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On d-complete sequences modulo l

by

Xing-Wang Jiang (Luoyang) and Bing-Ling Wu (Nanjing)

Abstract. A sequence T of positive integers is called d-complete modulo l if for every
integer 0 ≤ u ≤ l − 1, there exists an integer v with vl + u > 0 such that vl + u can be
represented as the sum of distinct terms from T , where no one divides any other. Recently,
Chen and Yu (2023) proved that {manb : a, b = 0, 1, 2, . . .} is d-complete modulo l if l,m, n
are pairwise coprime with l,m, n ≥ 2, and posed the following problem: characterize all
positive integers l,m, n such that {manb : a, b = 0, 1, 2, . . .} is d-complete modulo l. We
give an answer to this problem.

1. Introduction. Let N0 be the set of all non-negative integers. A se-
quence T of positive integers is called complete if every sufficiently large
integer can be represented as the sum of distinct terms from T . It is easy to
see that the sequence {2a : a ∈ N0} is complete and for any integer m > 2,
the sequence {ma : a ∈ N0} is not complete. In 1959, Birch [1] proved that
for two coprime integers m > n > 1, the sequence {manb : a, b ∈ N0} is
complete, which confirmed a conjecture of Erdős. It is interesting to study
whether {manb : a, b ∈ N0} is still complete or not with the additional
restriction that no summand divides any other. Erdős asked the following
question: “Is it true that every integer > 1 is the sum of distinct integers
of the form 2a3b (for a and b non-negative integers), where no summand
divides any other?” He overestimated the difficulty of the problem and com-
municated it to Jansen, who almost immediately gave a simple proof by
induction. This motivated the research on d-complete sequences, introduced
by Erdős and Lewin [6].

A positive integer n is called d-representable for T if it can be represented
as the sum of distinct terms from T such that no one divides any other.
A sequence T of positive integers is called d-complete if every sufficiently
large integer is d-representable for T . For convenience, we use the following
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notation introduced by Chen and Yu [5]. For positive integers n1, . . . , nk, let

A(n1, . . . , nk) = {nc1
1 · · ·nck

k : c1, . . . , ck ∈ N0}.
In 1996, Erdős and Lewin [6] reproduced the proof of the d-completeness
of A(2, 3) and proved that the sequence A(m,n) is not d-complete if m >
n > 1 and {m,n} ̸= {2, 3}. It is natural to consider the d-completeness
of the sequence A(l,m, n). Erdős and Lewin [6] showed that A(2, 5, n) is
d-complete for n ∈ {7, 11, 13, 17, 19} and A(3, 5, 7) is d-complete. In 2016,
Ma and Chen [11] established a criterion for the d-completeness of A(2, 5, n)
and proved that it is d-complete for n ∈ {9, 21, 23, 27, 29, 31}.

Erdős and Lewin [6] conjectured that A(l,m, n) is d-complete if l,m, n
are pairwise coprime integers not less than 2. Recently, Chen and Yu [5]
considered this conjecture. Let rh be the least positive integer that is d-
representable for A(m,n) and congruent to h modulo l, and let sh be the
least positive integer that can be a term in a d-representation for A(m,n)
of rh. Chen and Yu [5] gave the following criterion for the d-completeness of
A(l,m, n).

Theorem A ([5, Theorem 1.1]). Let l,m, n be pairwise coprime integers
not less than 2, let t be a positive integer, and let

{a1 < a2 < · · · } = {mbnc : b, c ∈ N0, m
bnc ≡ 1 (mod l)}.

(i) There exists an explicit integer i0 = i(l,m, n, t) such that

rhai+1 + lt < (rh + lsh)ai

for all i ≥ i0 and all 1 ≤ h ≤ l − 1.
(ii) If every integer k with

t < k ≤ Rai0 + lt

is d-representable for A(l,m, n), where R = max {rh : 1 ≤ h ≤ l − 1},
then A(l,m, n) is d-complete.

As applications of Theorem A, Chen and Yu [5] showed that A(2, 5, n)
is d-complete for 1 ≤ n ≤ 87 with gcd(n, 10) = 1, A(2, 7, n) is d-complete
for 1 ≤ n ≤ 33 with gcd(n, 14) = 1, and A(3, 5, n) is d-complete for 1 ≤
n ≤ 14 with gcd(n, 15) = 1. For more related results, one may refer to
[1–4,6–10,12,13].

Chen and Yu [5] also considered d-complete sequences modulo l.

Definition 1.1. A sequence T of positive integers is called d-complete
modulo l if for every integer 0 ≤ u ≤ l − 1, there exists an integer v with
vl + u > 0 such that vl + u is d-representable for T .

It is easy to see that a sequence T of positive integers is d-complete
modulo l if and only if for every integer 0 ≤ u ≤ l − 1, u is congruent
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modulo l to a sum of distinct terms from T such that no one divides any
other. Chen and Yu [5] proved the following results.

Theorem B ([5, Theorem 5.2]). Suppose that {2, 3} ̸⊆ {l,m, n}. If
A(l,m, n) is d-complete, then A(m,n) is d-complete modulo l.

Theorem C ([5, Theorem 5.3]). If l,m, n are pairwise coprime with
l,m, n ≥ 2, then A(m,n) is d-complete modulo l.

Chen and Yu [5] posed the following problem:

Problem ([5, Problem 5.4]). Characterize all positive integers l,m, n
such that A(m,n) is d-complete modulo l.

In this paper, we solve this problem and prove the following result.

Theorem 1.2. Let l,m, n be three integers with l,m, n≥ 2. Then A(m,n)
is d-complete modulo l if and only if at least one of the following conditions
holds:

(1) gcd(l,mn) = 1, m ̸= nα for any rational number α;
(2) gcd(l,m) = 1, gcd(l, n) is a prime and m is a primitive root of gcd(l, n);
(3) gcd(l, n) = 1, gcd(l,m) is a prime and n is a primitive root of gcd(l,m);
(4) gcd(l,m) and gcd(l, n) are distinct primes, and m,n are primitive roots

of gcd(l, n) and gcd(l,m), respectively.

Remark 1.3. It is easy to see that

(1) for any positive integers m,n, A(m,n) is d-complete modulo 1;
(2) for l ≥ 2, neither A(m, 1) nor A(1, n) is d-complete modulo l.

The proof of Theorem 1.2 proceeds by applying the three lemmas proved
in Section 2. Condition (1) of Theorem 1.2 follows from Lemma 2.1. If
gcd(l,m) = 1 and gcd(l, n) > 1, we point out that gcd(l, n) = p is prime
when A(m,n) is d-complete modulo l. Let l = l1p

r with gcd(l1, p) = 1. Then
gcd(l1,mn) = 1. The arguments for the d-completeness modulo l1 and mod-
ulo pr of A(m,n) are given in Lemmas 2.1 and 2.2, respectively. Combining
this with Lemma 2.3, we obtain condition (2). Conditions (3) and (4) can
be obtained by a similar discussion.

2. Proof of Theorem 1.2. First, we prove some lemmas which will be
used to prove Theorem 1.2.

Lemma 2.1. Let l,m, n ≥ 2 be integers with gcd(mn, l) = 1. Then
A(m,n) is d-complete modulo l if and only if m ̸= nα for any rational num-
ber α.
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Proof. Firstly, we prove the necessity. Since A(m,n) is d-complete mod-
ulo l, there exist non-negative integers ai and bi such that

r∑
i=1

mainbi ≡ 0 (mod l)

with

(2.1) mainbi ∤ majnbj , i ̸= j.

By gcd(mn, l) = 1, we have r ≥ 2. Let

m = pα1
1 · · · pαs

s , n = pβ1
1 · · · pβs

s ,

where αi, βi ≥ 0 (1 ≤ i ≤ s). If m = nb/a for some positive integers a, b with
gcd(a, b) = 1, then αi = βi · b

a which implies that a |βi. Since αia1 + βib1 =
βi

a (ba1 + ab1) and αia2 + βib2 =
βi

a (ba2 + ab2), we have

pαia1+βib1
i | pαia2+βib2

i (1 ≤ i ≤ s) or pαia2+βib2
i | pαia1+βib1

i (1 ≤ i ≤ s).

It follows that

ma1nb1 |ma2nb2 or ma2nb2 |ma1nb1 ,

a contradiction with (2.1). Therefore, m ̸= nα for any rational number α.
Now, we prove the sufficiency. By Theorem C, it suffices to deal with the

case gcd(m,n) > 1. Let

m = pα1
1 · · · pαs

s , n = pβ1
1 · · · pβs

s ,

where αi, βi ≥ 0 (1 ≤ i ≤ s). Since m ̸= nα for any rational number α, it
follows from gcd(m,n) > 1 that either m or n has at least two prime divisors
and there are two integers 1 ≤ i1, i2 ≤ s with αi1/βi1 ̸= αi2/βi2 . Without
loss of generality, we may assume that α1/β1 > α2/β2, where β1, β2 ≥ 1.
Then there exists an irreducible fraction d/c such that

(2.2)
α1

β1
>

d

c
>

α2

β2
.

By Euler’s theorem, for any integer 1 ≤ u ≤ l,
u∑

i=1

m(u−i)cφ(l)nidφ(l) ≡ u (mod l).

Now, we shall show that

(2.3) m(u−i)cφ(l)nidφ(l) ∤ m(u−j)cφ(l)njdφ(l), i ̸= j.

Express m, n as m = pα1
1 pα2

2 m1, n = pβ1
1 pβ2

2 n1. Then

m(u−i)cφ(l)nidφ(l) = p
φ(l)(α1(u−i)c+β1id)
1 p

φ(l)(α2(u−i)c+β2id)
2 m

(u−i)cφ(l)
1 n

idφ(l)
1 ,

m(u−j)cφ(l)njdφ(l) = p
φ(l)(α1(u−j)c+β1jd)
1 p

φ(l)(α2(u−j)c+β2jd)
2 m

(u−j)cφ(l)
1 n

jdφ(l)
1 .
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By (2.2), when i < j,

α1(u−i)c+β1id > α1(u−j)c+β1jd, α2(u−i)c+β2id < α2(u−j)c+β2jd,

from which one can immediately get (2.3). Therefore, A(m,n) is d-complete
modulo l.

Lemma 2.2. Let m,n be integers with m,n ≥ 2 and p be a prime with
p |n. Then

(i) A(m,n) is d-complete modulo p if and only if m is a primitive root of p;
(ii) when r ≥ 2, A(m,n) is d-complete modulo pr if and only if m is a prim-

itive root of p and p2 ∤ n.

Proof. First, we prove the necessity of (i) and (ii). Obviously, if A(m,n)
is d-complete modulo pr, then it is also d-complete modulo pi (1 ≤ i ≤ r).
It follows from p |n that for any integer 1 ≤ u ≤ p − 1, there exists a
non-negative integer au with

mau ≡ u (mod p),

which shows that m is a primitive root of p.
Suppose that p2 |n when r ≥ 2. Then since A(m,n) is d-complete mod-

ulo p2,
map ≡ p (mod p2)

for some positive integer ap, and so p |m, which is impossible since m is a
primitive root of p. Thus, p2 ∤ n when r ≥ 2.

Now, we prove the sufficiency of (i) and (ii). Since m is a primitive root
of p, for every integer 1 ≤ u ≤ p− 1 there is a non-negative integer au with

mau ≡ u (mod p).

It follows from n ≡ 0 (mod p) that A(m,n) is d-complete modulo p. Hence,
Lemma 2.2(i) holds.

Next, we assume that r≥ 2, and so p2 ∤n. Let n= pn1 with gcd(p, n1)= 1.
We shall use induction to prove that A(m,n) is d-complete modulo pr.

By the above argument, A(m,n) is d-complete modulo p. Suppose that
A(m,n) is d-complete modulo ps; we will prove that it is d-complete mod-
ulo ps+1.

For an integer 0 ≤ u ≤ ps+1 − 1, u can be written as

u = vps + w

with 0 ≤ v ≤ p− 1 and 0 ≤ w ≤ ps − 1. Clearly, ns+1 ≡ 0 (mod ps+1). Now,
we deal with the case u ≥ 1, that is, either v > 0 or w > 0. Since A(m,n) is
d-complete modulo ps, there exist non-negative integers ai and bi such that

tw∑
i=1

mainbi ≡ w (mod ps)
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with

(2.4) mainbi ∤ majnbj , 1 ≤ i ̸= j ≤ tw.

Here, we define t0 = 0 and
∑0

i=1m
ainbi = 0, and for w ≥ 0, we may require

that

(2.5) ai > p+ ns and 0 ≤ bi ≤ s− 1

since p |n and mai+kφ(ps) ≡ mai (mod ps). Let
tw∑
i=1

mainbi = v′ps + w.

If v′ ≡ v (mod p), then
tw∑
i=1

mainbi ≡ vps + w (mod ps+1)

with mainbi ∤ majnbj (i ̸= j). If v′ ̸≡ v (mod p), then by the d-completeness
modulo p of A(m,n), there exists an integer 0 ≤ atw+1 < p such that

matw+1 ≡ (v − v′)n̄s
1 (mod p),

where n1n̄1 ≡ 1 (mod ps+1) (such an n̄1 exists since gcd(n1, p) = 1). Thus
tw∑
i=1

mainbi +matw+1ns ≡ v′ps + w + (v − v′)psns
1n̄

s
1 ≡ vps + w (mod ps+1).

By (2.5) and atw+1 < p,

matw+1ns ∤ mainbi , mainbi ∤ matw+1ns, 1 ≤ i ≤ tw.

It follows from (2.4) that

mainbi ∤ majnbj , 1 ≤ i ̸= j ≤ tw + 1,

where btw+1 = s. Hence A(m,n) is d-complete modulo ps+1. Therefore,
Lemma 2.2(ii) holds.

Lemma 2.3. Let r, l,m, n be integers with r≥ 1, l,m, n≥ 2, gcd(l, n)= 1
and p be a prime with p |n. If A(m,n) is d-complete both modulo l and
modulo pr, then A(m,n) is d-complete modulo lpr.

Proof. The proof is by induction on r. First, we prove that Lemma 2.3
is true for r = 1.

For an integer 0 ≤ u ≤ lp− 1, u can be written as

u = vp+ w

with 0 ≤ v ≤ l−1 and 0 ≤ w ≤ p−1. Since A(m,n) is d-complete modulo p,
we have p ∤ m and for 1 ≤ w ≤ p− 1, there exists a sufficiently large integer
a1 = a1(w) such that

ma1 ≡ w (mod p).
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Define Iw = ma1 if 1 ≤ w ≤ p − 1 and Iw = 0 if w = 0. Let Iw = v′p + w
and n = n1p. Noting that A(m,n) is d-complete modulo l and gcd(l, n) = 1,
there exist non-negative integers ai, bi (i ≥ 2) such that

t∑
i=2

mainbi ≡ (v − v′)n̄1 (mod l),

where n̄1n1 ≡ 1 (mod l) (such an n̄1 exists since gcd(n1, l) = 1) and

(2.6) mainbi ∤ majnbj , 2 ≤ i ̸= j ≤ t.

Hence
t∑

i=2

mainbi+1 ≡ (v − v′)n̄1n1p ≡ (v − v′)p (mod l),

and so

Iw +
t∑

i=2

mainbi+1 ≡ (v − v′)p+ v′p+ w = vp+ w (mod l).

In view of p |n and Iw ≡ w (mod p),

Iw +

t∑
i=2

mainbi+1 ≡ w ≡ vp+ w (mod p).

Since gcd(l, p) = 1, it follows that

Iw +
t∑

i=2

mainbi+1 ≡ vp+ w (mod lp).

By (2.6),
mainbi+1 ∤ majnbj+1, 2 ≤ i ̸= j ≤ t.

In addition, for 1 ≤ w ≤ p − 1, we have both mainbi+1 ∤ ma1 and ma1 ∤
mainbi+1 (2 ≤ i ≤ t) since p |n, p ∤ m and a1 is sufficiently large. Hence,
A(m,n) is d-complete modulo lp. Thus, the conclusion of Lemma 2.3 is true
for r = 1.

Now, we assume that r ≥ 2 and Lemma 2.3 holds for r − 1. We shall
prove that Lemma 2.3 holds for r. The proof is similar to that for r = 1.

For an integer 0 ≤ u ≤ lpr − 1, u can be written as

u = vp+ w,

with 0 ≤ v ≤ lpr−1 − 1 and 0 ≤ w ≤ p− 1. Note that A(m,n) is d-complete
modulo pr, so it is d-complete modulo ps (1 ≤ s ≤ r). Thus, for 1 ≤ w ≤ p−1,
there exists a sufficiently large integer a1 such that

ma1 ≡ w (mod p).
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Define Iw = ma1 if 1 ≤ w ≤ p − 1 and Iw = 0 if w = 0. Let Iw = v′p + w.
By Lemma 2.2, p2 ∤ n. We can express n as n = n1p with gcd(p, n1) = 1.
By inductive hypothesis, A(m,n) is d-complete modulo lpr−1. Hence, there
exist non-negative integers ai, bi (i ≥ 2) such that

t∑
i=2

mainbi ≡ (v − v′)n̄1 (mod lpr−1),

where n̄1n1 ≡ 1 (mod lpr) (such an n̄1 exists since gcd(n1, lp
r) = 1) and

mainbi ∤ majnbj , 2 ≤ i ̸= j ≤ t.

It follows that
t∑

i=2

mainbi+1 ≡ (v − v′)n̄1n1p ≡ (v − v′)p (mod lpr)

and

Iw +
t∑

i=2

mainbi+1 ≡ (v − v′)p+ v′p+ w = vp+ w (mod lpr).

Similar to the argument for r = 1, we have

mainbi+1 ∤ majnbj+1, 2 ≤ i ̸= j ≤ t

and for 1 ≤ w ≤ p− 1,

mainbi+1 ∤ ma1 , ma1 ∤ mainbi+1, 2 ≤ i ≤ t.

Therefore, A(m,n) is d-complete modulo lpr.

Proof of Theorem 1.2. Firstly, we prove the necessity. If gcd(l,mn) = 1,
then (1) is true by Lemma 2.1. If gcd(l,mn) > 1, without loss of generality
we may assume gcd(l, n) = γ > 1. Since A(m,n) is d-complete modulo l, it is
d-complete modulo γ. It follows from γ |n that for every integer 1 ≤ u ≤ γ−1,
there is an integer αu such that

mαu ≡ u (mod γ).

Since mα1 ≡ 1 (mod γ), we see that gcd(m, γ) = 1. If γ is composite,
then there exists a prime p with p | γ and p < γ. However, in view of
mαp ≡ p (mod γ), we have p |m, a contradiction to gcd(m, γ) = 1. Hence, if
gcd(l, n) > 1, then gcd(l, n) is prime and m is a primitive root of gcd(l, n),
from which one immediately deduces (2)–(4).

Now, we prove the sufficiency. If condition (1) is true, then we infer that
A(m,n) is d-complete modulo l by Lemma 2.1.

Suppose that condition (2) holds. Then gcd(l, n) = p with p prime and
m is a primitive root of p. Clearly, m ̸= nα for any rational number α. Let
l = l1p

r and n = n1p
s, where gcd(l1, n1) = 1 and gcd(l1n1, p) = 1. Since

gcd(l, n) = p, we have r = 1 or s = 1. By Lemma 2.2, A(m,n) is d-complete
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modulo pr. Since gcd(l,m) = 1, it follows from gcd(l1, n1) = gcd(l1, p) = 1
that gcd(l1,mn) = 1. By Lemma 2.1, A(m,n) is d-complete modulo l1. From
Lemma 2.3, we see that A(m,n) is d-complete modulo l. When condition (3)
holds, one can prove similarly that A(m,n) is d-complete modulo l.

Suppose that condition (4) holds. Let gcd(l, n) = p and gcd(l,m) = q be
two distinct primes. Then l,m, n can be expressed as l = l1p

r1qr2 , n = n1p
s

and m=m1q
t, where gcd(p, l1n1)= 1, gcd(q, l1m1)= 1 and gcd(l1,mn)= 1.

We have r1=1 or s=1 by gcd(l, n)= p, and r2=1 or t=1 by gcd(l,m)= q.
By an argument similar to that when (2) holds, we deduce that A(m,n) is d-
complete modulo all of pr1 , qr2 and l1. By Lemma 2.3, A(m,n) is d-complete
modulo l.

Acknowledgements. We would like to thank the referee for the helpful
comments. This work is supported by the National Natural Science Founda-
tion of China (Grant Nos. 12201281, 12171243, 12101322 and 12271256),
the Natural Science Youth Foundation of Henan Province (Grant No.
222300420245) and the Natural Science Foundation in Jiangsu Province
(Grant No. BK20200748).

References

[1] B. J. Birch, Note on a problem of Erdős, Proc. Cambridge Philos. Soc. 55 (1959),
370–373.

[2] J. L. Brown, Note on complete sequences of integers, Amer. Math. Monthly 68 (1961),
557–560.

[3] Y.-G. Chen and J.-H. Fang, Remark on the completeness of an exponential type se-
quence, Acta Math. Hungar. 136 (2012), 189–195.

[4] Y.-G. Chen and J.-H. Fang, Hegyvári’s theorem on complete sequences, J. Number
Theory 133 (2013), 2857–2862.

[5] Y.-G. Chen and W.-X. Yu, On d-complete sequences of integers, II, Acta Arith. 207
(2023), 161–181.

[6] P. Erdős and M. Lewin, d-complete sequences of integers, Math. Comp. 65 (1996),
837–840.

[7] R. L. Graham, Complete sequences of polynomial values, Duke Math. J. 31 (1964),
275–285.

[8] N. Hegyvári, Additive properties of sequences of multiplicatively perturbed square val-
ues, J. Number Theory 54 (1995), 248–260.

[9] N. Hegyvári, Complete sequences in N2, Eur. J. Combin. 17 (1996), 741–749.
[10] N. Hegyvári, On the completeness of an exponential type sequence, Acta Math. Hun-

gar. 86 (2000), 127–135.
[11] M.-M. Ma and Y.-G. Chen, On d-complete sequences of integers, J. Number Theory

164 (2016), 1–12.
[12] W.-X. Ma and Y.-G. Chen, Hegyvári’s theorem on complete sequences, II, Acta Arith.

203 (2022), 307–318.
[13] W.-X. Yu and Y.-G. Chen, On a conjecture of Erdős and Lewin, J. Number Theory

238 (2022), 763–778.

http://dx.doi.org/10.1017/S0305004100034150
http://dx.doi.org/10.2307/2311150
http://dx.doi.org/10.1007/s10474-011-0188-x
http://dx.doi.org/10.1016/j.jnt.2013.02.013
http://dx.doi.org/10.4064/aa220818-20-1
http://dx.doi.org/10.1090/S0025-5718-96-00707-7
http://dx.doi.org/10.1215/S0012-7094-64-03126-6
http://dx.doi.org/10.1006/jnth.1995.1116
http://dx.doi.org/10.1016/j.jnt.2015.12.003
http://dx.doi.org/10.4064/aa210811-30-3
http://dx.doi.org/10.1016/j.jnt.2021.09.018


10 X.-W. Jiang and B.-L. Wu

Xing-Wang Jiang
Department of Mathematics
Luoyang Normal University
Luoyang 471934, P.R. China
E-mail: xwjiangnj@sina.com

Bing-Ling Wu
School of Science

Nanjing University of Posts and Telecommunications
Nanjing 210023, P.R. China

E-mail: wbl.math@njupt.edu.cn


	1. Introduction
	2. Proof of Theorem 1.2
	References

