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On a Kurzweil type theorem via ubiquity

by

Taehyeong Kim (Jerusalem)

Abstract. Kurzweil’s theorem (1955) is concerned with zero-one laws for well ap-
proximable targets in inhomogeneous Diophantine approximation under the badly ap-
proximable assumption. In this article, we prove the divergent part of a Kurzweil type
theorem via a suitable construction of ubiquitous systems when the badly approximable
assumption is relaxed. Moreover, we also discuss some counterparts of Kurzweil’s theorem.

1. Introduction. Kurzweil’s theorem [Kur55] in inhomogeneous Dio-
phantine approximation is concerned with well approximable target vectors.
We start by introducing related definitions and notations. Given a decreas-
ing function ψ : R+ → R+ and an m × n matrix A ∈ Mm,n(R), we say
that b ∈ Rm is ψ-approximable for A if there exist infinitely many solutions
q ∈ Zn to the inequality

∥Aq− b∥Z < ψ(∥q∥).
Denote by WA(ψ) the set of such vectors in the unit cube [0, 1]m. Here and
hereafter, ∥x∥ = max1≤i≤m |xi| and ∥x∥Z = minn∈Zm ∥x − n∥ for x ∈ Rm.
We say that A ∈Mm,n(R) is badly approximable if

lim inf
∥q∥→∞

∥q∥n/m∥Aq∥Z > 0.

Kurzweil proved the following zero-one law for WA(ψ).

Theorem 1.1 ([Kur55]). If A ∈ Mm,n(R) is badly approximable, then
for any decreasing ψ : R+ → R+ we have

|WA(ψ)| =

{
0 if

∑∞
q=1 q

n−1ψ(q)m <∞,

1 if
∑∞

q=1 q
n−1ψ(q)m = ∞.

Here and hereafter, | · | stands for Lebesgue measure on Rm.
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We remark that Kurzweil showed that in fact the badly approximable
condition is an equivalent condition for the zero-one law, not a sufficient
condition.

In this article, we will consider similar results when the badly approx-
imable condition is relaxed. We say that A ∈Mm,n(R) is singular if for any
ϵ > 0 for all large enough X ≥ 1 there exists q ∈ Zn such that

∥Aq∥Z < ϵX−n/m and 0 < ∥q∥ < X.

Otherwise we call it non-singular (or regular following [Cas57]). One can
check that A ∈ Mm,n(R) is singular if and only if for any ϵ > 0 for all large
enough ℓ ∈ Z≥1 there exists q ∈ Zn such that

(1.1) ∥Aq∥Z < ϵ2−
n
m
ℓ and 0 < ∥q∥ < 2ℓ.

Hence A ∈ Mm,n(R) is non-singular if and only if there exists ϵ > 0 such
that the set

L(ϵ) := {ℓ ∈ Z≥1 : there is no solution q ∈ Zn to (1.1) with ℓ}
is unbounded. We call L(ϵ) the ϵ-return sequence for A.

Remark 1.2. (1) Note that A ∈ Mm,n(R) is badly approximable if and
only if there exists ϵ > 0 such that L(ϵ) = Z≥1.

(2) In a dynamical point of view as in [Dan85], the set L(ϵ) corresponds
to return times to a compact set related to ϵ of a certain diagonal flow in
the space of lattices.

The following is the main theorem of this article.

Theorem 1.3. Let A ∈Mm,n(R) be non-singular with ϵ-return sequence
L(ϵ) = {ℓi}i≥1. For any decreasing ψ : R+ → R+ and 0 ≤ s ≤ m, the
s-dimensional Hausdorff measure of WA(ψ) is given by

Hs(WA(ψ)) = Hs([0, 1]m) if
∞∑
i=1

2ℓinψ(2ℓi)s = ∞.

For δ > 0, let ψδ(q) = δq−n/m. Denote BadA(δ) = [0, 1]m \ WA(ψδ)
and BadA =

⋃
δ>0BadA(δ). Theorem 1.3 with ψ = ψδ and s = m directly

implies the following corollary.

Corollary 1.4. If A ∈Mm,n(R) is non-singular, then for any δ > 0, the
set BadA(δ) has Lebesgue measure zero, hence BadA has Lebesgue measure
zero.

Remark 1.5. (1) Some historical remarks about Corollary 1.4 are in
order. The one-dimensional result of the corollary was proved in [Kim07]
using irrational rotations and the Ostrowski representation. The corollary
in full generality was proved in [Sha13] using a certain mixing property
in homogeneous dynamics. The simultaneous version (i.e. n = 1) of the
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corollary was proved in [Mos] using a certain well-distribution property. Our
method relies on a suitable construction of a ubiquitous system.

(2) A zero-one law for Lebesgue measure ofWA(ψ) in the one-dimensional
case was investigated in [FK16]. According to the results there, Theorem 1.3
is not optimal. It seems interesting to obtain zero-one laws for WA(ψ) in the
multidimensional case.

(3) A weighted version of Kurzweil’s theorem was investigated in [Har12].
There have been several recent results on weighted ubiquity and weighted
transference theorems (see [CG+20, G20, WW21]). It seems plausible that
these results can be utilized to obtain a weighted version of Theorem 1.3.

As stated in [BB+09, Section 9], using Theorem 1.1 and the Mass Trans-
ference Principle of [BV06], one can deduce a Hausdorff measure version of
Kurzweil’s theorem. Theorem 1.3 which relies on the ubiquity method also
implies the following corollary.

Corollary 1.6. If A ∈ Mm,n(R) is badly approximable, then for any
decreasing ψ : R+ → R+ and 0 ≤ s ≤ m, we have

Hs(WA(ψ)) =

{
0 if

∑∞
q=1 q

n−1ψ(q)s <∞,

Hs([0, 1]m) if
∑∞

q=1 q
n−1ψ(q)s = ∞.

Moreover, the convergence part holds for every A ∈Mm,n(R).

Proof. The convergence part will be proved in Section 2. Since the sums
∞∑
ℓ=1

2ℓnψ(2ℓ)s and
∞∑
q=1

qn−1ψ(q)s

are convergent (or divergent) simultaneously, the divergence part follows
from Theorem 1.3 and Remark 1.2(1).

We explore some counterparts of Kurzweil’s theory. We denote by w(A,b)
the supremum of the real numbers w for which, for arbitrarily large X, the
inequalities

∥Aq− b∥Z < X−w and ∥q∥ < X

have an integral solution q ∈ Zn. We also denote by ŵ(A) the supremum of
the real numbers w for which, for all sufficiently large X, the inequalities

∥Aq∥Z < X−w and ∥q∥ < X

have a non-zero integral solution q ∈ Zn. If ŵ(tA) > m/n, then by [BL05,
Theorem], for almost all b ∈ Rm,

w(A,b) =
1

ŵ(tA)
<

n

m
.
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Thus for any δ > 0, the Lebesgue measure of BadA(δ) is full. This is opposite
to Corollary 1.4. Note that if ŵ(tA) > m/n, then tA is singular, hence A is
singular. So, they do not conflict with each other.

If we consider the case ŵ(tA) = m/n and tA is singular, then we cannot
deduce from [BL05, Theorem] that BadA(δ) is of full Lebesgue measure for
any δ > 0. We will give a certain sufficient condition for BadA(δ) being of
full Lebesgue measure for any δ > 0.

If rkZ(tAZm+Zn) < m+n, then ŵ(tA) = ∞, hence we may assume that
rkZ(

tAZm + Zn) = m + n. Then following [BL05, Section 3], there exists a
sequence (yk)k≥1 of best approximations for tA in Zm. Denote Yk = ∥yk∥
and Mk = ∥tAyk∥Z.

Theorem 1.7. If∑
k≥2

max
(
(Y

m/n
k Mk−1)

n
m+n , (Y

m/n
k+1 Mk)

n
m+n

)
<∞,

then for any δ > 0, the Lebesgue measure of BadA(δ) is full.

Remark 1.8. (1) The summability assumption implies Y m/n
k+1 Mk → 0 as

k → ∞, hence tA is singular.
(2) This theorem is stronger than the previous observation because if

ŵ(tA) > m/n, then there is γ > 0 such that Y
m
n
+γ

k+1 Mk < 1 for all sufficiently
large k ≥ 1. Hence,∑

k≥2

max
(
(Y

m/n
k Mk−1)

n
m+n , (Y

m/n
k+1 Mk)

n
m+n

)
<

∑
k≥1

(Y −γ
k+1)

n
m+n <∞

since Yk increases at least geometrically (see [BL05, Lemma 1]).
(3) It was proved in [BK+21, KKL] that A is singular on average if and

only if there exists δ > 0 such that BadA(δ) has full Hausdorff dimension.
Thus it seems interesting to obtain an equivalent Diophantine property of A
for BadA(δ) being of full Lebesgue measure.

The structure of this paper is as follows: In Section 2, we prove the con-
vergence part of Corollary 1.6. In Section 3, we introduce some preliminaries
for the proof of Theorem 1.3 including ubiquitous systems, the Transference
Principle, and a Weyl type uniform distribution. We prove Theorems 1.3 and
1.7 in Sections 4 and 5, respectively.

2. Convergence part: a warm up. In this section, we prove the con-
vergence part of Corollary 1.6. We will use the following Hausdorff measure
version of the Borel–Cantelli lemma [BD99, Lemma 3.10].
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Lemma 2.1 (Hausdorff–Cantelli). Let {Bi}i≥1 be a sequence of subsets
in Rm. For any 0 ≤ s ≤ k,

Hs
(
lim sup
i→∞

Bi

)
= 0 if

∑
i

diam(Bi)
s <∞.

Note that
WA(ψ) = lim sup

∥q∥→∞
B(Aq, ψ(∥q∥)),

where B(Aq, ψ(∥q)∥) denotes the ball in Rm of radius ψ(∥q∥) centered at
Aq modulo 1, and∑

q∈Zn

diam(B(Aq, ψ(∥q∥)))s <∞ ⇐⇒
∞∑
q=1

qn−1ψ(q)s <∞.

Hence, using the Hausdorff–Cantelli lemma, we see that for any 0 ≤ s ≤ m,

Hs(WA(ψ)) = 0 if
∞∑
q=1

qn−1ψ(q)s <∞.

This proves the convergence part of Corollary 1.6.

3. Preliminaries for divergence part

3.1. Ubiquity systems. The proof of Theorem 1.3 is based on the
ubiquity framework developed in [BDV06], which provides a very general
and abstract method for calculating the Hausdorff measure of a large class
of limsup sets. In this subsection, we define ubiquitous systems that suit our
situation.

We consider Tm with the supremum norm ∥·∥. With notation of [BDV06]
we set

J = {q ∈ Zn}, Rq = Aq ∈ Tm, R = {Rq : q ∈ J}, βq = ∥q∥.

Let l = {li} and u = {ui} be positive increasing sequences such that

li < ui and lim
i→∞

li = ∞.

For a decreasing function ψ : R+ → R+, we define

∆u
l (ψ, i) :=

⋃
q∈Zn: li<∥q∥≤ui

B(Aq, ψ(∥q∥)).

It follows that

WA(ψ) = lim sup
i→∞

∆u
l (ψ, i) :=

∞⋂
M=1

∞⋃
i=M

∆u
l (ψ, i).
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Throughout, ρ : R+ → R+ will denote a function satisfying limr→∞ ρ(r)
= 0 and is referred to as a ubiquitous function. Let

∆u
l (ρ, i) :=

⋃
q∈Zn: li<∥q∥≤ui

B(Aq, ρ(ui)).

Definition 3.1 (Local ubiquity). Let B be an arbitrary ball in Tm.
Suppose that there exist a ubiquitous function ρ and an absolute constant
κ > 0 such that

(3.1) |B ∩∆u
l (ρ, i)| ≥ κ|B| for i ≥ i0(B).

Then the pair (R, β) is said to be a locally ubiquitous system relative to
(ρ, l, u).

Finally, a function h is said to be u-regular if there exists a positive
constant λ < 1 such that for i sufficiently large,

h(ui+1) ≤ λh(ui).

With notation of [BDV06], the Lebesgue measure on Tm is of type (M2)
with δ = m and the intersection conditions are also satisfied with γ = 0.
These conditions are not stated here but these extra conditions exist and
need to be established for the more abstract ubiquity.

Combining [BDV06, Corollaries 2 and 4], we have the following theorem.

Theorem 3.2 ([BDV06]). Suppose that (R, β) is a local ubiquitous sys-
tem relative to (ρ, l, u) and assume further that ρ is u-regular. Then for any
0 ≤ s ≤ m,

Hs(WA(ψ)) = Hs(Tm) if
∞∑
i=1

ψ(ui)
s

ρ(ui)m
= ∞.

3.2. Transference principle. We need the following transference prin-
ciple between homogeneous and inhomogeneous Diophantine approximation.
See [Cas57, Chapter V, Theorem VI]).

Theorem 3.3 (Transference principle). Suppose that there is no solution
q ∈ Zn \ {0} such that

∥Aq∥Z < C and ∥q∥ < X.

Then for any b ∈ Rm, there exists q ∈ Zn such that

∥Aq− b∥Z ≤ C1 and ∥q∥ ≤ X1,

where

C1 =
1
2(h+ 1)C, X1 =

1
2(h+ 1)X, h = X−nC−m.

This principle implies the following corollary.
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Corollary 3.4. Let A ∈ Mm,n(R) be non-singular and let L(ϵ) =
{ℓi}i≥1 be the ϵ-return sequence for A. Then for any b ∈ Rm, there exists
q ∈ Zn such that

∥Aq− b∥Z ≤ 1
2(ϵ

−m + 1)ϵ2−
n
m
ℓi and ∥q∥ ≤ 1

2(ϵ
−m + 1)2ℓi .

Proof. This follows directly from Theorem 3.3 with C = ϵ2−
n
m
ℓi and

X = 2ℓi .

3.3. Weyl type uniform distribution. In this subsection, we establish
a Weyl type uniform distribution result for the sequence {Aq}q∈Zn ⊂ Tm.
For A ∈ Mm,n(R), Kronecker’s theorem (see e.g. [Cas57, Chapter III, The-
orem IV]) asserts that the sequence {Aq}q∈Zn is dense in Tm if and only if
the subgroup

G(tA) := tAZm + Zn ⊂ Rn

has maximal rank m+n over Z. If A is non-singular, then tA is non-singular,
hence G(tA) has maximal rank m+ n over Z. By Kronecker’s theorem, the
sequence {Aq}q∈Zn is dense in Tm.

But the density result is not enough for our purpose. We need the fol-
lowing Weyl type uniform distribution result.

Proposition 3.5. If G(tA) has maximal rank m + n over Z, then the
sequence {Aq}q∈Zn is uniformly distributed in the following sense: for any
ball B ⊂ Tm,

#{Aq ∈ B : ∥q∥ ≤ N}
#{q ∈ Zn : ∥q∥ ≤ N}

→ |B| as N → ∞.

Proof. We first claim that for any c ∈ Zm \ {0},
1

#{q ∈ Zn : ∥q∥ ≤ N}
∑

q∈Zn:∥q∥≤N

e2πi(c·Aq) → 0 as N → ∞.

Indeed, by the maximal rank assumption, we have tAc ∈ Rn \Qn. Without
loss of generality, we may assume that the first coordinate, say α, of tAc is
irrational. It follows from c ·Aq = tAc · q that

1

Nn

∣∣∣ ∑
q∈Zn: ∥q∥≤N

e2πi(c·Aq)
∣∣∣ = 1

Nn

∣∣∣ ∑
q∈Zn: ∥q∥≤N

e2πi(
tAc·q)

∣∣∣
≪ 1

Nn
Nn−1

N∑
q1=−N

e2πiαq1

≤ 1

N

2

|e2πiα − 1|
.

Since #{q ∈ Zn : ∥q∥ ≤ N} ≍ Nn, this proves the claim.
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Following the proof of Weyl’s classical criterion (see e.g. [KN74, Theorem
2.1]), we can deduce that for any ball B ⊂ Tm we have

#{Aq ∈ B : ∥q∥ ≤ N}
#{q ∈ Zn : ∥q∥ ≤ N}

→ |B| as N → ∞.

Remark 3.6. The above proposition is slightly different from the mul-
tidimensional Weyl criterion. We do not take every partial sum but “radial”
partial sum.

4. Proof of Theorem 1.3. Let A be non-singular and let L(ϵ) = {ℓi}i≥1

be the ϵ-return sequence. With the notations of Subsection 3.1, we take
sequences l = l(ϵ) = {li} and u = u(ϵ) = {ui} as follows:

ui =
1
2(ϵ

−m + 1)2ℓi and li = c1ui,

with some positive constant c1 = c1(ϵ) < 1, which will be determined later.
We first establish the following local ubiquity result with the set-up of

Subsection 3.1.

Theorem 4.1. The pair (R, β) is a locally ubiquitous system relative to
(ρ(r) = c2r

−n/m, l, u) with constant c2 = ϵ
(
1
2(ϵ

−m + 1)
)1+ n

m .

Proof. Fix any ball B = B(x, r0) in Tm. By Corollary 3.4, we have

B = B ∩
⋃

q∈Zn: ∥q∥≤ui

B
(
Aq, 12(ϵ

−m + 1)ϵ2−
n
m
ℓi
)
.

Since
1
2(ϵ

−m + 1)ϵ2−
n
m
ℓi = ϵ(12(ϵ

−m + 1))1+
n
mu

− n
m

i = ρ(ui),

it follows that

|B| ≤
∣∣∣B ∩

⋃
q∈Zn: ∥q∥≤li

B(Aq, ρ(ui))
∣∣∣(4.1)

+
∣∣∣B ∩

⋃
q∈Zn: li<∥q∥≤ui

B(Aq, ρ(ui))
∣∣∣

By Proposition 3.5 with 2B = B(x, 2r0), there is an absolute constant C > 0
independent of the choice of B such that for all large enough i ≥ 1,

#{Aq ∈ 2B : ∥q∥ ≤ li} ≤ Clni |B|.

Thus for all i ≥ 1 large enough such that ρ(ui) < r0, we have∣∣∣B ∩
⋃

q∈Zn: ∥q∥≤li

B(Aq, ρ(ui))
∣∣∣ ≤ Clni |B|(2ρ(ui))m = (2c2)

mCcn1 |B|.

By taking 0 < c1 < 1 such that (2c2)
mCcn1 < 1/2, which depends only on ϵ,
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it follows from (4.1) that for all large enough i ≥ 1,

|B ∩∆u
l (ρ, i)| =

∣∣∣B ∩
⋃

q∈Zn: li<∥q∥≤ui

B(Aq, ρ(ui))
∣∣∣

≥ |B| − (2c2)
mCcn1 |B| > 1

2 |B|.
Proof of Theorem 1.3. It follows from ℓi+1 ≥ ℓi + 1 that for any i ≥ 1,

ρ(ui+1) =
1
2(ϵ

−m + 1)ϵ2−
n
m
ℓi+1 ≤ 2−n/m 1

2(ϵ
−m + 1)ϵ2−

n
m
ℓi = 2−n/mρ(ui),

hence ρ is u-regular. Since the sums
∞∑
i=1

ψ(ui)
s

ρ(ui)m
and

∞∑
i=1

ψ(2ℓi)s

ρ(2ℓi)m

are convergent (or divergent) simultaneously, Theorems 3.2 and 4.1 imply
Theorem 1.3.

5. Proof of Theorem 1.7. In order to prove Theorem 1.7, we basically
follow the proof of [BL05, Theorem].

As in the introduction, let (yk)k≥1 be a sequence of best approximations
for tA. Let Yk = ∥yk∥, Mk = ∥tAyk∥Z, and

γk = max
(
(Y

m/n
k Mk−1)

n
m+n , (Y

m/n
k+1 Mk)

n
m+n

)
for each k ≥ 2. For any α > 0, consider the set

Bα({γk}) = {b ∈ [0, 1]m : ∥b · yk∥Z > αγk for all large enough k ≥ 2}.
Proposition 5.1. For any α > 0,

Bα({γk}) ⊂ BadA

(
α− n

m

)
.

Proof. Consider the following two sequences:

Uk =

(
Yk
γk

)m/n

and Vk =
γk
Mk

.

We first claim that (1) Vk → ∞ as k → ∞; (2) Uk < Vk; (3) Uk+1 ≤ Vk.
Indeed, (1) is clear, (2) follows from Mk < Mk−1 and Yk < Yk+1, and (3)
follows from

Uk+1 ≤
(

Yk+1

(Y
m/n
k+1 Mk)

n
m+n

)m/n

=
(Y

m/n
k+1 Mk)

n
m+n

Mk
≤ Vk.

Hence the union
⋃

k≥2[Uk, Vk) covers all sufficiently large numbers.
Now fix any b ∈ Bα({γk}) and let q ∈ Zn be an integral vector with

sufficiently large norm. Then we can find an index k ≥ 2 with

(5.1) Uk ≤ ∥q∥ < Vk.
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Using the inequality in [BL05, (16)], we have
αγk < ∥b · yk∥Z ≤ mYk∥Aq− b∥Z + n∥q∥Mk,

hence it follows from (5.1) that

∥q∥n/m∥Aq− b∥Z >
αγk − nVkMk

mYk
U

n/m
k =

α− n

m
.

This proves the claim.
Proof of Theorem 1.7. It follows from the assumption

∑
k≥2 γk <∞ and

the Borel–Cantelli lemma that |Bα({γk})| = 1 for any α > 0. Given any
δ > 0, Proposition 5.1 with α = mδ + n implies Theorem 1.7.

Acknowledgements. I would like to thank Victor Beresnevich and
Nikolay Moshchevitin for providing helpful comments.
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