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GEBELEIN INEQUALITY IN A HILBERT SPACE

Abstract. We present the Gebelein inequality in a separable real Hilbert
space. As an application we prove the Strong Law of Large Numbers for
Gaussian functionals with values in a separable real Banach space.

1. Introduction. Let µ be a standard Gaussian measure on the real
line R and |ρ| ≤ 1. We use L2(µ) for L2(R,B(R), µ), where B(R) denotes the
Borel σ-algebra of subsets of R. In L2(µ) we have the inner product

⟨f, g⟩µ =
�

R

f(x)g(x) dµ(x), f, g ∈ L2(µ),

and the norm

∥f∥2 =
( �

R

f2(x) dµ(x)
)1/2

, f ∈ L2(µ).

We recall the Hermite polynomials

H0 ≡ 1, Hn(x) = (−1)n exp(x2/2)
dn

dxn
(exp(−x2/2)), x ∈ R, n ≥ 1,

and their generating function

(1.1) w(t, x) := exp(tx− t2/2) =

∞∑
n=0

tn

n!
Hn(x), t, x ∈ R.

We put hn := Hn/
√
n!, n ∈ N0 := N ∪ {0}. It is known that the collection

{hn}n∈N0 forms an orthonormal basis in L2(µ).
The Ornstein–Uhlenbeck operator

Pρ : L2(µ) → L2(µ)
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is defined by

(Pρf)(y) =
�

R

f(ρy +
√

1− ρ2 z) dµ(z), y ∈ R, f ∈ L2(µ).

The Ornstein–Uhlenbeck operator has the following probabilistic interpreta-
tion. Let random variables X and Y have the Gaussian distribution µ and
let cov(X,Y ) = E(XY ) = ρ. Then for f, g ∈ L2(µ), we have

(1.2) E[f(X)g(Y )] = E[E(f(X) |Y )g(Y )] = E[h(Y )g(Y )],

where h(y) = E(f(X) |Y = y), y ∈ R. On the other hand, if Z is a Gaussian
random variable with the standard distribution and independent of Y , then

L(U, Y ) = L(X,Y ),

where U = ρY +
√
1− ρ2 Z and L(X,Y ) denotes the distribution of the

random vector (X,Y ). Thus

(1.3) E[f(X)g(Y )] = E[f(U)g(Y )] = E[E(f(U) |Y )g(Y )]

= E[E(f(ρY +
√

1− ρ2 Z) |Y )g(Y )] = E[Pρf(Y )g(Y )].

By comparing (1.2) and (1.3) we see that (Pρf)(Y ) is a version of the
conditional expectation E[f(X) |Y ]. It is easy to see that Pρ is symmet-
ric (⟨Pρf, g⟩µ = ⟨f, Pρg⟩µ, f, g ∈ L2(µ)) and a linear contraction in L2(µ). It
is clear that Pρ is an isometric isomorphism in L2(µ) when |ρ| = 1. Moreover,
the Hermite polynomials Hn, n ∈ N0, are its eigenvectors, that is,

PρHn = ρnHn, n ∈ N0,

and Pρ has the following expansion in the Hermite basis:

Pρf =
∞∑
n=0

ρn⟨f, hn⟩µhn, f ∈ L2(µ).

We recall the Gebelein inequality.

Theorem 1.1 ([G], [DK], [B]). If f ∈ L2(µ), ⟨f, 1⟩µ = 0 and |ρ| ≤ 1,
then

∥Pρf∥2 ≤ |ρ| ∥f∥2,
with equality if and only if f is a linear function.

Using the Gebelein inequality, one can prove the Strong Law of Large
Numbers for Gaussian functionals.

Theorem 1.2 ([BC]). Let {Xi}i≥1 be a Gaussian sequence of standard
random variables such that

sup
i≥1

∞∑
j=1

|ρij | < ∞,
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where ρij = E(XiXj), i, j ≥ 1. Then for f ∈ L1(µ) we have
f(X1) + · · ·+ f(Xn)

n
−−−→
n→∞

�

R

f dµ a.s.

Note that for a centered Gaussian vector V = (X,Y ) with covariance
matrix

cov(V) =

[
σ2 σ2ρ

σ2ρ σ2

]
,

where σ2 = EX2 = EY 2 and ρ is a correlation coefficient of V, we can also
define the Ornstein–Uhlenbeck operator. Namely, for f ∈ L2(µσ), where µσ

is the distribution of X, we put

(Pρf)(y) =
�

R

f(ρy +
√
1− ρ2 z) dµσ(z), y ∈ R.

Now, the orthogonal Hermite polynomials have the form

Hσ,n(x) := Hn(x/σ), x ∈ R,
and if normalized in L2(µσ),

hσ,n(x) := Hσ,n(x)/
√
n!, x ∈ R.

The orthonormal system {hσ,n}n≥0 is a basis in L2(µσ) and

Pρhσ,n = ρnhσ,n, n ≥ 0.

Moreover, it is easy to check that in this case the Gebelein inequality has
the same form as in Theorem 1.1. This observation concerning the random
vector V shows that we can extend our considerations about the Gebelein
inequality and the Ornstein–Uhlenbeck operator to the case of a Hilbert
space.

2. Gaussian measures on the Cartesian product of Hilbert spaces.
Let H be a fixed (infinite-dimensional) real separable Hilbert space with
inner product ⟨·, ·⟩ and norm ∥ · ∥. We denote by L(H) := L(H,H) the
Banach algebra of all continuous linear operators from H into H. It is well
known that the Cartesian product H × H is also a real separable Hilbert
space with inner product

⟨x, y⟩H×H := ⟨x1, y1⟩+ ⟨x2, y2⟩,
where x = (x1, x2) ∈ H ×H and y = (y1, y2) ∈ H ×H. Thus the norm of
H ×H is equal to

∥x∥H×H :=
√

∥x1∥2 + ∥x2∥2, x = (x1, x2) ∈ H ×H.

It is known that if a system {en}n≥1 is an orthonormal basis in H, then the
system {(en, 0)}n≥1 ∪ {(0, en)}n≥1 is an orthonormal basis in H ×H.
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Let B ∈ L(H ×H). Then for x, y ∈ H we have

B(x, y) = (B1(x, y), B2(x, y)),

where B1, B2 ∈ L(H ×H,H). Note that for x, y ∈ H,

B1(x, y) = B1(x, 0) +B1(0, y),

B2(x, y) = B2(x, 0) +B2(0, y).

Hence we can introduce operators Bij ∈ L(H), i, j = 1, 2, as follows:

B11(x) = B1(x, 0), B12(y) = B1(0, y), x, y ∈ H,

B21(x) = B2(x, 0), B22(y) = B2(0, y), x, y ∈ H.

and we have

B1(x, y) = B11(x) +B12(y), x, y ∈ H,

B2(x, y) = B21(x) +B22(y), x, y ∈ H.

Therefore, we can represent the operator B in matrix form:

B(x, y) =

[
B11 B12

B21 B22

][
x

y

]
, (x, y) ∈ H ×H,

and briefly

B =

[
B11 B12

B21 B22

]
.

We denote by B(H) the Borel σ-algebra of H and by µQ a fixed cen-
tered Gaussian measure on (H,B(H)) with covariance operator Q such that
KerQ = {0} (then supp(µQ) = H). It is well known that there exists a com-
plete orthonormal basis {en}n≥1 on H and a sequence {λn}n≥1 of positive
numbers such that

Q(en) = λnen, n ∈ N, and
∞∑
n=1

λn < ∞.

Without loss of generality we may and will assume that

λ1 = · · · = λd1 > λd1+1 = · · · = λd2 > λd2+1 = · · · .
Then for each i ≥ 1 we have

di − di−1 = dim[Ker(λdiI −Q)], d0 := 0.

We recall that the Cameron–Martin space Q1/2(H) ⊂ H can be defined by

Q1/2(H) =
{
y ∈ H :

∞∑
n=1

⟨y, en⟩2/λn < ∞
}
.

Let us consider the mapping

W : Q1/2(H) → L2(H,µQ), Q1/2(H) ∋ y 7→ Wy ∈ L2(H,µQ),
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where Wy(x) = ⟨x,Q−1/2y⟩ for x ∈ H. If y1, y2 ∈ Q1/2(H) then�

H

Wy1Wy2 dµQ = ⟨QQ−1/2y1, Q
−1/2y2⟩ = ⟨y1, y2⟩.

Hence W is an isometry. Since Q1/2(H) is dense in H, the mapping W can be
uniquely extended to H. The operator W is called the white noise mapping.
Note that for fixed y ∈ H the random variable Wy is a centered Gaussian
random variable on the probability space (H,B(H), µQ) with variance ∥y∥2.
Moreover, if y =

∑∞
n=1⟨y, en⟩en, then

(2.4) Wy =
∞∑
n=1

⟨y, en⟩Wen =
∞∑
n=1

⟨y, en⟩
⟨·, en⟩√

λn

and for S ∈ L(H),

WSy =

∞∑
n=1

⟨Sy, en⟩Wen =

∞∑
n=1

⟨y, en⟩WSen in L2(µQ).

Let B ∈ L(H ×H). We say that B is positive (written B ≥ 0) if

⟨B(x, y), (x, y)⟩H×H ≥ 0 for all x, y ∈ H.

Let Q be the covariance operator as above and let R ∈ L(H). Assume
that an operator B ∈ L(H ×H) has the form

(2.5) B =

[
Q QR

R∗Q Q

]
,

where R∗ is the adjoint operator of R. We see at once that B is symmetric
(i.e. B = B∗).

Lemma 2.1. An operator B ∈ L(H ×H) of the form (2.5) is positive if
and only if

(2.6) ∥Q1/2RQ−1/2∥Q1/2(H) ≤ 1,

where ∥ · ∥Q1/2(H) denotes the norm of H restricted to the Cameron–Martin
space Q1/2(H). Moreover, if QR = RQ then B is positive if and only if
∥R∥ ≤ 1.

Proof. Let (x, y) ∈ H ×H. Then

⟨B(x, y), (x, y)⟩H×H = ⟨(Qx+QRy,R∗Qx+Qy), (x, y)⟩H×H

= ⟨Qx, x⟩+ ⟨QRy, x⟩+ ⟨R∗Qx, y⟩+ ⟨Qy, y⟩
= ⟨Qx, x⟩+ 2⟨QRy, x⟩+ ⟨Qy, y⟩
= ∥Q1/2x∥2 + 2⟨Q1/2RQ−1/2Q1/2y,Q1/2x⟩+ ∥Q1/2y∥2

= ∥u∥2 + 2⟨Q1/2RQ−1/2v, u⟩+ ∥v∥2,
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where u := Q1/2x and v := Q1/2y. Hence B is positive if and only if

(2.7) ∥u∥2 + 2⟨Q1/2RQ−1/2v, u⟩+ ∥v∥2 ≥ 0 for all u, v ∈ Q1/2(H).

Let us assume that (2.7) is fullfilled. Then

(2.8) ∥u∥2 + ∥v∥2 ≥ −2⟨Q1/2RQ−1/2v, u⟩, u, v ∈ Q1/2(H).

Putting −u instead of u in (2.8), we get

(2.9) ∥u∥2 + ∥v∥2 ≥ 2⟨Q1/2RQ−1/2v, u⟩, u, v ∈ Q1/2(H).

From (2.8) and (2.9) we obtain

∥u∥2 + ∥v∥2 ≥ 2|⟨Q1/2RQ−1/2v, u⟩|, u, v ∈ Q1/2(H).

Taking the sup over all u, v ∈ Q1/2(H) such that ∥u∥ = ∥v∥ = 1 we obtain
(2.6). Conversely, assume that (2.6) is fullfilled. Then

|⟨Q1/2RQ−1/2v, u⟩| ≤ ∥v∥ ∥u∥, u, v ∈ Q1/2(H).

Hence
⟨Q1/2RQ−1/2v, u⟩ ≥ −∥v∥ ∥u∥, u, v ∈ Q1/2(H).

Therefore

∥u∥2+2⟨Q1/2RQ−1/2v, u⟩+∥v∥2 ≥ ∥u∥2−2∥u∥ ∥v∥+∥v∥2 = (∥u∥−∥v∥)2 ≥ 0,

where u, v ∈ Q1/2(H). From (2.7) it follows that B is positive. The second
part of the lemma follows from the first part and from the density of the
Cameron–Martin Q1/2(H) space in H.

An operator T ∈ L(H) is said to be nuclear if there exist two sequences
{hi}i≥1, {gi}i≥1 ⊂ H such that

∑∞
i=1 ∥hi∥ ∥gi∥ < ∞ and T has the represen-

tation

Tx =

∞∑
i=1

⟨x, hi⟩gi, x ∈ H.

For a nuclear operator T , we can define its trace by tr(T ) =
∑∞

i=1⟨Tfi, fi⟩,
where {fi}i≥1 is an othonormal basis of H. It is known that tr(T ) is a well-
defined number, independent of the choice of {fi}i≥1. Moreover, a symmetric
positive operator T ∈ L(H) is nuclear if and only if for some (or each)
orthonormal basis {fi}i≥1 of H we have

∑∞
i=1⟨Tfi, fi⟩ < ∞.

Now, we are going to show that the operator B ∈ L(H ×H) of the form
(2.5) is under certain assumptions the covariance operator of some centered
Gaussian measure on (H ×H,B(H ×H)).

Theorem 2.2. Let Q be the covariance operator as above and R ∈ L(H)
be such that ∥R∥ ≤ 1 and RQ = QR. Then the operator B ∈ L(H ×H) of
the form (2.5) is the covariance operator of some centered Gaussian measure
on (H ×H,B(H ×H)).
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Proof. The symmetry of B is obvious. Lemma 2.1 implies positivity. An
easy computation shows that B has a finite trace. Then the conclusion follows
from the Mourier theorem (see e.g. [VTC]).

3. The Ornstein–Uhlenbeck operator on a Hilbert space. Let
(Ω,F , P ) be a fixed probability space and let (X,Y ) : Ω → H × H be a
centered Gaussian vector with covariance operator B of the form (2.5), where
QR = RQ and ∥R∥ ≤ 1. By definition of the covariance operator of (X,Y ),
we have

Q(x) =
�

Ω

X⟨X,x⟩ dP =
�

Ω

Y ⟨Y, x⟩ dP,

(QR)(x) =
�

Ω

X⟨Y, x⟩ dP,

(R∗Q)(x) =
�

Ω

Y ⟨X,x⟩ dP,

where x ∈ H and the above integrals are in the Bochner sense. Let Z :
Ω → H be a centered Gaussian vector with covariance operator Q and
independent of the random vector Y . Let us denote

U = RY +
√
I −RR∗Z,

where I is the identity operator on H. Note that I − RR∗ is a symmetric
and positive operator.

Now, we determine the covariance operator of the random vector (U, Y ).
For x ∈ H we have�

Ω

U⟨U, x⟩ dP =
�

Ω

(RY +
√
I −RR∗ Z)⟨RY +

√
I −RR∗ Z, x⟩ dP

=
�

Ω

RY ⟨RY, x⟩ dP +
�

Ω

RY ⟨
√
I −RR∗ Z, x⟩ dP

+
�

Ω

√
I −RR∗ Z⟨RY, x⟩ dP +

�

Ω

√
I −RR∗ Z⟨

√
I −RR∗ Z, x⟩ dP

=
�

Ω

RY ⟨RY, x⟩ dP +
�

Ω

√
I −RR∗ Z⟨

√
I −RR∗ Z, x⟩ dP

= RQR∗x+
√
I −RR∗Q

√
I −RR∗ x = Q(x).

Similarly, �

Ω

U⟨Y, x⟩ dP =
�

Ω

RY ⟨Y, x⟩ dP = RQ(x) = QR(x)

and �

Ω

Y ⟨U, x⟩ dP =
�

Ω

Y ⟨RY, x⟩ dP = QR∗(x) = R∗Q(x).
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Hence, we see that (X,Y ) and (U, Y ) have equal covariance operators.
This implies that L(X,Y ) = L(U, Y ). So, we can define the Ornstein–
Uhlenbeck operator PR : L2(µQ) → L2(µQ), where L2(µQ) is shorthand
for L2(H,B(H), µQ),

(PRf)(y) = E[f(X) |Y = y] = E[f(U) |Y = y]

=
�

H

f(Ry +
√
I −RR∗ z) dµQ(z), y ∈ H.

It is easy to see that PR is a contraction on L2(µQ). Let us point out that
we can define PR on Lp(µQ), p ≥ 1, and in this case PR is also a contraction.
The operator PR is symmetric if R is symmetric.

For a sequence n = {ni}i≥1 ⊂ N0 we define

|n| :=
∞∑
i=1

ni and n! :=
∞∏
i=1

ni!.

Let us introduce the sets

Λ := {n = {ni}i≥1 ∈ NN
0 : |n| < ∞},

Λr := {n = {ni}i≥1 ∈ Λ : ni = 0, i > r}, r ∈ N.

For n = {ni}i≥1 ∈ Λ we define Hermite polynomials on H by

Hn(x) =
∞∏
i=1

Hni(Wei(x)), x ∈ H,

and
hn(x) = Hn(x)/

√
n!, x ∈ H,

where {en}n≥1 is as above (i.e. {en}n≥1 is the basis of H composed of nor-
malized eigenvectors of the operator Q) and W is the white noise mapping.

Theorem 3.1 ([N]). The system {hn}n∈Λ is an orthonormal basis in
L2(µQ).

For any n ≥ 1 we will denote by Hn the closed linear subspace of L2(µQ)
generated by the random variables {Hn(Wy) : y ∈ H, ∥y∥ = 1}, and H0 will
be the set of constants. It is well known that the subspaces Hn and Hm are
orthogonal whenever n ̸= m. The subspace Hn, n ≥ 0, is called the Wiener
chaos of order n, and the set {hm : |m| = n, m ∈ Λ} is an orthonormal basis
in Hn (see e.g. [N]).

Theorem 3.2 ([N]). The space L2(µQ) can be decomposed into the infi-
nite orthogonal sum of the subspaces Hn, n ≥ 0, i.e.

L2(µQ) =
∞⊕
n=0

Hn.
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In the next assertion we determine a generating function of the Hermite
polynomials {hn}n∈Λ.

Lemma 3.3. For t ∈ H we have

(3.10) exp(Wt − ∥t∥2/2) =
∑
n∈Λ

tn

n!
Hn =

∑
n∈Λ

tn√
n!

hn,

where t =
∑

i≥1 tiei, ti = ⟨t, ei⟩, i ≥ 1, and tn =
∏

i≥1 t
ni
i with the convention

00 := 1. The convergence in (3.10) is in the norm of L2(µQ).

Proof. We will show that the Fourier coefficients of ωt := exp(Wt −
∥t∥2/2) with respect to the basis {hn}n≥1 are equal to tn/

√
n!, n ∈ Λ. Let

n = {ni}i≥1 ∈ Λ. Assume that n = 0 := (0, 0, . . .). Then

⟨ωt, h0⟩µQ = ⟨ωt, 1⟩µQ =
�

H

exp(Wt − ∥t∥2/2) dµQ = 1.

Now, let n ̸= 0. Then there is m ∈ N such that ni = 0 for i > m. Using
(2.4), independence of {Wei}i≥1 and (1.1) we have

⟨ωt, hn⟩µQ =
�

H

exp(Wt − ∥t∥2/2)hn dµQ

=
1√
n!

exp(−∥t∥2/2)
�

H

exp(Wt)Hn dµQ

=
1√
n!

exp(−∥t∥2/2)
�

H

exp
( ∞∑
i=1

tiWei

) m∏
i=1

Hni(Wei) dµQ

=
1√
n!

exp(−∥t∥2/2)
�

H

exp
( ∞∑
i=m+1

tiWei

)
dµQ

×
�

H

exp
( m∑
i=1

tiWei

) m∏
i=1

Hni(Wei) dµQ

=
1√
n!

exp(−∥t∥2/2) exp
(
1

2

∞∑
i=m+1

⟨t, ei⟩2
)

×
m∏
i=1

�

H

exp(tiWei)Hni(Wei) dµQ

=
1√
n!

exp(−∥t∥2/2)
∞∏

i=m+1

exp(t2i /2)

×
m∏
i=1

�

H

exp(t2i /2)

∞∑
j=0

tji
j!
Hj(Wei)Hni(Wei) dµQ

=
1√
n!

m∏
i=1

tni
i

ni!
ni! =

1√
n!

tn.



158 M. Beśka

Corollary 3.4. Assume that t =
∑r

i=1 tiei ∈ H, r ∈ N. Then equality
(3.10) has the form

exp(Wt − ∥t∥2/2) =
∑
n∈Λr

tn

n!
Hn =

∑
n∈Λr

tn√
n!

hn.

4. Main result. The set of all infinite matrices (with countable rows
and columns) with elements from R (or N0) is denoted by M∞(R) (resp.
M∞(N0)). If M ∈ M∞(R), the jth column and ith row of M are de-
noted by Mj and M i respectively. From time to time we shall use the short-
hand M = [M i

j ]. As usual we identify rows and columns of M with vectors
from R∞. Let us introduce the set

MΛ(N0) = {K ∈ M∞(N0) : |K| ∈ Λ},
where |K| = (|K1|, |K2|, . . .). If K ∈ MΛ(N0), it is easy to see that K has
a finite number of non-zero columns and rows. Moreover, for K ∈ MΛ(N0)
and M ∈ M∞(R), we denote

K! :=
∞∏
i=1

Ki! =
∞∏

i,j=1

Ki
j ! and MK :=

∞∏
i=1

(M i)K
i
=

∞∏
i,j=1

(M i
j)

Ki
j ,

with the convention 00 = 1. From the above definitions we immediately get

Corollary 4.1. Let K ∈ MΛ(N0) and M ∈ M∞(R). Then

(i) K! = (KT )! and MKT
= (MT )K (here and hereafter, T stands for

transposition).
(ii) Let Ki

j ̸= 0 and M i
j = 0 for some i, j ∈ N. Then MK = 0.

(iii) If |K| = n and |KT | = m, then |n| = |m|.
Given M ∈ M∞(R) such that M i ∈ l1 for i ≥ 1, n ∈ Λ and t ∈ l∞. It is

easy to check that

(4.11) (Mt)n =
∑

K∈MΛ(N0)
|K|=n

n!

K!
MKt|K

T |.

Putting t = (1, 1, . . .) in (4.11) we obtain

(4.12) |M |n =
∑

K∈MΛ(N0)
|K|=n

n!

K!
MK ,

where |M | = (|M1|, |M2|, . . .). We now turn to the Ornstein–Uhlenbeck op-
erator PR, where R ∈ L(H), ∥R∥ ≤ 1, RQ = QR, where Q is as above. The
matrix of the operator R in the orthonormal basis {en}n≥1 (we recall that
{en}n≥1 is the basis of H composed of the normalized eigenvectors of the
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operator Q) is denoted by

R = [Ri
j ]i,j≥1 where Ri

j = ⟨Rej , ei⟩, i, j ≥ 1.

Since Q and R commute, the spaces Ker(λdiI − Q), i ∈ N, are invariant
under R, i.e.

R(Ker(λdiI −Q)) ⊂ Ker(λdiI −Q), i ∈ N.

This implies that R is a block diagonal matrix, where the dimensions of the
blocks are (di − di−1)× (di − di−1), i ∈ N.

Lemma 4.2. Let K ∈ MΛ(N0) and |K| = n, |KT | = m (obviously
n = {ni}i≥1,m = {mi}i≥1 ∈ Λ) and RK ̸= 0. Then for each r ∈ N we have
n ∈ Λdr if and only if m ∈ Λdr .

Proof. (⇒) Assume that n ∈ Λdr for some fixed r ∈ N. Then |Ki| = 0
for i > dr. Assume that there exists j0 > dr such that mj0 ̸= 0. It follows
that there exists 1 ≤ i0 ≤ dr such that Ki0

j0
̸= 0. Since Ri0

j0
= 0 we get

RK = 0. This contradicts our assumption.
(⇐) The proof is similar.

Note that if the matrix R satisfies the condition supi≥1

∑
j≥1 |Ri

j | < ∞,
then it defines an operator (denoted by the same letter) R : l∞ → l∞ with
the norm

∥R∥∞ = sup
i≥1

∑
j≥1

|Ri
j |.

Lemma 4.3. Let ∥R∥∞ ≤ 1 and ∥RT ∥∞ ≤ 1. Then ∥R∥ ≤ 1 (here ∥R∥
means the operator norm of R).

Proof. This is immediate from the Frobenius theorem (see [HLP]).

Theorem 4.4. Let m ∈ Λ. Then

(4.13) PR(Hm) =
∑

K∈MΛ(N0)

|KT |=m

m!

K!
RKT

H|K|.

Proof. Let us point out that the number of terms in the above sum is
finite. For any t ∈ H we define

ωt(x) := exp(−∥t∥2/2 +Wt(x)), x ∈ H.

Let t =
∑

k≥1 tkek, where tk = ⟨x, ek⟩, k ≥ 1. Hence and from (2.4) we
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obtain

(PRωt)(x) =
�

H

exp(−∥t∥2/2 +Wt(Rx+
√
I −RR∗ y)) dµQ(y)

= exp(−∥t∥2/2)
�

H

exp

( ∞∑
k=1

tk
⟨Rx+

√
I −RR∗ y, ek⟩√

λk

)
dµQ(y)

= exp(−∥t∥2/2) exp
( ∞∑

k=1

tk
⟨Rx, ek⟩√

λk

)

×
�

H

exp

( ∞∑
k=1

tk
⟨
√
I −RR∗y, ek⟩√

λk

)
dµQ(y).

Note that

⟨Rx, ek⟩√
λk

=
⟨x,R∗ek⟩√

λk
=

⟨x,Q−1/2Q1/2R∗ek⟩√
λk

= ⟨x,Q−1/2R∗ek⟩

and similarly

⟨
√
I −RR∗ y, ek⟩√

λk
= ⟨y,Q−1/2

√
I −RR∗ ek⟩.

It follows that

(PRωt)(x) = exp(−∥t∥2/2) exp
( ∞∑
k=1

tk⟨x,Q−1/2R∗ek⟩
)

×
�

H

exp
( ∞∑
k=1

tk⟨y,Q−1/2
√
I −RR∗ ek⟩

)
dµQ(y)

= exp(−∥t∥2/2) exp
( ∞∑
k=1

tkWR∗ek(x)
) �

H

exp
( ∞∑
k=1

tkW√
I−RR∗ ek

(y)
)
dµQ(y).

From (2.4) we conclude that

WR∗t =

∞∑
k=1

tkWR∗ek and W√
I−RR∗ t =

∞∑
k=1

tkW√
I−RR∗ ek

in L2(µQ).

Therefore

PR(ωt) = exp(−∥t∥2/2) exp(WR∗t)
�

H

exp[W√
I−RR∗ t(y)] dµQ(y)

= exp(−∥t∥2/2) exp(WR∗t) exp(∥
√
I −RR∗ t∥2/2)

= exp[WR∗t − ∥R∗t∥2/2] =
∑
n∈Λ

(R∗t)n

n!
Hn =

∑
n∈Λ

(RT t)n

n!
Hn.
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Let us fix m ∈ Λ. There exist s, j0 ∈ N such that m ∈ Λs and dj0−1 < s ≤ dj0 .
Let r := dj0 . Then for any t =

∑
1≤i≤r tiei we have

PR(ωt) =
∑
n∈Λr

(RT t)n

n!
Hn = lim

l→∞

∑
n∈Λr
|n|≤l

(RT t)n

n!
Hn in L2(µQ).

From (4.11) it follows that

PR(ωt) = lim
l→∞

∑
n∈Λr
|n|≤l

1

n!

∑
K∈MΛ(N0)

|K|=n

n!

K!
RKT

t|K
T |Hn

= lim
l→∞

∑
n∈Λr
|n|≤l

∑
K∈MΛ(N0)

|K|=n

RKT

K!
t|K

T |H|K|.

Note that the number of terms in the above two sums is finite. By Corollary
4.1(iii) and Lemma 4.2 we obtain

PR(ωt) = lim
l→∞

∑
n∈Λr
|n|≤l

∑
K∈MΛ(N0)

|KT |=n

RKT

K!
t|K

T |H|K|

= lim
l→∞

∑
n∈Λr
|n|≤l

tn

n!

∑
K∈MΛ(N0)

|KT |=n

n!

K!
RKT

H|K|=
∑
n∈Λr

tn

n!

∑
K∈MΛ(N0)

|KT |=n

n!

K!
RKT

H|K|.

On the other hand, from Corollary 3.4 and from the continuity of PR in
L2(µQ), we get

PR(ωt) =
∑
n∈Λr

tn

n!
PR(Hn).

By comparing this formula with the formula obtained above, we get (4.13),
and the proof is complete.

Corollary 4.5. For each n ∈ N0,

PR(Hn) ⊂ Hn.

For the Hermite polynomials orthonormal in L2(µQ), formula (4.13) takes
the form

(4.14) PR(hm) =
∑

K∈MΛ(N0)

|KT |=m

√
m!

√
|K|!

K!
RKT

h|K|.

The next theorem is a generalization of the Gebelein inequality to Hilbert
spaces.
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Theorem 4.6. Let Q ∈ L(H) be as above and let R ∈ L(H) satisfy
QR = RQ and ∥R∥∞ ≤ 1 and ∥RT ∥∞ ≤ 1. Then for f ∈ L2(µQ) such that
⟨f, 1⟩µQ = 0 we have

(4.15) ∥PR(f)∥2 ≤
√

∥R∥∞∥RT ∥∞ ∥f∥2.

Proof. Let us first see that by Lemma 4.3 the operator PR is prop-
erly defined. For ∥R∥∞ = 0, inequality (4.15) holds trivially. Assume that
∥R∥∞ ̸= 0. Let us consider the linear operator SR : L2(µQ) → L2(µQ)
defined as

SR(f) =
∑
n∈Λ

∑
K∈MΛ(N0)

|K|=n

⟨f, h|KT |⟩µQ

√
|KT |!

√
|K|!

K!
RKT

hn, f ∈ L2(µQ).

We shall prove that SR is continuous. Let f ∈ L2(µQ). Then

∥SR(f)∥22 =
�

H

∣∣∣∣∑
n∈Λ

∑
K∈MΛ(N0)

|K|=n

⟨f, h|KT |⟩µQ

√
|KT |!

√
|K|!

K!
RKT

hn

∣∣∣∣2 dµQ

=
∑
n∈Λ

( ∑
K∈MΛ(N0)

|K|=n

√
|KT |!

√
|K|!

K!
RKT ⟨f, h|KT |⟩µQ

)2

≤
∑
n∈Λ

( ∑
K∈MΛ(N0)

|K|=n

√
|KT |!

√
|K|!

K!
(R

T
)K |⟨f, h|KT |⟩µQ |

)2

,

where R = [|Ri
j |]i,j≥1 (here |Ri

j | means the absolute value of Ri
j). From what

has already been proved, from (4.12) and by the Jensen inequality we see that

∥SR(f)∥22 ≤
∑
n∈Λ

(|RT |n)2

n!

×
(

1

|RT |n
∑

K∈MΛ(N0)
|K|=n

n!

K!
(R

T
)K

√
|KT |! |⟨f, h|KT |⟩µQ |

)2

≤
∑
n∈Λ

(|RT |n)2

n!

1

|RT |n
∑

K∈MΛ(N0)
|K|=n

n!

K!
(R

T
)K |KT |! ⟨f, h|KT |⟩2µQ

=
∑
n∈Λ

|RT |n
∑

K∈MΛ(N0)
|K|=n

|KT |!
K!

(R
T
)K ⟨f, h|KT |⟩2µQ
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≤ ∥RT ∥∞
∑
n∈Λ

∑
K∈MΛ(N0)

|K|=n

|KT |!
K!

(R
T
)K ⟨f, h|KT |⟩2µQ

= ∥RT ∥∞
∑
n∈Λ

∑
K∈MΛ(N0)

|KT |=n

|KT |!
KT !

R
KT

⟨f, h|KT |⟩2µQ

= ∥RT ∥∞
∑
n∈Λ

∑
K∈MΛ(N0)

|K|=n

|K|!
K!

R
K ⟨f, hn⟩2µQ

.

Now, from (4.12) we conclude that

(4.16) ∥SR(f)∥22 ≤ ∥RT ∥∞
∑
n∈Λ

|R|n ⟨f, hn⟩2µQ
.

By assumption ∥RT ∥∞ ≤ 1 and |R|n ≤ 1 (|R|0 = 1). Therefore

∥SR(f)∥2 ≤ ∥f∥2, f ∈ L2(µQ),

i.e. SR is a continuous linear operator on L2(µQ). Moreover, PR(hm) =
SR(hm)for m ∈ Λ: indeed,

SR(hm) =
∑
n∈Λ

∑
K∈MΛ(N0)

|K|=n

⟨hm, h|KT |⟩µQ

√
|KT |!

√
|K|!

K!
RKT

hn

=
∑
n∈Λ

∑
K∈MΛ(N0)

|K|=n

|KT |=m

√
|KT |!

√
|K|!

K!
RKT

h|K|

=
∑

K∈MΛ(N0)

|KT |=m

√
|KT |!

√
|K|!

K!
RKT

h|K| = PR(hm).

Hence and from the continuity of PR and SR we conclude that SR = PR.
Finally, from (4.16) and by assumption ⟨f, 1⟩µQ = 0 we obtain

∥PR(f)∥22 = ∥SR(f)∥22 ≤ ∥RT ∥∞
∑
n∈Λ

|R|n ⟨f, hn⟩2µQ
≤ ∥RT ∥∞∥R∥∞∥f∥22,

where f ∈ L2(µQ) and the proof of (4.15) is complete.

Example. Assume that R is a diagonal matrix with main diagonal
{ρi}i≥1 (e.g. if R is symmetric then we can find an orthonormal basis of
H such that in this basis both operators Q and R have diagonal matri-
ces). It is clear that RT = R and (by the assumption of Theorem 4.6)
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∥ρ∥∞ = ∥R∥∞ ≤ 1, where ρ = (ρ1, ρ2, . . .). From (4.14) it follows that

PR(hn) =
∑

K∈MΛ(N0)

|KT |=n

√
n!
√
|K|!

K!
RKT

h|K|

=
∑

K∈MΛ(N0)

|K|=|KT |=n

n!

K!
RKhn = ρnhn, n ∈ Λ.

Thus

(4.17) PR(f) =
∑
n∈Λ

ρn⟨f, hn⟩hn, f ∈ L2(µQ),

and the Gebelein inequality has the form

(4.18) ∥PR(f)∥2 ≤ ∥ρ∥∞∥f∥2, f ∈ L2(µQ), ⟨f, 1⟩µQ = 0.

In order to examine the equality case in (4.18) we shall consider three cases,
the proof of which is an immediate consequence of (4.17).

(i) If |ρi| < ∥ρ∥∞, i ∈ N, then we have equality in (4.18) if and only if
f = 0.

(ii) If |ρi| = ∥ρ∥∞ = 1, i ∈ I ⊂ N, then we have equality in (4.18) if and
only if

f =
∑
n∈ΛI

tnhn,
∑
n∈ΛI

t2n < ∞,

where ΛI = {n = {ni}i≥1 ∈ Λ : ni ̸= 0 ⇒ i ∈ I}.
(iii) If |ρi| = ∥ρ∥∞ < 1, i ∈ I ⊂ N, then we have equality in (4.18) if and

only if
f =

∑
n∈ΛI1

tnhn,
∑

n∈ΛI1

t2n < ∞,

where ΛI1 = {n = {ni}i≥1 ∈ ΛI : |n| = 1}.
Assume additionally that H is finite-dimensional, say dim(H) = d. It is

clear that in this case

PR(hn) = ρnhn, n ∈ Nd
0, ρ = (ρ1, . . . , ρd).

It follows that

∥PR(f)∥2 ≤ ∥ρ∥max∥f∥2, f ∈ L2(µQ), ⟨f, 1⟩µQ = 0,

where ∥ρ∥max = max1≤i≤d |ρi|. It is well known that for every f ∈ L2(µQ)
there exists a Borel function g : Rd → R such that

f(x) = g(⟨x, e1⟩, . . . , ⟨x, ed⟩), x ∈ H,

and �

H

f2(x) dµQ(x) =
�

Rd

g2(t1, . . . td) dν(t1, . . . , td),



Gebelein inequality in a Hilbert space 165

where ν = µλ1 × · · · × µλd
. If we replace the condition ⟨f, 1⟩µQ = 0, f ∈

L2(µQ) with the stronger condition

(4.19)
�

R

g(t1, . . . , td) dµλi
(ti) = 0, i = 1, . . . , d,

then the Gebelein inequality has the form

(4.20) ∥PR(f)∥2 ≤ |ρ1|ε1 · · · |ρd|εd∥f∥2 = ρε∥f∥2, εi =

{
0 if ρi = 0,

1 if ρi ̸= 0,

for i = 1, . . . , d and ρ = (|ρ1|, . . . , |ρd|), ε = (ε1, . . . , εd). If H is infinite-
dimensional, then condition (4.19) has the form

(4.21)
�

R

g(t1, t2, . . .) dµλi
(ti) = 0, i = 1, 2, . . . ,

where g : R∞ → R is a Borel function such that

f(x) = g(⟨x, e1⟩, ⟨x, e2⟩, . . .), x ∈ H, f ∈ L2(µQ).

It is easy to check that (4.21) implies ⟨f, hn⟩µQ = 0, n ∈ Λ, i.e. f = 0. There-
fore in the infinite-dimensional case inequality (4.20) under the assumption
(4.21) has a trivial form.

5. Applications. Let Q ∈ L(H) be as above and let {Xn}n≥1 be a
centered Gaussian sequence of random vectors Xn : Ω → H, n ≥ 1, with
covariance operator Q and such that the covariance operator of (Xi, Xj),
i, j ≥ 1, has the form

cov[(Xi, Xj)] =

[
Q QRij

RijQ Q

]
, i, j ≥ 1,

where for i, j ≥ 1 the operators Rij ∈ L(H) are symmetric, RijQ = QRij and
∥Rij∥∞ ≤ 1 (note that Rii = I is the identity operator). Assume additionally
that

sup
i≥1

∞∑
j=1

∥Rij∥∞ < ∞.

Adopting now the methods from [BC] we obtain the following statement.

Theorem 5.1. Let {Xn}n≥1 be a centered Gaussian sequence as above.
Suppose that f ∈ L1(µQ). Then

f(X1) + · · ·+ f(Xn)

n
−−−→
n→∞

�

H

f dµQ P -a.s.

Let E be a separable real Banach space with norm ∥ · ∥E . We denote by
L1(µQ;E) the space of (equivalence classes of) Bochner measurable functions
g : H → E such that

	
H ∥g∥ dµQ < ∞. Now Theorem 5.1 and a slight change
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in the proof of Ranga Rao (see e.g. [DS]) of the Strong Law of Large Numbers
for independent random vectors show that for a Gaussian sequence {Xn}n≥1

(under the above assumptions) and for g ∈ L1(µQ;E) we have
g(X1) + · · ·+ g(Xn)

n
−−−→
n→∞

�

H

g dµQ P -a.s.
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