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Fernando Chamizo (Madrid)

Dedicated to Henryk Iwaniec

Abstract. We explore the use of correlation with simple functions to get lower bounds
for arithmetic quantities. In particular, we apply this idea to the power moments of the
error term when counting visible lattice points in large spheres.

1. Average and amplification. Very often in analytic number theory
one has to deal with a certain expression Q that, considering some harmonic
companions [12], can be included in a kind of spectral family {Qj}j∈J , say
Q = Qj0 . In this situation, average results are usually easier to get than
bounds or asymptotic formulas for Q. For instance, a variant of Parseval’s
identity can lead to something of the form∑

j∈J
|Qj |2 ∼ F,

which suggests that |Qj |2 is typically like F/|J | (if J is not finite there is
a chance to introduce weights in the summation) and implies the Ω-result
stating that at least one of the |Qj |2 cannot be asymptotically below F/|J |.

Average results do not give good individual estimates because dropping
all the terms except Q is wasteful. The amplification method, developed by
H. Iwaniec and collaborators to get a number of conspicuous results (e.g.
[6, 5, 11, 14]), circumvents this problem. As a guide for the reader, to our
taste [7] is its most transparent application and [14] the most impressive one
(cf. [1, §10], [4, pp. 93–100]). Let us review briefly the simple and powerful
schematic idea in a somewhat restricted setting. A family of linear forms
Lj (⃗a) =

∑
n anλj(n) is introduced in such a way that there is a quantifi-

able cancellation in
∑

j |Qj |2λj(n)λj(m) allowing one to prove a nontrivial
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average result of the form∑
j

|Qj |2|Lj (⃗a)|2 ≤ K2∥a⃗∥2.

A choice a⃗ = a⃗0 giving a large value of |Lj0 (⃗a)| amplifies the contribution of
|Qj0 |2 to the sum showing

|Q| = |Qj0 | ≤
K∥a⃗0∥
|Lj0 (⃗a0)|

.

The amplifier will be stronger if the vectors {λj(n)}n keep certain quasi-
orthogonality for different values of j, and perfect orthogonality would ideally
allow one to select a single term. This guides our intuition to construct
good amplifiers but note that there is no need for proving anything in this
direction.

Dealing with a specific lattice point problem, in [2] a method was intro-
duced that bears a point of resemblance to the amplification philosophy but
produces lower bounds instead of upper bounds. Let us say that our spec-
tral family is now a continuous one represented by an oscillatory function
Q(t) that is too complicated, so that one cannot determine the asymptotics
of

	
|Q|2 dµ. If we find a simpler function g, which could be called a resonator,

in such a way that there is a provable correlation�
Qg dµ ≥ F > 0,

then Hölder’s inequality gives

∥Q∥p ≥
F

∥g∥q
with

1

p
+

1

q
= 1, p, q ∈ [1,∞].

So, lower bounds for the moments of Q follow from upper bounds for the
moments of the simpler function g. If µ is normalized as a probability mea-
sure, then ∥Q∥∞ ≥ ∥Q∥p and an Ω-result for Q is deduced. Ideally, we look
for g being a simple proxy of Q amplifying the contribution to the integral
via some kind of positivity. In contrast, in the amplification method the
artificial squared form tries to mimic the delta symbol.

The purpose of this paper is to show some instances of this idea. The
main one is a modest improvement on [2] in which the resonator was based
on

∑
d2|n µ(d) = µ2(n) ≥ 0.

2. Main results. As usual, the notation e(x) abbreviates e2πix. We also
employ A≪ B meaning A = O(|B|) with Landau’s notation and A = Ω(B)
as the opposite of A = o(B).

We start by pushing the correlation technique to improve a little our
knowledge about the lattice point problem considered in [2].
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Recall that the visible points in Z3 − {⃗0} are those having coprime co-
ordinates. If N ∗(R) is the number of them in the ball ∥x⃗∥ ≤ R, it is fairly
easy to get N ∗(R) ∼ 4π

3ζ(3)R
3. The main result in [2] ensures

(2.1)
2R�

R

|E∗|2 ≫ R3 logR where E∗(R) = N ∗(R)− 4π

3ζ(3)
R3.

Conjecturally E∗(R) = O(R1+ϵ
)

for any ϵ > 0 and (2.1) implies that it
is false for ϵ = 0 and, in fact, E∗(R) = Ω(R

√
logR). Here we treat other

moments showing that the logarithmic factors are unavoidable in them.

Theorem 2.1. For any p > 1, we have
2R�

R

|E∗|p ≫ Rp+1(logR)p/2.

Of course, this adds new information to (2.1) only for p < 2.
The next result has a more analytic flavor. Essentially, it shows that the

existence of gaps in the frequency spectrum implies oscillation.

Theorem 2.2. Let {νn}Nn=1 ⊂ Z+ be strictly increasing with N < ∞ or
N = ∞ and consider its gaps Λn = minm ̸=n |νm − νn|. For each α ∈ [0, 1]
and 1 < n < N the inequality∣∣∣ N∑

k=1

ak sin(2πνkx)
∣∣∣ > 1

4
Bn,α|an| |x|α

holds for x in a positive measure subset of [−1/2, 1/2], where

Bn,α =
πα−1(1− α2)Λn

Λ1−α
n − (1/5)1−α

for α ̸= 1, Bn,1 = lim
α→1−

Bn,α

and {an}Nn=1 ⊂ C − {0} is any sequence ensuring the convergence of the
series to an L∞ function if N = ∞.

As an arithmetic-oriented example, we can deduce from this result that
the function

F (x) =
∞∑
n=1

τ(n)e(p3nx)

n2(log n)2023
,

with pn the nth prime and τ the divisor function, does not satisfy the Lips-
chitz condition at any point. In particular, it is nowhere differentiable.

To see this, consider f(x) = F (x0 + x)− F (x0 − x) and note that

e(a(x0 + x))− e(a(x0 − x)) = 2i e(ax0) sin(2πax).

If F is Lipschitz at x0 then |f(x)| ≤ C|x| for some constant C. When we
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apply Theorem 2.2 to f with α = 1 and νn = p3n, we have Λn ≥ p2n ≫
n2(log n)2 and Bn,1 ≫ n2 log n. Recalling that lim sup τ(n)/(log n)K = ∞
[8, Th. 314], the result shows that |f(x)/x| is unbounded.

If F : [1,∞) → C and f is a bounded arithmetic function, the following
kind of convolution is closer to the original formulation of Möbius inversion
and to some natural applications in combinatorics:

(2.2) G(x) =
∑
n≤x

f(n)F

(
x

n

)
.

Let us consider the case in which F is a partial sum of a Fourier series except
for introducing a smooth transition from F (1) to 0 in order to freely extend
the upper bound in (2.2). Namely,

F (x) = ϕ(x)
N∑

n=1

ane(nx)

with ϕ ∈ C∞
0 such that ϕ(x) = 0 for x < 1 and ϕ(x) = 1 for x > 2.

Theorem 2.3. Let R ≥ 4N and

B =
N∑

n=1

bn with bn = an
∑
d|n

f(d).

Assume bn ≥ 0 and for some K > 1 and any V > 1/6,∑
R/(2V )≤d≤3R

∑
dV /R≤r<2dV /R

N∑
n=1

n≡±r (d)

|an| = o((6V )KB).

Then
2R�

R

|G(x)|2 dx≫ RB2N−1.

In particular, G(x) = Ω(BN−1/2).

The hypothesis bn ≥ 0 is satisfied for instance when an ≥ 0 and f is a
real character. In some sense, the main result in [2], which we refine here,
relies on an anharmonic version of this with an ≥ 0 and f(d) = µ(

√
d) if d

is square and 0 otherwise.

3. Proofs. The proof of Theorem 2.1 is based on showing that the
asymptotics in [2, Th. 1.1] are preserved, except for a σ/2 factor, when re-
placing g there by the shorter resonator

gσ(x) =
∑
n≤Rσ

cos(2πx
√
n)√

n
with 0 < σ < 2.
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We employ the same notation as in that work, introducing

I(R) =
�
gσ(t)E

∗(t) dν(t),

where dν(x) = R−1ψ(x/R) is a probability measure with ψ ∈ C∞
0 ((1, 2))

and our goal is to prove the following result.

Theorem 3.1. Given 0 < σ < 2, as R→ ∞,

I(R) ∼ −σCR logR,

where

C = C0

�
tψ(t) dt and C0 =

7

8

∏
p>2

(
1− 1

p

)(
1 +

1

p
− 1

p2

)
.

As a matter of fact, in the statement of the main result of [2], formally
corresponding to σ → 2−, the constant C0 was wrongly substituted by 7/π2

because v as in the lemma below was not correctly evaluated. We apologize
for the inconvenience. Both constants differ by less than 4% and it does not
affect the Ω-result which was the main interest.

Lemma 3.2. Let v(d) be the number of solutions of x2 + y2 + z2 ≡
0 (mod d2). For d odd squarefree,

v(2d) = 8v(d) and v(d) =
∏
p|d

p2(p2 + p− 1).

In particular, v(d) = O(d4 log log d).

Proof. By the Chinese remainder theorem, v is multiplicative. Since n2 ≡
0, 1 (mod 4) for every n, depending on its parity, x2 + y2 + z2 ≡ 0 (mod 4)
implies x ≡ y ≡ z ≡ 0 (mod 2), showing v(2) = 23. We have to prove
v(p) = p2(p2 + p − 1) for primes p > 2. Expanding the cube and changing
the order of summation, the following exponential sum representation is
obtained:

p2v(p) =

p2∑
a=1

( p2∑
n=1

e

(
an2

p2

))3

.

The innermost sum is p2 if a = p2. The classical evaluation of quadratic
Gauss sums [13, (3.38)] shows that it is p if p ∤ a, and

(
k
p

)
cp for certain

|cp| =
√
p if a = kp with 1 ≤ k < p. Collecting these contributions yields

p2v(p) = (p2)3 + (p2 − p)p3 + c3p

p−1∑
k=1

(
k

p

)
.

The sum is null, giving v(p) = p2(p2 + p− 1) as expected.
The last claim comes from v(d) < d4

∏
p|d(1 + p−1) [8, §18.3].
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The motivation to take a shorter sum is to control higher moments of gσ.
This requires some arithmetic considerations about linear combinations of
square roots.

Lemma 3.3. For each k ∈ Z+ and 0 < σ < 2/(22k−1 − 1) there exists a
positive constant Ck,σ such that

� ∣∣∣∣ ∑
n≤Rσ

e(x
√
n)√
n

∣∣∣∣2k dν(x) ∼ Ck,σ(logR)
k.

In particular,
	
|gσ|2k dν ≪ (logR)k.

Proof. For n⃗ ∈ Z2k
>0 let L(n⃗) =

∑k
j=1(

√
nj−

√
nj+k ). Opening the power

gives
� ∣∣∣∣ ∑

n≤Rσ

e(x
√
n)√
n

∣∣∣∣2k dν =
∑

∥n⃗∥∞≤Rσ

ψ̂(RL(n⃗))
√
n1 · · ·n2k

.

By [15, Lemma 2.2], if L(n⃗) ̸= 0 then

|L(n⃗)| ≫ R−δ with δ = (22k−1 − 1)σ/2 < 1

and ψ̂(RL(n⃗)) ≪ R−K for any K > 0, giving a negligible contribution.
Hence we have to show

(3.1)
∑

∥n⃗∥∞≤Rσ

L(n⃗)=0

1
√
n1 · · ·n2k

∼ Ck,σ(logR)
k.

It is clear that the terms with {n1, . . . , nk} = {nk+1, . . . , n2k} give the ex-
pected asymptotics. We are going to check that the rest of the sum in (3.1)
is O((logR)k−1).

Any n ∈ Z+ can be decomposed uniquely as n = s2m with m squarefree
and s ∈ Z+. A well-known result due to Besicovitch states that the square
roots of squarefree numbers are linearly independent over Q. Hence, for each
n⃗ with L(n⃗) = 0 there are partitions

ℓ⋃
i=1

Ai = {1, . . . , k} and
ℓ⋃

i=1

Bi = {k + 1, . . . , 2k}

selecting the coordinates with the same squarefree part, which must cancel
the squared parts. In formulas, nj = s2jmi for every j ∈ Ai ∪ Bi with mi

distinct and
∑

j∈Ai
sj =

∑
j∈Bi

sj .
The case ℓ = k corresponds to #Ai = #Bi = 1, hence Ai = {τ(i)},

Bi = {k + λ(i)} for some permutations τ and λ of {1, . . . , k}. In particular,
nτ(i) = s2τ(i)mi = nk+λ(i) and {n1, . . . , nk} = {nk+1, . . . , n2k}. Consequently,
if these sets are not equal then ℓ < k and the contribution to the sum (3.1)
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is bounded by

(3.2)
k−1∑
ℓ=1

∑
{Ai}ℓi=1

∑
{Bi}ℓi=1

∑ ∑
· · ·

∑
m1<···<mℓ≤Rσ

1

m1 · · ·mℓ

∑ 1

s1 · · · s2k
,

where in the inner sum we have the restrictions sj ≤
√
Rσ/mi for j ∈ Ai∪Bi

and
∑

j∈Ai
sj =

∑
j∈Bi

sj . Let us see that this inner sum is bounded. Say
that the largest sj is sj1 with j1 ∈ Ai1 (the case j1 ∈ Bi1 is symmetric).
Then u =

∑
j∈Ai1

sj =
∑

j∈Bi1
sj < ksj1 and the same holds after replacing

sj1 by the greatest sj with j ∈ Bi1 . Obviously, any other variable is at most
u and we have∑ 1

s1 · · · s2k
< k2

∞∑
u=1

1

u2

(∑
s≤u

1

s

)2k−2

≪
∞∑
u=1

(log u)2k−2

u2
≪ 1.

Then (3.2) is O((logR)k−1).

Proof of Theorem 2.1. Take k = ⌈p/(2p − 2)⌉. By Theorem 3.1 and
Hölder’s inequality,

Rp(logR)p ≪
(�

|gσE∗| dν
)p

≤
�
|E∗|p dν ·

(�
|gσ|q dν

)p/q
.

The last factor is at most (
	
|gσ|2k dν)p/2k ≪ (logR)p/2 by Lemma 3.3 with σ

small enough.

Before entering into the proof of Theorem 3.1, let us recall some notation
and results of [2], namely Lemmas 2.1 and 2.2 there.

Let E(R) be the lattice point error for the ball, i.e.,

E(R) = #{n⃗ ∈ Z3 : ∥x⃗∥ ≤ R} − 4
3πR

3.

This quantity is related to E∗ through the formula

(3.3) E∗(t) =
∑
d≤2R

µ(d)E(t/d) + o(t) for 1 < t < 2R.

A smoothed Voronoi formula for E(R) is (cf. [13, §4.4])

(3.4) E(t) = −R
π

∞∑
n=1

an√
n
cos

(
2πt

√
n
)
+ T (t) + U(t),

where

an =
r3(n)√
n
ϕ̂

(√
n

M

)
, M =

R

(logR)1/3
, ϕ ∈ C∞

0 ((−1, 1)) even, ϕ̂(0) = 1,

and T and U are less important terms.
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Using (3.3) and (3.4), when computing I(R) there appears a term of the
form

(3.5) − 1

π

∑
d<2R

∑
m≤Rσ

∞∑
n=1

µ(d)an
d
√
mn

�
t cos

(
2πt

√
m

)
cos

(
2π
t

d

√
n

)
dν(t).

In [2, Propositions 3.1–3.3] it is proved that the terms with
√
m ̸=√

n/d as well as those coming from the integration of T and U contribute
O
(
R(logR)5/6

)
when Rσ is replaced by M2 in the definition of gσ. The im-

portant point is that these terms are estimated in absolute value and then
the bound still holds with our gσ because σ < 2 ensures Rσ = o(M2) and
there are fewer terms.

Proof of Theorem 3.1. After the previous comments, we have to prove
that the terms in (3.5) with

√
m =

√
n/d contribute −σCR logR asymptot-

ically. For them the integral in (3.5) is
�
t cos2

(
2πt

√
m

)
dν(t) =

1

2
R

2�

1

tψ(t) dt+
R

2

2�

1

tψ(t) cos
(
4πRt

√
m

)
dt.

By repeated partial integration, the last integral decays faster than any neg-
ative power of R. Then the result is deduced if we prove that

(3.6) Mσ(R) ∼ 2πC0σ logR with Mσ(R) =
∑
d<2R

∑
m≤Rσ

∞∑
n=1

d
√
m=

√
n

µ(d)an
d
√
mn

.

In [2], the range of m and the range of n in which an is not negligible were
balanced and d was essentially only subject to d2 |n. In this situation, the
identity

∑
d2|n µ(d) = µ2(n) and its positivity play an important role. Now,

the ranges of m and n are unbalanced and small values of d are forbidden
for n large, ruining the application of the exact identity. This forces one to
take a roundabout way with similar ingredients.

Substituting n = md2 and the definition of an we get

Mσ(R) =
∑
d<2R

µ(d)

d6

∑
m≤Rσ

r3(md
2)fd(m) with fd(x) =

(
d√
x

)3

ϕ̂

(
d
√
x

M

)
.

The properties of the Hecke operators [9, §7] give, for d squarefree,

r3(md
2) ≤ r3(m)

∏
p|d

(p+ 2) < r3(m)d
∏
p|d

(1 + p−1)2 ≪ r3(m)(log log d)2d.

Then the contribution to Mσ(R) of m ≤ d2 is bounded by∑
d<2R

1

d6

∑
m≤d2

r3(m)(log log d)2d4

m3/2
≪

∑
d<2R

(log log d)2

d2
log d≪ 1,
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because
∑

m≤N r3(m) ≪ N3/2. Consequently, we can restrict the sum in
Mσ(R) to d2 < m ≤ Rσ, losing O(1).

On the other hand, Gauss’ elementary geometric argument to count lat-
tice points [10] (cf. [2, §2]) applied to the lattice (d2Z)3 shows that forN ≥ d2

Rd(N) =
4π

3

(
N

d2

)3/2

+O

(
N

d2

)
, where Rd(N) =

1

v(d)

∑
0≤m≤N

r3(md
2),

with v(d) the number of solutions of x2 + y2 + z2 ≡ 0 (mod d2).
By Abel’s summation formula,∑

d2<m≤Rσ

fd(m)
r3(md

2)

v(d)
= Rd(R

σ)fd(R
σ)−Rd(d

2)fd(d
2)−

Rσ�

d2

Rd(t)f
′
d(t) dt.

It is easy to see fd(t), tf ′d(t) ≪ d3t−3/2, because ϕ̂(z) and zϕ̂′(z) are bounded
(and rapidly decreasing). This implies that Rd(t)fd(t) and d−2

	Rσ

d2 t|f
′
d(t)| dt

are O(1). Recalling the last part of Lemma 3.2, we get

Mσ(R) = −4π

3

∑
d<Rσ/2

µ(d)v(d)

d9

Rσ�

d2

t3/2f ′d(t) dt+O(1).

The range d < Rσ/2 is forced by the previous restriction to d2 < m ≤ Rσ.
Integrating by parts shows that the above equals

2π
∑

d<Rσ/2

µ(d)v(d)

d9

Rσ�

d2

t1/2fd(t) dt+O(1).

Unwrapping the definition of fd(t) and introducing

sd = 2πχ(d)

Rσ�

d2

t−1ϕ̂

(
d
√
t

M

)
dt− 2πσ logR

with χ the characteristic function of [1, Rσ/2], we have

Mσ(R) = 2πσ(logR)
∞∑
d=1

µ(d)v(d)

d6
+

∞∑
d=1

µ(d)v(d)

d6
sd +O(1).

The first sum is, by Lemma 3.2,∏
p

(
1− v(p)

p6

)
=

(
1− 8

26

)∏
p

(
1− p2 + p− 1

p4

)
= C0.

It remains to check that the second sum is negligible. Choose

δ = 1
4 min(σ, 2− σ).



10 F. Chamizo

Recall that ϕ̂ is regular, even and ϕ̂(0) = 1, so ϕ̂(x) = 1+O(x2). Substituting
this in sd, we get

sd ≪ log d+

Rσ�

d2

d2

M2
dt≪ log d for d ≤ Rδ,

giving a bounded contribution to the sum. For d ≥ Rδ we use the trivial
bound sd = O(logR) and Lemma 3.2 to get

(logR)
∑
d>Rδ

log log d

d2
≪ log logR

Rδ
logR = o(1).

Summing up, Mσ(R) = 2πσC0 logR + O(1), which is a strong form of the
required formula (3.6).

The resonator giving Theorem 2.2 is a variant of the Fejér kernel and
the gaps between the frequencies ensure that we can capture one of them
without interferences, obtaining the expected correlation. Namely, we choose

g(x) =
e(−νnx)
Λn

(
sin(πΛnx)

sin(πx)

)2

=

Λn∑
k=−Λn

(
1− |k|

Λn

)
e((k − νn)x).

This idea appeared in a different context in [3, Prop. 3.3].

Proof of Theorem 2.2. Let S be the sine sum in the statement. Since

e(x) + e(−x) = 2i sin(2πx)

and Λn ≥ |νn − νm| for m ̸= n, we have
1/2�

−1/2

S(t)g(t) dt =
1

2
an, where g is as above.

Hence for x in a positive measure subset of [−1/2, 1/2] we have

|x|−α|S(x)|
1/2�

−1/2

|t|α|g(t)| dt ≥ 1

2
|an|

and the result follows if we check that (note |g| is even)

(3.7) Bn,α

1/2�

0

tαΛn|g(t)| dt < Λn.

Let I1 and I2 be the contributions to the integral of t ≤ (πΛn)
−1 and

t ≥ (πΛn)
−1. In I1 we use the trivial bound Λn|g(t)| ≤ Λ2

n, and in I2,
Λn|g(t)| < csc2(πt) ≤ (πt)−2+0.6 because csc2 t−t−2 is increasing in (0, π/2].
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Substituting these bounds gives

I1 + I2 <
1

πα+1

(
2Λ1−α

1− α2
− (2/π)1−α

1− α

)
+ 0.3 <

(πΛ)1−α

1− α2
− 2−α

1− α
+ 0.3

for α < 1 and the limit α→ 1+ makes sense. The function

f(α) = 2−α + 0.3(α− 1)− (1 + α)−1(π/5)1−α

is decreasing in [0, 1] (a tedious proof consists in subdividing the interval
into a number of pieces and using trivial bounds to get f ′ < 0 in each of
them). Then f(α) ≥ f(1) = 0 and we can add f(α)/(1− α) to the previous
bound for I1 + I2 to obtain

I1 + I2 <
Λ1−α
n − (1/5)1−α

(1− α2)πα−1
,

and (3.7) follows.

Proof of Theorem 2.3. We take as resonator the shifted Dirichlet kernel

g(t) =
N∑

n=1

e(−nt).

Consider a probability measure dµ = R−1ψ(x/R) dx with ψ(x) ̸= 0 for
x ∈ [1, 2], ψ ∈ C∞

0 ((1/2, 5/2)). We are going to prove that

(3.8)
�
Gg dµ ∼ B.

Then Cauchy’s inequality and
	
|g|2 dµ≪ N imply

	
|G|2 dµ≫ B2/N , giving

the result.
Substituting the definitions of G and g and changing the variable t = Rx

shows that the integral (3.8) is

I =

N∑
m=1

N∑
n=1

∞∑
d=1

f(d)an
�
αd(x)e(R(n/d−m)x) dx

with αd(x) = ϕ(Rx/d)ψ(x).
The terms with m = n/d contribute

N∑
n=1

an
∑
d|n

f(d)
�
αd(x) dx = B

because R ≥ 4N ensures αd = ψ for d < R/4 and
	
ψ = 1.

On the other hand, if d > 3R then αd is identically zero. Hence, for any d,
by partial integration, α̂d(ξ) ≪ (1 + |ξ|)−2K . Then the contribution of the
terms with m ̸= n/d is bounded by
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∑
d≤3R

N∑
m=1

N∑
n=1

n/d̸=m

|an|
(
1 +R

∣∣∣∣nd −m

∣∣∣∣)−2K

=
∞∑

j=−∞
V=2j

∑
d≤3R

N∑
m=1

N∑
n=1

dV /R≤|n−md|<2dV /R

|an|(1 + V )−2K .

Write r = |n−md|. Then n ≡ ±r (mod d) and given n, r and d, the value
of m remains determined. Note that the sum is empty if d ≤ R/(2V ), which
forces V > 1/6. So, we can write the sum as

∞∑
V=2j
V >1/6

∑
R/(2V )≤d≤3R

∑
dV /R≤r<2dV /R

N∑
n=1

n≡±r (d)

|an|(1 + V )−2K .

Using that (6V )K/(1 + V )2K is bounded, the assumption in the statement
ensures that this is o(B) proving (3.8).
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Added in proof. I have known that there is a “resonance method” in-
troduced by Professor Soundararajan in his paper Extreme values of zeta and
L-functions in which a device to prove Ω-results is also called a “resonator”.
I apologize for the unintentional clash of notation and for being unaware of
the method. Although the resonators in the aforementioned paper and here
are in the same vein, there are some differences, the former being based on
a more elaborate theory. Here, they are not assumed to be positive, in fact
they are already oscillatory in [2] (which was published a little earlier than
the “resonance method”), and they do not involve any optimization.
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