a subset of M . Since κ is strongly inaccessible,
this product has size < κ. Applying the fact that U is a κ-complete ultrafilter
on P(κ) ∩M , we may find a function φi in

∏
ν∈[ζi,ζi+1)

µν such that

Zi := {β < κ : fβ↾{µν : ν ∈ [ζi, ζi+1)} = φi} ∈ U .
Next, define an increasing sequence ⟨βj : j < κ⟩ below κ so that for all j < κ,

βj ∈
⋂
i<j

Zi.

This also uses the completeness of U to see that for each j < κ,
⋂

i<j Zi is
in U and has size κ.

As a result of this freezing out, the following holds: for a fixed i < κ, and
all j > i, we have βj ∈ Zi. Hence, for all ν ∈ [ζi, ζi+1),

fβj
(µν) = φi(µν).

Now consider an i < κ and ν ∈ [ζi, ζi+1). Let

R(ν) := {fβj
(µν) : j < κ},

i.e., all values of all of the fβj
on the column µν ∈ A. By applying the

argument in the previous paragraph, we conclude that R(ν) in fact equals

{fβj
(µν) : j ≤ i} ∪ {fβj

(µν) : j > i} = {fβj
(µν) : j ≤ i} ∪ {φi(µν)}.

Now fix an arbitrary ν < κ. Since C is a club and ζ0 = 0, there is an i
such that ν ∈ [ζi, ζi+1). We claim that R(ν) = {fβj

(µν) : j ≤ i} ∪ {φi(µν)}
has size less than µν . If i is finite, then R(ν) is finite, and hence has size
smaller than µν (which is, after all, an infinite cardinal). On the other hand,
if i is infinite, then

|R(ν)| ≤ |i| ≤ i ≤ ζi < µζi ≤ µν .

Consequently, for each ν < κ, R(ν) is bounded in µν , as µν is regular.
But by definition of R(ν), this means that for all ν < κ, {fβj

(µν) : j < κ}
is bounded in µν . Thus {fβj

: j < κ} enumerates a set of κ-many functions
from F which is bounded in (

∏
A,<). Since F was arbitrary, this shows that

κ /∈ spec(A).



12 T. Gilton

To finish, observe that the remaining direction in the final statement of
the theorem follows from Proposition 4.1 and the fact that κ is Mahlo.

Note that the converse of the above theorem may fail, since a regular
limit cardinal which is not weakly compact may also fail to be in spec(A):

Corollary 4.3. Suppose that κ is weakly compact and that A ⊆ κ is a
non-stationary set of regular cardinals unbounded in κ. Let P := Add(ω, κ),
the poset to add κ-many Cohen subsets of ω. Then P forces that κ /∈ spec(A).

Proof. Let ⟨ḟα : α < κ⟩ be a sequence of P-names for elements of
∏
A.

We will find an X ∈ [κ]κ in V such that P forces that ⟨ḟα : α ∈ X⟩ is
bounded.

Indeed, using the c.c.c. of P, for each α < κ, we may find a function
φα ∈

∏
A such that P ⊩ (∀a ∈ A) [ḟα(a) < φα(a)]. Namely, let φα(a) be

above the sup of the countably many γ ∈ a so that γ is forced to be the
value of ḟα(a) by some condition in P.

By Theorem 4.2, let X ∈ [κ]κ so that ⟨φα : α ∈ X⟩ is bounded in the
product (

∏
A,<), say with h as a bound. Then P forces that for each α ∈ X,

ḟα is pointwise below h.

We conclude this section with a discussion of a promising suggestion of
James Cummings about separating pcf(A) and spec(A). Given that pcf(A)
⊆ spec(A) always holds, we would like to create a forcing extension in which,
for some A, there is a cardinal κ ∈ spec(A) \ pcf(A).

The strategy is to start with a cardinal κ which is at least Mahlo. Then
let A = {µ+ : µ < κ} and attempt to force the existence of a set F of κ-many
functions in

∏
A which witnesses that κ ∈ spec(A). This strategy appears

promising due to the next observation.

Lemma 4.4. Suppose that κ is strongly inaccessible and that A ⊆ κ is a
non-stationary set of regular cardinals unbounded in κ. Then κ /∈ pcf(A).

Proof. If D is an ultrafilter on A that concentrates on a bounded sub-
set of A, then the strong inaccessibility of κ implies that cf(

∏
A/D) < κ.

On the other hand, if D extends the tail filter on κ, then by Lemma 3.4,
cf(

∏
A/D) > κ.

While the above strategy is natural, problems remain. First, natural
Easton-style forcings to add a witness to κ ∈ spec(A) seem either to fail to
add such a witness, or to change the Mahlo κ into a weakly (non-strongly)
inaccessible cardinal, i.e., they increase the continuum function below κ to
take values at or above κ. Thus the crucial assumption of Lemma 4.4 fails. Or
phrased differently, ultrafilters which concentrate on bounded subsets may
give rise to reduced products with very high cofinality.
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Moreover, Theorem 4.2 provides another obstacle: if a forcing P places κ
inside spec(A) \ pcf(A) for some A which is non-stationary and unbounded
in κ, then one of two things needs to happen. Either κ starts off as non-weakly
compact (and this assumption plays a role in the argument) or P must ensure
that κ loses its weak compactness.

5. The strong part of the Tukey spectrum. In this section we in-
troduce the idea of the strong part of the Tukey spectrum, and then we will
show how this idea can be used in place of scales to lift the property of not
being a Jónsson cardinal. Recall the notation ub(F) from Definition 2.8.

First we make a simple observation about having infinitely many un-
bounded coordinates.

Lemma 5.1. Let A be a set of regular cardinals without a max, and let
κ ∈ spec(A) with κ ≥ sup(A). Let F be any witness that κ ∈ spec(A). Then
for all F0 ∈ [F ]κ, ub(F0) is infinite.

Proof. Suppose otherwise, with F0 as a counterexample. Then since
ub(F0) is finite and has a max below κ,

∏
ub(F0) has size below κ. Choose

an F1 ∈ [F0]
κ so that the function F1 ∋ f 7→ f↾

∏
ub(F0) is constant, say

with value f̄ . Then we can bound all of F1 in the entire product
∏
A using

f̄ on the coordinates in ub(F0) ⊇ ub(F1).

Of course, ub(F) can very well be finite, or even a singleton, for instance,
if κ is a member of A.

We want to isolate cases in which there are plenty of unbounded coordi-
nates. This leads to the next definition.

Definition 5.2. Suppose that A is a set of regular cardinals. The strong
part of the Tukey spectrum of A, denoted spec∗(A), consists of all regular λ
satisfying the following: there is a set F ⊆

∏
A of size λ such that for every

F0 ∈ [F ]λ, ub(F0) is unbounded in sup(A).

Thus λ ∈ spec∗(A) iff there is a witness F to λ ∈ spec(A) with the addi-
tional property that every λ-sized subset has unboundedly many unbounded
coordinates.

Observe that if A is a set of regular cardinals without a max, then
spec∗(A) ∩ sup(A) = ∅. Indeed, if λ < sup(A) and F ⊆

∏
A has size λ,

then we can bound F on all coordinates in A \ λ+.
Under cardinal arithmetic assumptions, it is easy to see that every λ ∈

spec(A) \ sup(A) is in spec∗(A):

Lemma 5.3. Suppose that A is a set of regular cardinals with no max and
that sup(A) is a strong limit cardinal (regular or singular). Then spec(A) \
sup(A) ⊆ spec∗(A).
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Proof. Fix λ ∈ spec(A) at least as large as sup(A). It suffices to show
that if F is any witness that λ ∈ spec(A), then ub(F) is unbounded. Fix
δ ∈ A. Then the product

∏
(A∩(δ+1)) has size below sup(A). Thus there is

F0 ∈ [F ]λ such that the function taking f ∈ F0 to f↾(A∩(δ+1)) is constant
on F0. Since F witnesses that λ ∈ spec(A), ub(F0) must be non-empty. Let
δ∗ be the least element of ub(F0), and note that δ∗ > δ, since we froze out
the values of the functions in F0 on A ∩ (δ + 1).

We would now like to connect the strong part of the Tukey spectrum
with PCF theory. First we recall a few more definitions from PCF theory,
beginning with the following standard version of the notion of a scale:

Definition 5.4. Let µ be a singular cardinal, ⟨µi : i < cf(µ)⟩ an in-
creasing sequence of regular cardinals which is cofinal in µ, and I an ideal
on {µi : i < cf(µ)}. Let f⃗ = ⟨fν : ν < ρ⟩ be a sequence of functions in∏

i<cf(µ) µi. The tuple (µ⃗, f⃗ , I) is called a scale of length ρ modulo I if f⃗ is
increasing and cofinal in

∏
i<cf(µ) µi modulo I.

If I is just the ideal of bounded subsets of {µi : i < cf(µ)}, then we
simply say that (µ⃗, f⃗ ) is a scale of length ρ for µ.

We now connect scales with the strong part of the Tukey spectrum:

Lemma 5.5. Suppose that (µ⃗, f⃗ ) is a scale of length ρ, where ρ is a regular
cardinal. Then ρ is in spec∗(A), where A = {µi : i < cf(µ)}.

Proof. This follows since we are working modulo the ideal of bounded
subsets of A. Indeed, let F = {fα : α < ρ}, and we will show that F
witnesses the result. Note that if Z ∈ [ρ]ρ, then ⟨fα : α ∈ Z⟩ is also a scale.
But then ub({fα : α ∈ Z}) must be unbounded in sup(A), as otherwise we
contradict that ⟨fα : α ∈ Z⟩ is cofinal in

∏
A modulo the bounded ideal.

Now we examine one way in which spec∗(A) can play a traditional PCF-
theoretic role. We begin with some background: a remarkable phenomenon
in PCF theory is that scales of length µ+ (where µ is singular) can be
used to “lift” a property which holds at the µi to hold at µ+. For example,
Shelah proved that the failure of being a Jónsson cardinal lifts in this way;
we will discuss this in more detail in a moment. Other examples include [4,
Theorem 3.5] and a theorem of Todorčević about lifting the failure of certain
square bracket partition relations [33].

Here we include a very short review of the notion of a Jónsson cardinal,
referring the reader to [9] for more details.

Definition 5.6.

(1) An algebra is a structure A = ⟨A, fn⟩n<ω such that each fn is a finitary
function mapping A to A.
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(2) A Jónsson algebra is an algebra without a proper subalgebra of the same
cardinality.

(3) A cardinal λ is said to be a Jónsson cardinal if there does not exist a
Jónsson algebra of cardinality λ.

Jónsson cardinals can be characterized in terms of a coloring relation.

Fact 5.7. λ is a Jónsson cardinal iff for any F : [λ]<ω → λ, there exists
an H ∈ [λ]λ such that the range of F ↾[H]<ω is a proper subset of λ.

We use [λ] → [λ]<ω
λ to denote the coloring property from the previous

fact. We can also characterize this in terms of elementary submodels. The
next item is almost exactly [9, Lemma 5.6]; we have added a parameter to
the statement, which does not change the proof. In the statement of the
lemma, <χ denotes a wellorder of H(χ).

Lemma 5.8. The following two statements are equivalent:

(1) λ is a Jónsson cardinal.
(2) For all sufficiently large regular χ > λ, every cardinal κ with κ+ < λ,

and every parameter P ∈ H(χ), there is an M ≺ ⟨H(χ),∈, <χ, P ⟩ such
that

(a) {λ, κ} ∈M ;
(b) |M ∩ λ| = λ;
(c) λ ̸⊆M ;
(d) κ+ 1 ⊆M .

Shelah [28] has proven the following remarkable theorem:

Theorem 5.9 (Shelah). Suppose that µ is singular and that (µ⃗, f⃗ ) is a
scale (modulo the ideal of bounded sets) of length µ+. Additionally, suppose
that each µi carries a Jónsson algebra (i.e., is not a Jónsson cardinal). Then
µ+ carries a Jónsson algebra.

Here we show that it suffices to assume that µ+ is in the strong part of
the Tukey spectrum of A, provided the order type of A is not too high.

Theorem 5.10. Suppose that A is a set of regular cardinals with ot(A) <
µ := sup(A) such that every a ∈ A carries a Jónsson algebra, and suppose
that µ+ ∈ spec∗(A). Then µ+ carries a Jónsson algebra.

Proof. We will show that µ+ carries a Jónsson algebra by showing that
Lemma 5.8(2) is false.

Fix a large enough regular cardinal χ. Letting µ+, |ot(A)|, and A play
the respective roles of λ, κ, and P in (the negation of) Lemma 5.8(2), fix
an arbitrary M ≺ ⟨H(χ),∈, <χ, A⟩ so that µ+ ∈ M , |M ∩ µ+| = µ+, and
|ot(A)| + 1 ⊆ M . We will show that µ+ ⊆ M . Observe that A ⊆ M , since
M contains a bijection from |ot(A)| onto A, and since |ot(A)|+ 1 ⊆M .
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Applying the elementarity of M , we may find a set F ⊆
∏
A of functions

witnessing µ+ ∈ spec∗(A) with F ∈M . Using F , we will show that there are
unboundedly many a ∈ A such that |M ∩ a| = a. The upshot of this is that
for each such a, since a is not a Jónsson cardinal, a ⊆ M . Since there are
unboundedly many such a, we conclude that sup(A) = µ ⊆M . And finally,
since |M ∩ µ+| = µ+, we can conclude that µ+ ⊆M .

To show the existence of unboundedly many such a, let FM := F ∩M .
Since |M ∩ µ+| = µ+, we know that FM ∈ [F ]µ

+ . Since µ+ ∈ spec∗(A), the
set ub(FM ) is unbounded in A.

Now let a ∈ ub(FM ). Then for all f ∈ FM , f(a) ∈M , since f and a are
each members of M . Since {f(a) : f ∈ FM} is unbounded in a (by definition
of a being an unbounded coordinate) and a subset of M , we conclude that
M ∩ a has size a. This completes the proof.

We close this section by providing a bound on the strong part of the Tukey
spectrum. First, it follows almost immediately from the definitions that

sup(spec(A)) ≤ cf
(∏

A,<
)
.

Now let Jbd denote the ideal of bounded sets on A. Note that
∏
A/Jbd does

have a cofinality, but it need not have a true cofinality (i.e., a linearly ordered,
cofinal subset).

Proposition 5.11. Let A be a set of regular cardinals, and let λ ∈
spec(A). Then either λ ≤ cf(

∏
A/Jbd) or λ ∈ spec(Ā) for some proper

initial segment Ā of A. In particular (see Definition 5.2), if λ is in spec∗(A),
then λ ≤ cf(

∏
A/Jbd).

Proof. Let µ := cf(
∏
A/Jbd), and let ⟨fα : α < µ⟩ enumerate a set

of functions which is cofinal (but not necessarily increasing) in
∏
A/Jbd.

Suppose that λ > µ. Let ⟨hξ : ξ < λ⟩ enumerate a set F of λ-many functions
witnessing that λ ∈ spec(A). Since λ is regular and λ > µ, fix α < µ and
X ∈ [λ]λ so that for all ξ ∈ X, hξ <Jbd fα. Now freeze out the tail: let
Y ∈ [X]λ and ā ∈ A so that for all ξ ∈ Y and all a ∈ A \ Ā,

hξ(a) < fα(a).

Thus F0 := {hξ : ξ ∈ Y } is bounded on every coordinate in A \ ā. Since
F0 ∈ [F ]λ, F0 is unbounded in (

∏
A,<). From this, one can argue that

{fξ↾(A ∩ ā) : ξ ∈ Y } has size λ and witnesses that λ ∈ spec(A ∩ ā).
For the “in particular” part, note that if λ > cf(

∏
A/Jbd), then the

previous argument shows that there is an F0 ∈ [F ]λ such that ub(F0) is
bounded in A.

6. Questions. Here we record a few questions which we find interesting.
The first question restates Question 1.1, the main one driving this line of
research:
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Question 6.1. Does ZFC prove that for all sets A of regular cardinals,
pcf(A) = spec(A)?

A restricted version of Question 6.1, to be read in light of Theorem 3.2,
is this:

Question 6.2. Does ZFC prove that for all progressive sets A of regular
cardinals, pcf(A) = spec(A)?

One can also ask about the relationship between spec∗(A) and pcf(A),
as in the next two questions:

Question 6.3. Does ZFC prove that spec∗(A) ⊆ pcf(A)?

Question 6.4. Does ZFC prove that if A is a set of regular cardinals
without a max, then spec(A) \ sup(A) ⊆ spec∗(A)?

The following question should be read in light of Theorem 3.5:

Question 6.5. Does ZFC prove that for all sets A of regular cardinals,

spec(A) ⊆ pcf(A) ∪ lim(pcf(A))?

The next question connects to Theorem 4.2 and Corollary 4.3:

Question 6.6. Is a weakly compact necessary to get a model in which κ
is a regular limit, A ⊆ κ is unbounded and non-stationary, and κ /∈ spec(A)?

Theorem 5.10 showed that the strong part of the Tukey spectrum can
be used in place of PCF-theoretic scales to lift the property of not being a
Jónsson cardinal. Where else, if at all, can spec∗(A) be used in this way? In
particular, we ask whether the strong part of the Tukey spectrum is enough
to generalize a classic result of Todorčević [33] (see the treatments in [3]
and [9]).

Question 6.7. Suppose that A is a set of regular cardinals cofinal in
a singular µ such that every κ ∈ A fails to satisfy κ → [κ]2κ. Suppose that
µ+ ∈ spec∗(A). Does this imply that µ+ fails to satisfy µ+ → [µ+]2µ+?
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