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Abstract

We establish the existence and uniqueness of a renormalized solution to the parabolic equation

8%7(:) —div(a(z,t,u,Vu)) = f inQx (0,7)
subject to a mixed boundary condition. Here b(u) is a real function of u, —div(a(z,t,u, Vu))
is of Leray-Lions type and f is an L'-function. Then we compare the renormalized solution to

two other notions of solution: distributional solution and weak solution.
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1. Introduction

In this paper, we deal with the existence and uniqueness of a renormalized solution to a
parabolic equation with L'-data. The topic of renormalized solutions has been of great
interest since its first appearance in the work of DiPerna and Lions in [DL89]. The type of
equation under investigation here is much inspired by [BGR16|, with a newly added fea-
ture being that we consider a mixed boundary condition instead of the classical Dirichlet
boundary condition. This extension has been employed in other parts of mathematical re-
search such as [TOBI12| [CT18| [Vit02, [HDJKR16]. Closest to our consideration is [GO17],
in which the authors established the existence and uniqueness of a renormalized solu-
tion to an elliptic equation with a mixed boundary condition (on a perforated domain).
Mixed boundary conditions, besides being more general, pose certain technical challenges.
Namely, one has to deal with traces of Sobolev functions and their various aspects. On top
of that, our analysis becomes more involved in the presence of the time variable. A tool
that is widely employed in this regard is the time regularization introduced in [BMROI].
However, here we explore a different technique developed in [BP05], which was observed
in [BGR16, proof of Lemma 3.2| to be “simpler and shorter”. Following the existence
and uniqueness parts, we also compare the renormalized solution to two other notions
of solutions: distributional solution and weak solution. We show that they coincide when
the data are sufficiently smooth.

Now we formulate our problem precisely. Let d € N, T > 0 and Q C R? be open and
bounded with Lipschitz boundary 02 = I'g U T'1, where T’y is a non-empty open subset
of 9 and I'y = 09\ T'y. Denote

QT =0 x (O,T‘)7 EO = FO X (O,T) and 21 = Fl X (O,T)

Let 77 be the unit outward normal vector on 9f2. Consider the problem

alg(tu) —div(a(z,t,u, Vu)) = f in Qr,
u(z,t) =0 on Y,

a(z,t,u, Vu) - i+ y(x,t) h(u) =g on Xy,
b(u(z,0)) = blug(x)) in Q
subject to the following structure:

(H1) f € LYQr), g € L'(X1), 0 < v € L*(X;) and h : R — R is a nondecreasing
continuous function with h(0) = 0.
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(H2) a : Q7 x R x R? — R? is a Carathéodory function, in the following sense: a is
measurable with respect to (x,t) for every (s,£) € R x R? and continuous with
respect to (s,&) for a.e. (z,t) € Q7.

Let p € (1,00) be such that
2d
D> D) (1)
and p’ its Holder conjugate index.
There exists a function K € L? (Qr) such that for all k > 0 and s € [—k, k]

there exists a constant vy = v(k) > 0 such that
la(@,t,5,6) < (K (2, t) + [¢[771) (2)

for a.e. (z,t) € Qr and for all £ € R%.
There exists a constant « > 0 such that

a(x,t,s,§)~§2a|§|p (3)
for a.e. (z,t) € Qr and for all (s,£) € R x R%.
We have
(a(z,t,5,8) —alx,t,s,m)) - (£ —n) >0 (4)

for a.e. (z,t) € Qr and for all £,n € R? with ¢ # 7.

(H3) b:R — R is a strictly increasing C'-function with b(0) = 0. Moreover, there exists
a constant 5 > 0 such that ¥'(s) > g for all s € R.

(H4) wp : Q — R is measurable such that b(ug) € L*(£).

(H5) Ty supports the Poincaré inequality: There exists a constant Hy > 0 such that

[vlwre@) < Hol[Vol[ze o)
for all v € er(’]p (Q), where
WP (Q) = {v e W'(Q) : v|p, = 0}
and v|p, is understood in the trace sense.
Two remarks are immediate.

REMARK 1.1. In (H2), no growth restriction is imposed on the s-variable of a. In (H3),
b is allowed to grow to infinity. Hence a and b present two unbounded nonlinearities in
our equation.

REMARK 1.2. The study of the space Wllép (€) is interesting in its own right. We list here
some essential facts.

e It is well-known that if the boundary of T’y in 99 is sufficiently smooth, then (H5)
holds. Investigations along this line can be found in, for example, [TOB12] and [CT18].
In particular, a sufficient condition for (H5) is that T'y satisfies the corkscrew condition
relative to 012, in the sense of [CT18| Definition 2.1] or [TOB12, (1.4)]. Also see the
paragraph preceding [TOB12, Lemma 3.7].

e If p = 2 then (H5) always holds regardless of the geometry of Ty (cf. [SS11l, Corol-
lary 2.5.8]).
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e In view of (H5), we can replace the usual norm || - [[yy1.p(q) of W;OP(Q) with the equiv-
alent one given by ||V - || L»(q). We will follow this practice from here onward.

The functional setting for the solutions to (P) is appropriately described by the

Sobolev space
V= LP(0,T; WP ().
In what follows, the dual space of V' is denoted by V*, i.e.,
V= L (0,T5 (WP ())).
Note that the range for p in is to guarantee the existence of the Gelfand triple
WEP(Q) e L2(Q) — WL (Q),

where —<— and < denote the compact and continuous embeddings respectively. Hence

we may apply the Aubin—Lions embeddings in what follows.
In this paper, we are interested in renormalized solutions to (P) whose definition is

given next.
For each k > 0, define the truncation function Ty : R — R by
k if r >k,
Tp(r):=<r if—k<r<k,
—k ifr < —k.

For each function v € V' and for a.e. t € (0,T'), the values of v(¢) on I'y are understood
in the trace sense.

DEFINITION 1.3. A renormalized solution to (P) is a measurable function u : Qr — R
with the following properties:

(R1) b(u) € L=(0,T; L*(R)).
(R2) For each k > 0 we have Ty (u) € V and

— Bs(u)et dxdt—i—/ a(z, t,u, Vu) - V(S (u)p) dcr:dt—l—/ vh(u)S' (u)p do(x) dt

Qr T D]
= fS'(u)cpdxdt—F/ 95" (u)pdo(z) dt—l—/ Bs(ug)p(0)dx  (5)
Qr P Q

for all S € W?2°°(R) such that supp S’ is compact and ¢ € C°([0,T) x Q1), where
0 :=QUTy, do(z) denotes the surface measure on I'y and

¢
Bs(¢) ::/0 b'(s)S'(s)ds (6)
for all £ € R.
(R3) One has

lim a(z,t,u, Vu) - Vudz dt =0,
k=00 Jie<|ul<k+1]
where
k<|ul <k+1]:={(z,t) € Qr : k < |u(z,t)| < k+1}.

Two remarks are in order.
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REMARK 1.4. Let u be a renormalized solution to (P). Then each term in is well-
defined. Indeed, we have the following:
* Bs(u) € L'(Qr) since |Bs(u)| < [[S"]| o) b(u)] € L (Qr).
Similarly, Bs(ug) € L*(€).
o yh(u)S'(u) € L*=(%1), g5 (v) € LY(21) and £S5 (u) € L (Qr).
e Let k& > 0 be such that supp S’ C [k, k]. Using , we get

‘/ ) a(z,t,u, Vu) - V(S (u)y) dx dt
= ’/T a(x, t,u, Vu) - (Vu)S" (u)p + a(z, t,u, Vu) - S’ (u)Ve dz dt‘

=| [ atet T, 0 - (VT ()

+a(z,t, T (u), VT (u)) - S (u)Ve dx dt‘

< Sl ([ (KIVT@] + [FTPel + (6 + VTP IVl da )

Qr
< 00,
where we have used the fact that Tj,(u) € V by (R2). See Lemma[2.2]for more properties
of Ty (u).

REMARK 1.5. Deﬁnitionis in the spirit of [BGR16] Definition 2.1], which at first sight
appears to be different from other definitions of renormalized solutions commonly used
in the literature (cf. [BWZI0l Definition 3.1], for example). In fact, the two definitions
are equivalent in view of Lemmas [3.10] and [5.2] below.

We first discuss the existence and uniqueness of a renormalized solution to (P) for
L'-data. The existence part is as follows.

THEOREM 1.6. Letd € {1,2,...}, T > 0 and Q C R? be open and bounded with Lipschitz
boundary 92 = Tg UT1, where Ty is a nonempty open subset of 0Q and T'y = 9Q\ Ty.
Assume (H1)—(H5). Then there exists a renormalized solution to (P).

Under extra assumptions on b and a, uniqueness is also achieved.

THEOREM 1.7. Adopt the assumptions from Theorem[1.6] Assume further that

(i) limgs_yo0 b(8) = 00, limg_y oo b(8) = —00 and b’ is locally Lipschitz,
(ii) for all k > 0 there exist a constant ¢, > 0 and a function Ej, € L (Qr) such that
la(@,t,5,€) = a(z,t,8, )| < |s — &'|[Ex(z,t) + Gel€7] (7)

for a.e. (x,t) € Qr, for all s, s' with |s|,|s’| < k and for each & € RY.
Let u and @ be renormalized solutions to (P). Then u = .
For comparison, we also define distributional and weak solutions to (P).

DEFINITION 1.8. Let 1 < ¢ < p. A function v € L(0,T; W;Oq(Q)) is called a distributional
solution to (P) if the following properties hold:
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(W1) We have
b(u)|i=0 = b(ug) in €,
0
9y *
5 (u) eV
(W2) We have

/ <8b(u)><pdxdt+/ a(m,t,u,Vu)~V<pdxdt+/ yh(u)p do(z) dt
Qr ot Qr P

= fcpdmdt+/ gpdo(z)dt  (8)
Qr D3]

for all ¢ € C°([0,T) x 1), where Q1 := QUT.
If ¢ = p then u is also called a weak solution to (P).

REMARK 1.9. Let ¢ € (1,00) and

Wy = {w e LY0, T;WrI(Q) twp € LY (0, T W (Q) + LNQr)} (9)
Then an obvious modification of [Por99, proof of Theorem 1.1] verifies that
W, = C([0,T]; LH(Q)). (10)

Hence the initial condition in (W1) makes sense.
The next result relates the three notions of solutions to (P).

PROPOSITION 1.10. Adopt the assumptions from Theorem [L.6] Assume further that
feLP (Qr) and ge LP (). Then a weak solution to (P) is also a renormalized solution.

Moreover, if in addition p > 2 — then a renormalized solution to (P) is also a

T+
distributional solution.
REMARK 1.11. The assumptions f € L (Qr) and ¢ € L*' (%) guarantee that con-
tinues to hold for all test functions ¢ € V when u € V. Hence we obtain the usual
formulation for a weak solution to (P).

In the “moreover” part, we require p > 2 — % so that a technical regularity estimate

1
is valid. See Lemma [5.1] below.

The paper is outlined as follows. In Section [2[ we discuss the space WI}(’)’) (©) and its
related embeddings in more details. Theorems[1.6| and [1.7] are proved in Sections [3] and
respectively. Proposition [1.10]is proved in Section

Standing assumptions. In the whole paper, d € {1,2,...} and Q C R? is open and
bounded with Lipschitz boundary. We always assume that (H1)-(H5) hold.

If further assumptions are required in certain statements, we will state them explicitly
therein.

Notation. We employ the following notation:

L] Ql =QuU Fl.

dz is the Lebesgue measure on Q and do(z) is the surface measure on 9.
|E| is the Lebesgue measure of F for all measurable E C Qr.

o(E) is the surface measure of E for all measurable E C ¥;.

V = LP(0,T; WP () and V* = L (0,T; Wy, "7 (92)).
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2. Function spaces

Recall that
WEP(Q) == {u € W'P(Q) : ulr, = 0},

where u|p, is understood in the trace sense. An equivalent realization of Wllc’)p (Q) is

1p — WP (Q)
WrP(Q) = {u € CHQ) : ulp, = 0}
Define
00 ifd <p, 00 ifd <p,
PG = nd and pr, = p(d—1)
— ifd — if .
i—p ifd>p i ifd>p

The next lemma explains the trace embedding and tells us that the space Wll(’)p (Q)

behaves similarly to W, *() in several respects. See [AF03, Theorems 4.12 and 6.3] for
more details.

LEMMA 2.1
(i) The embedding
Wl () = L9(Q)

is continuous for all q € [1,p§] and is compact if q € [1,p§).
(ii) The embedding
W (€) < L1(T'y)

is continuous for all ¢ € [1,p} ] and is compact if ¢ € [1,pf).
Given a constant k > 0 and a measurable function u defined on a set D, we write
[u>kl:={xeD:u(z)>k}.
A similar convention applies to
[u<k], [u>k] and [u< k]

The following lemma gives a meaning to the gradient of a function by means of
truncation.

LEMMA 2.2. Let u: Qr — R be a measurable function such that Ti(u) € V' for all k > 0.
Then there exists a unique measurable function v : Q — R? such that

VTi(u) = v 1jy<r ae inQr
for all k > 0, where

0 otherwise.

1 onlul <&,
Ljjuj<k] :=

Moreover, if
sup ¢ [| T (u) ||}, < oo (11)
E>1
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then there exists a unique measurable function w : X7 — R such that
Tp(u)|r, = Ti(w) a.e. in 3y
for all k > 0.

Proof. The first statement is a consequence of [BBGT95, Lemma 2.1].
To prove the second statement, observe that

ko ([T(u)ls, > k]) < [ Tk(w)ls 1705, (12)

for all £ > 0.
Next we infer from that there exists a constant C > 0 such that

1Tk (uw)[ly, < Ck

for all k£ > 1. For a.e. 7 € (0,T), one has Ty (u)(7) € erop(Q) and hence we may apply
Lemma [2.1fii) to obtain

P
1T () () [ 0y < Soll T (u) (7 )HW;X(Q)-
Integrating both sides of this estimate with respect to T over (0,7T), we arrive at

1Tk (@)l 70 5,y < SollT(w)lIY-

Consequently,
||Tk(u)|zl||1£p(21) < CSok (13)

for all £ > 1.
Combining and yields
o([Ti(u)ls, = k]) < CSok'™?
for all k£ > 1. This implies
lim o([Tk(uw)|s, > k]) =0.
k— o0

Hence, we may decompose

o1 = JMk()ls, <= {JTue (14)

£>0 £>0

For all 0 < ¢ < ¢5 we have

Ty, (To, (u)]s,) = To, (T, (uls,)) = Te, (uls,) = Te, (u)|g, ae. in 3.

Note that Ty, (u)|s, is well-defined in view of Lemma [2.1)ii). This together with
justifies the unique existence of measurable function w : I'y — R such that

Ti(u)ls, = Tk(w) a.e. in 2.
This finishes our proof. m
REMARK 2.3. Let u, v and w be as in Lemma [2.2] In what follows, we define

Vu:=v and ulg, :=w.
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3. Existence of renormalized solutions

In this section, we prove Theorem The procedure is to first consider an approxi-
mate problem of (P) and then to perform limiting arguments to achieve the existence
of a renormalized solution to (P). We divide this section into three subsections. Sub-
section |3.1]| provides the existence of a weak solution to the approximate problem. The
limiting arguments are presented in Subsection Finally, Theorem is proved in
Subsection B.3

3.1. Approximation. Let ¢ > 0. Define

be(r) = Ty/e(b(r)) +er for all r € R,

ac(z,t,5,8) = a(x,t,T1/c(s),§) for a.e. (x,t) € Qr and for all (s,£) € R x R4,
fe=Tief € L(Qr), whence f. — f in L'(Qr) as € — 0T,

ge = Thjeg € L>®(Qr), whence ge — g in L*(X;) as e — 07,

he € C1(R) such that h.(0) = 0, |he| < M, for some constant M, > 0 depending on €
and he — h uniformly on [— K, K] for all K > 0,

o up. € C(Q) such that b (uge) — b(ug) in L' (Qr) as € — 0F. Hence, there exists a
constant 0 < ¢y < 1 such that

l|be (uoe) 1) < lIb(uo)llLr ) +1 (15)

for all 0 < e < €.

Note that a. and be so defined satisfy similar types of estimates specified in (H2)
and (H3) respectively, with obvious dependence of the constants involved on e.
Consider the approximate problem

% —div(ae(z, t, ue, Vue)) = fe in Qr,
(P ue(z,t) =0 on Yo,

a(x,t,ue, Vue) - i + y(z,t) he(ue) = g on X,

be(ue(x,0)) = be(uoe(x)) in Q.

A weak solution to (P.) is defined as follows.

DEFINITION 3.1. A function u. € V is called a weak solution to (P,) if the following
properties hold:

(W1le) We have
be(ue)|t=0 = be(upe) in Q,
8 *
5[)6(’&6) S V .

(W2¢) We have

/ abeT(:g)godxdt—i—/ ae(x,t,ue,Vue)-Vgadxdt—i—/ v he(ue)p do(z) dt
T T P

= fepdxdt +/ gepdo(x)dt  (16)
Qr 1
forall p € V.
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REMARK 3.2. The initial condition in (W1e) makes sense in view of (10).

We aim to show that (P.) has a weak solution. In the course of proof, we make use
of the following classical result whose proof is presented for the sake of clarity.

LEMMA 3.3. Let (un)neny C V be such that

lim u, =u weakly in V
n—oo

and
lim (ae(x,t, tun, Vuy) — ac(x, t, up, Vu)) - (Vu, — Vu)dx dt = 0.

n—oo QT

Then

lim u, =u nV
n—oo

up to a subsequence.

Proof. Using the fact that u, — u weakly in V' as n — oo and the compact embedding
in Lemma [2.1](ii), we infer that

lim w, — u {a.e. in Q7 (up to a subsequence), (17)
noree in LP(Qr).
Next we set
L := (ac(z, t,un, Vuy) — ac(x,t, un, Vu)) - (Vu, — Vu)
= ac(z,t,upn, Vuy,) - Vu, + ac(z,t, up,, Vu) - Vu
—ac(x,t, up, Vy) - Vu — ac(z,t,upn, V) - Vg, (18)
Then L > 0 by , whence L — 0 in L'(Q71) as n — oo. Hence
nli_)rr;oL =0 ae. inQr. (19)
Furthermore, using and then referring to and yields
L > o|Vun [P + [Vul?) = ve(K + [V [P~ V| = ve(K + [Vul’ ™) [Vu,|
alVulP — v . K|Vu V(K + |Vulp~! ve|Vu
= [Vunl? (a +2 ||Vun|P P |vJ;7|Lp—|1 - |v|un||>' (20)

This implies {(Vuy,)(z,t) }nen is bounded for a.e. (z,t) € Qr. Indeed, suppose the oppo-
site. Then there exists a subset D C Qp of positive measure such that

lim |(Vu,)(z,t)] =00 for ae. (x,t) € D.
n— oo
In turn, gives
0= lim dedt

n—oo
a|Vu|p — v K|Vu| v (K +|VulP™) v |V
> i YV, |? - — de dt,
R / (o S VT V)

which is impossible.
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Consequently, there exists a function £* on Qr which is finite a.e. and (up to a
subsequence) satisfies

lim Vu, =& a.e. in Qr.
n—oo

But then
(ae(x7t7u7§*) - aE(x7tau7vu)) : (5* - vu) =0

by virtue of . This in turn implies £* = Vu due to and so we have

lim Vu, =Vu a.e. in Qr.
n—oo

Next we note that {ac(x,t, un, V) fnen is bounded in (LP(Qr))? by (2)) and the fact
that u, — u weakly in V' as n — oco. Moreover,

lim ac(z,t,un, Vuy,) = ac(z,t,u, Vu) a.e. in Q.
n—oo

This in combination with and the Lebesgue dominated convergence theorem gives
nhﬁrr;(} ac(@,t, U, V) - Vg, = ac(z,t,u, Vu) - Vu  in LY(Qr).
Now it follows from that
ae(x,t, Up, V) - Vg, + ac(x, t,u, Vu) - Vu > a(|Vu,|P + [VulP) > 27Pa|Vu,, — VulP.

Hence by Fatou’s lemma one has

2a/ ae(x,t,u, Vu) - Vudx dt
T

< lim inf (ae(m, by un, Vuy) - Vg, + ac(z, t,u, Vu) - Vu — 27Pa|Vu, — VulP) dz dt

n—oo QT

n—roo

= 204/ ae(z,t,u, Vu) - Vudr dt — 27 Palim sup/ |Vu, — VulP dz dt,
T T
or equivalently

n—oo

limsup/ |Vu, — VulP dzdt <O0.

This implies
lim |Vu, — Vul? dzdt = 0. (21)

n—oo QT

Combining and yields the claim. m
Now we show that (P,) has a weak solution. To this end, recall the following definition.

DEFINITION 3.4. Let L be a densely defined maximal monotone linear operator from
D(L) C V to V*. A bounded operator © : V. — V* is called pseudo-monotone with
respect to D(L) if whenever (u,),en C D(L) satisfies

lim u, =u weakly in V,

n— oo

lim Lu, = Lu weakly in V™,
n— oo
lim sup (Ouy,, Uy, — u)y+xy < 0,
n—o0
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then
lim (Ouy,, u, —u) =0,
n—oo
lim Ou, = Ou weakly in V™.
n— oo

LEMMA 3.5. Let 0 < € < 1. Then (P.) has a weak solution u..
Proof. Define

o L.:D(L.) — V* by

(Lew, v)ye v = / 8bg§u)vdxdt

T

for all w € D(L.) and v € V, where
D(L¢) = {ueW, :u(0) =0}

and W, is given by @;
e A.:V = V* by

(Acu, v)yxv = /

ae(z,t,u, Vu) - Vo dz dt + / Yhe(u)vdo(x)dt
Qr

31
for all u,v € V.

Since b, € WH°°(R), it is straightforward to verify that L. is maximally monotone (cf.
[Z£190l Proposition 32.10]). In view of [Zei90, Theorem 32.A], we will show that A pos-
sesses the following properties.

e A, is coercive. Indeed,

(Acu, u)vexy :/ ae(m,t,u,Vu)~Vuda:dt+/ Yhe(w)udo(z) dt
T D3}

1p—1 / /
> (o — ) /QT [Vul? dwdt - 5 I];—%IHVHPM(QT)MS o())
for all w € V and 6 > 0, where 0(X;) denotes the surface measure of ¥; and we have
used Young’s inequality and (H5) in the last step. Hence by choosing a sufficiently small
& > 0, we obtain
(Acu, u)v«xv

— 00 as |lully = oc.

[[ullv

o A, is pseudo-monotone with respect to D(L¢). Indeed, let (up)neny C D(Lc) be such
that

lim u, =u weakly in V,

n— o0

lim Lcu, = Leu  weakly in V*, (22)
n— o0
lim sup (Actin, Uy, — uyyxy < 0.

n—oo

‘We will show that

lim <Aeunvun - U>V*><V =0,
n—oo
lim Acu, = Acu  weakly in V*.

n— oo



16 T. D. Do et al.

Using Aubin-Lions embedding, by passing to a subsequence if necessary, we may assume
that u, — u in L'(Q7). It follows from () that (a(w,t,u,, Vu,))nen is bounded in
(LP (Qr))?. Therefore, there exist a. € (L* (Qr))¢ such that

le ac(,t, tn, V) = a.  weakly in (L (Qr))%. (23)
Then

lim (Actp, v)y-xy = lim ae(x,t, up, Vuy,) - Vodz dt + li_>m Yhe(un)v do(z) dt
n

n—oo n—oo QT o 21
= / a. - Vodzdt + / Yhe(uw)v do(x) dt (24)
T 1
for all v € V, where we have used together with the fact that v, he(u,) € L>®(X1)
and u,, — u in L'(Q7) in the last step.
Next observe that

(limsup/ ae(z, b, Un, V) - Vi, dz dt) +/ Yhe(w)udo(x) dt
T D341

n—oo

= limsup (/ ae(x,t, Up, V) - Vu, dedt + / Yhe(tun )ty do(x) dt)

n—oo T 31

= lim sup <Aeun7 un>V* xv < limsup <A6Un7 U>V* xV

= / a. - Vudzdt + / Yhe(uw)udo(x) dt,
T 2
where we have used and in the last two steps respectively. Hence

lim sup/ ae(x,t, up, V) - Vu, dedt < / ac - Vudzx dt. (25)

n—oo T T

On the other hand, gives

/ (ac(x,t, upn, Vi) — ac(z, t, upn, Vu)) - (Vu, — Vu)dx dt > 0,

T

which leads to

/ ae(x,t,Un, V) - Vu, dedt > / ae(x,t, up, Vuy,) - Vudr dt

T T

+ / ae(z,t, Up, Vu) - (Vu, — Vu) dx dt.
T
In view of (2)) and we deduce that

1irginf/ ae(x,t, up, V) - Vu, dxdt > / ac - Vudzx dt. (26)
oo JQr T

Consequently, and together imply

lim ac(z,t, tup, V) - Vu, dedt = / a. - Vudx dt. (27)

n—oo QT T
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Hence

lim <Aeuna un>V* xV = <Aeua U>V* xV
n—o00

and then

lHm (Actn, uy — wyy-xy =0
n—oo

as required.
To finish, it follows from and that

lim (ae(x,t, Un, Vuy) — ac(x, t, up, Vu)) - (Vu, — Vu)dr dt = 0.

n—oo QT

This in combination with and Lemma yields

lim v, =u inV
n— 00

and

lim Vu, =Vu a.e. in Qr.
n—oo

Hence we obtain

lim ac(z,t,un, Vu,) = ac(x,t,u, Vu)  weakly in (LPI(QT))d,

n— oo
whence

lim A.u, = Acu  weakly in V*

n—oo

as required.

o A, is demicontinuous. Indeed, let (u,)neny C V be such that

lim |lu, —ul|ly = 0.
n—oo

By passing to a subsequence if necessary, we may assume that u,, — v and Vu,, — Vu
a.e. in Q7. Hence,

lim ac(z,t,up, Vu,) = ac(z,t,u, Vu) a.e. in Qr.
n—oo

In addition, it follows from that (ac(z,t, tn, Vi) nen is bounded in (L¥' (Qr))%.
Consequently,

lim ac(z,t,un, Vu,) = ac(x,t,u, Vu)  weakly in (LPI(QT))d. (28)

n—oo

The continuity of he guarantees that

lim yhe(u,) = vhe(u)  weakly in Lp,(Zl). (29)

n—oo
Combining and yields

lm (Actn, V)vexy = (A, V)yexv
n— oo

for all v e V.
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e A, is bounded. Indeed,

[{(Acu, v)v-xv| = ‘/ ac(z,t,u, Vu)-Vo dxdt—|—/ Yhe(u)v do(x) dt’
T z

1

, 1/p' 1/p
< (/ |ae(z, t,u, Vu) P dxdt) </ |Vo|P dx dt)
T Qr
, 1/p’ 1/p
+ ( / yhe ()] do() dt) ( / lo]? do(z) dt)
21 E1
, 1/p’ 1/p
< 2, (/ |K|P +|Vul?P d dt) </ |[Vol? dxdt)
Qr Qr

1/p
+||7||L°°(21)M50(21)1/p (/ [v|P do(z) dt)
>

1
/ 1/p/ ’
< |:2VEH0 (/ |K|p +|Vu|p da:dt) +||'YHL°°(21)M60'(21)1/I) SO:| H’U”V
Qr

for all u,v € V, where Hy and Sy are the constants in the embeddings in (H5) and
Lemma [2.1fii) respectively.

With the above properties in mind, we use [Zei90, Theorem 32.A] to conclude that
there exists a weak solution to (P.) as claimed. m

Next we present some a priori estimates for weak solutions to (P.). Set
Qr :=0x(0,7) and Xi;:=T5 x (0,7)
for each 7 € (0, 7).

LEMMA 3.6. Let 0 < € < €g, where €q is given by . Let ue be a weak solution to (P).

(i) There exists a constant C = C(d,Q,p,«, 5) > 0 such that

1Tk (we)ll Lo (0,7:22(0)) + 1 Tk (ue) IV < CR(Ifllzr (@r) + 9llLr 1) + 10(uo) 1) +1)

for all k > 0.
(ii) There exists a constant C = C(d,Q,p,a, 5) > 0 such that

el > K]l < CE P f Nl @) + gl + 10(uo)llzr @) +1)

for all k > 0. As a consequence, u. is finite a.e. in Q.
(iii) There exists a constant C = C(d,Q,p,a, §) > 0 such that

o([Juels, | > K]) < CE ([ fll1(Qr) + gl + Ib(uo) |21 0y + 1)

As a consequence, ue|y, is finite a.e. in Xq.
(iv) We have

[1be(ue)l[ Lo 0L @) < W fllLr@r) + l9llzrey) + [10(uo) (@) + 1+ [2]/2.
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(v) We have
/ ae(x,t,ue, Ve) - Vue dz dt
[k<|ue|<k+1]

S/ |f|dzdt+/ \g|dcr(x)dt+/ |b(u0)|dxdt+’[|uos\>k]|
[luc|>k] (luclsy [>k] [[woc|>k]

for all k > 0.
Proof. (i) Let 7 € (0,T) and k > 0. Using Ty (uc) L(o,r) as a test function in (16)) gives

/Bek(ue(T)) dac—i—/ ae(w,tue,Vue)-VTk(ue)dxdt—i—/ v he(ue) Ti(ue) do(x) dt
Q b

T 1T

= feTi(ue) dx dt—|—/

geTk (UE) da(x) dt + / Bek (UOE) dl‘,
Q- i

Q

where
Beg (1) ::/0 Ty (s)b.(s)ds

for all » € R. Concerning the left hand side, we note that

/Z vhe (1) Ti () do(z) i > 0,

/QBEk(uE(T))dx > 5/Q</OHE(T) Ti(s) ds) dx

2
_ B/Q u€<2¢> de if [ue(7)] <k,
B/Q(kUE(TN — k;) dxr otherwise
> 5 [ Dutudr)? da (30)

and

/ ae(z,t,ue, Vue) - VTg(ue) da dt

.

= / ae(x,t, ue, Vue) - VI (ue) dx dt
{(z,t)€Q~: |ue(z,t)|<k}

/ ac(z,t,ue, VTi (ue)) - VI (ue) da dt
{(z,)€Q~: |uc(z,t)|<k}

> a/ VT (ue)|? da dt = a/ |V T (ue)|P dx dt
{(@,1)€Qr: |uc(=,t) <K}

Q-
>ty [ 1Ty

where we have used (H5) in the last step.



20 T. D. Do et al.

For the right hand side, we have

| drdt <K luran, [ 0Titue) dote) dt < Kl

and (30 gives
Q Q

Combining the estimates for the two sides and taking the supremum over all 7 € (0,7T),
we arrive at

5 s [ D) do -+ a7 ) I
T7€(0,T) JQ
Bz @r) + lgllzsceny + Ib(uo) ey +1)
for all k£ > 0.

(ii) It follows from (i) that

T
/0 / VTl do dt < Ol @m) + 9]y + 1b(u0) |2y + 1),

where C' = C(d, Q,p,a, 8) > 0. Using (H5), we infer that
H|ue| > k” < k7p||Tk(ue)HLp(QT) < Hpk p||VTk(ue)||Z£p(QT)
< CHEE"P(|fller @) + gl 0y + [10(uo) [ Li (o) + 1)

for all k£ > 0.
Letting & — oo yields

|[lue| = oc]| =0,

whence u, is finite a.e. in Q.
(iii) It follows from (i), Lemma [2.2| and Remark [2.3] that

Ti(ue)ls, = Tk(uely,) a.e. in 3.
Then similar to (ii), we have
o ([luels, [ > Kll) < PN Tx(ucle) Lo,y = k21 Tk (o)l o (s,
<sp [ By g
< Sp(1+ H)k™ p||VTk(u6)||Lp(QT
< C(L+ HOE (Il @) + llgllzr sy + 1b(uo)llzr o) +1)

for all k > 0, where we have used Lemma [2.1fii) and (H5) in the third and fourth steps re-
spectively. Here S, denotes the corresponding constant in the embedding in Lemma [2.1](ii)
andc:c(d’97p7a’/8)>0'
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(iv) Let 7 € (0,T). Let T1(be(uc)) be a test function in (16)). Then

/XE(UE(T)) da:+/ ae(x,t, ue, Vue) - VT (be(ue)) da dt
Q Qr

+ /2 Yhe(ue) Ty (be(ue)) do(x) dt

1T

_ /Q (bl dedi + /E 9T (be(u)) do(x) dt + /Q X, (uo.) dx

1T

< W fllr ey + gl sy + 1b(uo)llzr @) + 1,

where
be(r)
XE(T) ;:/ Tl (S) ds
0
for all r € R.
Note that
be(ue(T))
/Xe(ue(T))dl’ - / </ Ti(s) ds> dx
Q @ AJ0
2
/ Mdm if [be (uc(T))| <1,
Q

/Q<b (ue(7))] = > otherwise.

@+/ Mdaz i [be (ue (7)) < 1,

[ beuopln < é /QX
|ﬂ| [ oy

We proceed as follows. Concerning the left hand side, we note that

/E Yhe(ue) T (ue) do(x) dt > 0

With this in mind, we have

otherwise

and
/ ae(x,tyue, Ve) - VT (be(ue)) da dt

ae(x,t,ue, Vue) - VT (be(ue)) da dt

—

{(z,6)€Q~:]be (ue (,t))|<1}

{(z,t)€Q~:|be (ue(w,t))|<1}

Y%
o

ac(@, t,ue, Vue) - (Vue)T] (be(ue)) Ul (ue) do dt

21
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Hence
sup /\be(ue(T |dgc<—+ sup /X (ue(r
0o<T<T JQ 0<r<T

IQ\
1 fllzr@ry + lgllzr sy + [10(uo) |l (o) + 1

as required.
(v) Let k > 0. Using

@ = Thy1(ue) — Ti(ue)
as a test function in gives

[ Hatwm)do+ [ aotiu V) Vodedt+ [ ahi(u)pdote)
Q T 1

= fecpdxdt+/

gep do(x) dt+/ H. i (uoe) d,
QT 21 Q

where
mwmaémﬂ@—n@M@w

for all » € R. Concerning the left hand side, we note that

/ Yhe(ue)pdo(x)dt >0 and / H(ue(T)) dx > 0,
o o

whereas
/ ae(x,t,ue, Vue) - Vo do dt = / ae(z,t,ue, Vue) - Vu dz dt.
T [k<|ue|<k+1]
For the right hand side, we have
fﬁgodxdtg/ | f|dx dt.
Qr [lue|>k]

To deal with the boundary term, we note that
Tk(u€)|21 = Tk(u6‘21)7

/ ge<pda(x)dt§/ lg| do(x) dt
b3} [luels, |>k]

whence

Also,

/Hek(u(k)dx g/ b (0.) da g/ Ib(uo) | da + |[fuoe] > K.
Q [Juoe|>k] [luoe|>FK]

Combining the estimates for the two sides, we arrive at the claim. =

3.2. Limiting procedure. The estimates in Lemma [3.6] enable us to perform several
limiting procedures.

LEMMA 3.7. Let k > 0 and let ue be a weak solution to (P.) for each 0 < € < eg, where
€0 1s given by . Then there exists a u € V' such that there exists a subsequence of
{uc}o<e<e,, still denoted by {ueto<e<e,, which satisfies the following properties as e — 0% :
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(i) w is finite a.e. in Qr.

(il) ue = u a.e. in Q.

(i) Te(u) €

(iv) Tp(ue) — Tk( ) in V weakly, in LP(Qr) and a.e. in Q.
(v) uls, is finite a.e. in .

(Vi) tuels, = uls, a.e.in Xy,

(Vll) Tk(u6)|gl — Tk( )‘21 m LP(El) and a.e. in 1.

(viii) b(u) € L>=(0,T; LY(Q)).

Proof. Lemma[2.1and (1)) together assert that the embeddings

WrP(Q) = L*(Q) and WprP(Q) < L*(Ty)
are compact. Hence in view of Lemma|3.6[i) and the Aubin—Lions embedding, there exists
a function v, € V such that

in V weakly,
lim Ty(u) =vp < in LY(Qr), (31)
e—0t
a.e. in Qr
and L
in L*(3q),
lim T (o), = vels, { ) (3)
e—0t a.e. in X7.

We will show that there exists a constant 0 < e; < €y such that {u.}o<e<e, and

that

[Jue| > k]| < CE" (| flltr @) + lgllzr (=) + 16(uo)llLr (o)) (33)

and
o({z € Bt Juels,| > BY) < OR (| Flluin + 9l iz + [buo) ooy +1) (34)

for all 0 < € < ey, where C = C(d,Q,p,, 5) > 0.
Let n > 0 and w > 0. Let k be sufficiently large such that

[luel > k]| <n/3 and o({z € 31 : |ucls,| > k}) <n/3

for all 0 < € < €.
Due to and , there exists a constant 0 < €7 < ¢g such that

1T (ue) = Tio(uer)| = w]| <n/3

and
[T (ue) s, — Tr(ue)ls, | > wl| <n/3

for all 0 < ¢,€ < €.
Note that

[lue —uer| = w] C [Jue| = kU [|uer| = k] U [| Ty (ue) — Th(ue)| = ],
whence
[Jue = uer| > w]| < |[Jue| > K| + [[luer] > k]| + |[[T5(ue) = Ti(ue)| > w]| <n

for all 0 < €,¢’ < €1. Hence {ue}o<e<e, is a Cauchy sequence in measure.
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Regarding {ue|s;, fo<e<e,, we first note that
Tr(ue)ls, = Th(ucls,)- (35)

Then arguments similar to the above show that {u.|s, }o<e<e, is also a Cauchy sequence
in measure.
Consequently, there exists a measurable function u : Q7 — R such that

lim ue =u a.e. in Q7.

e—0t
Moreover, u is finite a.e. in Q7 due to . By continuity, we deduce that
lim Ty(ue) =Tru ae. in Qr, (36)
e—0t

whence Tru = v, € V. At this point, (1)—(iv) are justified, except the LP-convergence.
But this follows easily from the Lebesgue dominated convergence theorem.
Likewise, there exists a measurable function w : ¥; — R such that

lim uely, =w a.e. in Xj. (37)
e—0t

Moreover, w is finite a.e. in X1 due to .
By virtue of Lemma and Remark uly, is well-defined. Furthermore, , ,

and together imply
vkl = Th(w) = Ti(u)|s, = Tr(uls,)
for all k > 0. Hence w = u|y,. At this point, (v)—(vii) are also justified.
It remains to prove (viii). To this end, we note that
lim b(uc) =b(u) a.e.in Qr.
e—0t
Using Fatou’s lemma and Lemma iv) yields
16wl o= (0,522 0y < Timinf [[be(ue) || oe 0,751 (2))
< fller@e) +19llrmny + [b(wo)llLr ) +1+1€21/2,
which implies b(u) € L°°(0,T; L*(Q2)) as required.
The proof is complete. m
LEMMA 3.8. Adopt the assumptions and notation from Lemma[3.7 Then
lim a(z,t, Tp(ue), VT (ue)) = a(z, t, Te(uw), VTs(v))  weakly in (LP (Q1))*

e—0t

and

el—iglJr a($7 L, Tk(u6)7 VTk(ue)) : ka(uE) = CL(Q?, i, Tk(u)’ VTk(u)) ' VTk(u) in (Ll(Q"'))d

for all T € (0,T), where Q; := (0,7) x Q.

Proof. We borrow the technique from [BGRI6] proof of Lemma 3.2].
First, in view of and Lemma (i), there exists a function aj, € (L (Qr))? such
that
lim a(z,t, Th(ue), VTk(uc)) = ap  weakly in (L¥ (Qr))%. (38)

e—0+t

Hereafter, the proof is divided into two steps as follows.
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Step 1: We prove that

lim a(x,t, Tk (ue), VT (ue)) - VI (ue)é da dt < / ap, - VT (w)é da dt
e=0% Jor Qr
for all £ € C°([0,T); R).
Indeed, let n > 0 and define

sy = [ (1 [T (s) — Tu(s)]) ds

for each r € R. Also let
¢ € C([0,T) x ),

25

(39)

where 1 = QUT;. Then ¢ := S(u.) ¢ € V and by choosing ¢ as a test function in

we obtain

T
—/ /¢tB€S(u€)dxdt+/ ac(z,t, uc, Vue) - V(S (ue)p) dx dt
0 Q T

+/21 Yhe(ue)S (ue)p do(x) dt

= feS'(uﬁ)qﬁdxdt—&—/ 9eS' (ue)p do(x) dt—/¢(0)BES(uOE) dz,
QT 21 Q
where
Bes(r) = [ b.(5)S'(s)d
s0) 1= [ B8 (s ds
for all » € R.

As a consequence,
—[19ll Lo (@) / a(x, t,ue, Vue) - Vue dx dt
[n<|ue|<n+1]
= _||¢)HLOO(QT)/ ae(x,t, ue, Vue) - Vu dx dt
[n<|ue|<n+1]

< _/21 Yhe(ue)S (ue)d do(z) dt—/ ac(@,t, ue, Vue) - (V) S (ue) da dt

QT
T
+/o /Q@ Beg(ue)dacdt—/qu(O)BES(uoe) dx

+ feS (ue) ¢ dx dt+/ geS' (ue)p do(x) dt
QT ¥

< ||¢||L°°(QT) / ae(xvtauea vue) . vue dz dt
n<|ue|<n+1]

= ||¢||L°°(QT) / a(x,t,ue, Vue) : Vue dx dt
[n<|ue|<n+1]

provided that e < %_H
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Observe that
ae(x,t, ue, Vue) - (V) S (ue)
= a(z,t, Te(ue), VI (uc)) - (VO)Ljju, 1<k
+a(z,t, Tpy1(ue), Vi (ue)) - (V@) S (ue) Ly, >k a-e. in Qr
for all n > k and € < n%_l This and imply

lim ac(z,t, uc, Vue) - (V) (ue) da dt
e—0t Qr

= / ap, - (Vo) dzx dt +/ ant1 - (V@)S' (u) dz dt
[lul<K]

[lul>#]

foralln>k;ande<n%rl.
Letting e — 0" in gives

—[¢llLe(@ryw(n)
T
< [ [ aBstdrai~ [ 60)55(u)ds
- / Yh(u)S (u) dor(x) dt — / a - Vo da dt — / i - (V) (u) da dt
P

[lul<K] [Ju|>k]

+ fS’(u)¢dxdt+/ 95" (u)pdo(x)dt
Qr P

= /OT/QqStBS(u) dmdt—/QqS(O)BS(uo)dm—FQl

< [[@llp= (@ win),

N

where w(n) is such that

nh_}rr;ow(n) =0.

Let {uoj}jen C C(1) be such that ug; — o pointwise in £ as j — oo. Set
u(t) :=ug; if t < 0. Let h >0 and &€ € C([0,T); R) be such that 0 <& < 1. Then

t

¢ = 5% - Ti(u(s))ds € VN L>®(Qr) (42)

and ¢y € L™ (Qr). Hence we may substitute into (41) to arrive at
T b 1 t
Nl <= [ [ 2 (& [ Tetu(s)ds) (Bstu) - Ba(uo)) deds -+
0o JaOt\"h Ji_y
181 Lo (@ryw(n).- (43)
An application of [BP05, Lemma 2.3] with
w=u, FQA)=Ty\), B=DBs, f=DBs(u), Bo=DBg(ug) and ug= ug;

IA

yields
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/ /m( / ())d5>(BS(U)Bs(uo))dxdt
<-/ & Bs(u)l t Tk(U(s))dsfl ' U(S)T,Q(T)Bs(r) i ds) dodi
g heJin h Ji—n Jo

_ . £(0) (BS(UO)Tk(qu) — /0“0‘ Ty.(r)Bs(r) dr> dz.

In turn we obtain

“imint [ [ 2 ek [ uguton as) Bs) - Batuo) v

< [ s - [ Ti0)Bs() drds) deas
Qr 0

- [ s (Bstu)itun) - [ 1) B(r) ar) .

0
Since

t
lim l/ Ti(u(s))ds = Ti(u) inV,
h Jin

letting h — 07 and j — oo in yields

—kw(n) < /Q & (Bs(u)Tk(u) - /0“ Ty (r)Bg(r) dr ds) dz dt
KU (Bs(uo) Tituo) - [ " 1) Bs(r) dr) dn
- / S )Tyt dt = [ e (VT4
Y T
[t (VT @) e d
[lu|>E]

+ [ S )T dadt + / 05" (u)Ti(u)€ dor(z) dt (44)

Qr o
Next, observe that
Lju>k) VIe(u) =0 ae. in Qr

as well as
. _ . ! _
nh_}rr;o Bg(r) =b(r) and nh_)r%oS (r) =
for all 7 € R. Therefore, letting n — oo in yields

0<— / gt(() (u)—/ouT,g(r)b(r)drds>dxdt

/ £(0 ( (u0) T (o) /0 - T,;(r)bo»)dr) de

- [ @ Ti@edote) i~ [ o (VT)E do
Y T

+ [Tk (uw)é dx dt + / 9T (u)€ do(x) dt

Qr 3
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Using the relation

b(2)Tk(2) — /OZ T} (r)b(r) dr ds = /OZ Ty (r)V (1) dr

for all z € R, we infer that

0< /T & (/Ou Ty ()0 () dr) dz dt — /95(0) </Ou T ()0 () dr> dx

- / Y (u) T (w) dor(z) dt — / ax - (VT (u))€ da dt

+ fTi(w)é dx dt + / 9T (w)€ do(x) dt. (45)

QT D31
On the other hand, let £ € C°([0,T),R). We take

o ="Ty (u€)§
as a test function in to obtain

/ /Q & (/ (s)b.(s )ds) dxdt+/T ac (@, t, e, Vo) - (VT (ue))€ da dt

+ /21 Yhe(ue) T (ue)€ do(x) di

— [ rmgdsa |

Qr 3

Consequently,

si(wgdoyar+ [ e [ i as) ar

lim a(x,t, ue, Vue) - (VT (u))é da dt
=0t Jor

= lim ae(x t,ue, Vue) - (VT (ue))€ da dt

e—0Tt

/ /gt</ Te(s)V (s )ds) dxdt+/£ (/OuoTk(s)b’(s)ds> dz

—/ Yh(u) Ty (u)é do(x )dt+/ ka(u)fdxdt—&—/ 9Tk (w)édo(x)dt.  (46)
P

T 3
Combining and , we arrive at (39) as required.
Step 2: Recall from Lemma iv) and that

lim Tk(ue) _ Tk(u) {IH LP(QT)a

e—=0+ a.e. in Qr

and
lim a(z,t, T (ue), VTi(uc)) = ap ~ weakly in (L (Qr))%.

e—0t

Furthermore, a is monotone in view of (4). Keeping these facts and in mind, the
lemma follows by an application of Minty’s trick (cf. [Gal2Il Lemma 3.6]). =
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LEMMA 3.9. Let u be as in LemmaB.1. Then

lim a(z,t,u, Vu) - Vudx = 0.
k=00 Jk<|u|<k+1]

Proof. Let {¢;}jen C C2°([0,T);R) be such that

0<¢ <1 and lim¢; =1 pointwisein [0,T).
j—oo
Then
/ a(z,t,u, Vu)-Vudz dt
[k<|u|<k+1]

= / a(x,t, Tey1(w), Vg1 (w)) - VTqq(u) de dt
(k<|u|<k+1]

< lim inf / a(z,t, Tir1(w), VTg1(u)) - VT (w); dadt
[k<[ul<k-+1]

j—o0

= lim liminf ae(x,t, Tip1(te), Vg1 (ue)) Vg1 (ue); do dt

o0 700 Sk e <ho1)

< lim ae(x,t,ue, Vue) - Vue do dt

e=0F Sk < u|<k+1]

< lim (/ |f] dz dt—l—/ lg| do () dt—l—/ |b(uo)| da dt+|[Juoe| > k]|>
=0T\ [Juc|>4] [luels [>k] [lwoe|>F]

= / |f| dz dt+/ lgl do(x) dt+/ 1b(uo)| da dt+|[Juo| > k]| (47)
(lul>k] [luls, [>K] [lwo|>k]

for all £ > 0, where we have used Fatou’s lemma in the second step, Lemma [3.8] in the
third step and Lemma v) in the fifth step.
Thus

lim a(xz,t,u,Vu) - Vudr dt =0
k=00 Jk<|u| <k+1]

as claimed. m
3.3. Existence of renormalized solutions. In this subsection, we prove Theorem [1.6]
We start with an integration by parts formula which is essentially [BP05, Lemma 2.4]

with Wy P (Q) replaced by Wll(’)p (©). We emphasize that such a replacement causes no
harm to [BP05) proof of Lemma 2.4].

LEMMA 3.10. Let F : R — R be a Lipschitz function and B be a mazximal monotone
graph in R. Define

A
G\ = F'(r) B(r) dr.
W= [ B ar
Let w € LP(0,T; Wll;p(Q)), wg € L*°(Q) and B € L>®(Qr), Bo € L>®(Q) be such that

8 € Blw) a.e inQr, Bo € B(wp) a.e. in €,
By e LY (0, T; WHP' (), B0) =By in W' (Q).



30 T. D. Do et al.

Then

—/OT/QﬁtF(w)fdxdt

T
- / / &(BF(w) — G(w)) dz dt + / £(0) (BoF (wo) — G(wo)) dx
0 Q Q

for all £ € WH>°(Q7) such that EF(w) € LP(0,T; W;OP(Q)) and £(T) = 0.

In particular,

T T
7/0 /Qﬂt}"(w)ﬁ dzx dt = /0 /Q&]-'(ﬁ) dx dt + /Q E(0)F(By) dx
for all £ € WH>°(Q7) such that EF(w) € LP(0,T; W;OP(Q)) and £(T') = 0, where

F(s) := / F(B™Y(r)dr
0
for all s € R.
We are in a position to prove Theorem [T.6]

Proof of Theorem [1.6, We will verify (R1)-(R3) in Definition (R1) follows from
Lemma [3.7(viii) and (R3) is clear due to Lemma [3.9 It remains to verify (R2).

Lemma ili) asserts that T (u) € V for each k > 0. Let us now show that in
(R2) holds.

Let 0 < € < 1, § € W2(R) with suppS’ C [k, k] for some k > 0 and ¢ €
C2°([0,T) x ). Taking S}, (uc) ¢ as a test function in (L6]), we obtain

el 2422 = / (;be(ue)) S’ (ue)p dx dt —|—/ ac(m,t, ue, Vue) - V(S (ue)) da dt
QT

T

+ /Z Yhe(ue)S (ue)p do(z) dt

fES’(ue)godmdt—&—/ 9eS (ue)p do(z) dt
Qr D31
= R! + N2 (48)

We aim to pass to the limit when e — 0T in each term above. First we deal with £!.
Applying Lemma with

W = Uey, Wo = UQe,
F=5(u), &=¢,
B = B€S7 /B = BeS(ue)7 ﬁO = BeS(qu)a

we have
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:/ ( o ) (b= (be (ue)) ) da dt
ool [ s sy as ) arar — [ o) [ 561 (s)) ds ) d
/o fol, Jaeai= [ o[
Lol [ sy ds ) dedi— [ o) [ S (s) ds ) da
0 Q Q 0

/ B.s(uc)pi dx dt — / B.s(uoe)p(0) de,
QT Q
where ,
Bes(l) = / bi(s)S'(s)ds, (€R.
0
Therefore,

lim £ = Bg(u)p: dxdt—/ Bs(up)p(0) dx,
Q

e—0t Qr

due to the definition of wu., Lemma iv) and the Lebesgue dominated convergence
theorem.
Next we use Lemma and the fact that supp S’ C [—k, k] to obtain

lim €2 = lim ac(x,t, Ti(ue), VIg(ue)) - V(S (ue)p) dz dt

e—0T e—0t Qr

_ / a2, b, T (u), VTe(w)) - V(S (u)p) da dt

= / a(z,t,u, Vu) - V(S (u)p) dz dt.
Also,

e—0t

lim €2 = /2 yh(u)S' (u)p do(x) dt

by the Lebesgue dominated convergence theorem.
Concerning the right hand terms, we have

lim R! = / 18" (u)p dx
Q

e—0t

and
lim R? = / 95 (u)pdo(z)dt,
DM}

e—0t

again by the Lebesgue dominated convergence theorem.
In sum,

—/ Bs(u)cptdxdtJr/ a(z,t,u,Vu)~V(S’(u)<p)dxdt+/2 vh(u)S (u)p do(z) dt

- / 18 () da + / 98/ tu)g do(r)di + / By (o) (0) da,

which is (5)).
At this point, (R2) is verified. Hence u is a renormalized solution for (P). m
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4. Uniqueness

In this section, we prove Theorem Inspired by [BGR16|, we rely on two crucial
lemmas.

LEMMA 4.1. Let u be a renormalized solution to (P). Let H € W2°(R) with supp H’
compact. Then

/ OH (b(w))

5 o dxdt + / a(z,t,u, Vu) - V(H' (b(u))) dz dt

+ / vh(u)H' (b(u))p do(x) dt
P

- / FH (b(u))p dar dit + / GH (b(w))pdo(z)dt  (49)

T 31
and
H(b(w))|t=o = H(b(ug)) in Q.

Proof. First we show . Set

S(6) = /0 CH(b(s) s, (eR.

Then S € W2>°(R) and supp S’ is compact. Next, let o € C2°([0,T) x Q). Using S’ (u)¢p
as a test function in and noting that

0 0
Bg(¢) = /0 b’(s)S’(s) ds = /0 b’(s) H'(b(s)) ds=H(b(¢)), (LeR,
we arrive at .

Secondly, we show the initial condition. Observe that
OH (b(u))

H(b(u)) €V and 5

e V*+ LYQr).

Therefore,

H(b(u)) € C([0,T; W 15(Q)) forall1<s< min{p', ddl} (50)

Let ¢ € C°(Q) and set

Using S’(u)p as a test function in gives

/QT HOWD) o a4 /Q ala,t,u, Vu) - V(H'(b(u)) ) du dt

+ /2 yh(u)H' (b(u))p do(z) dt

= fH’(b(u))godxdt—i—/ gH'(b(u))p do(x) dt.
Qr 1
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We focus on the first term of the left hand side. Integration by parts gives

/ M(p drdt = — H(b(u))0spdx dt = / H(b(u))y da dt.
- ot Qr Q

We treat this last term in two different ways. First,

Jim f/ /w{ ) da dt = /wﬂ (o)) dardt = (H(b(u0)- %)y 1 v

oc—0t O

by the Lebesgue differentiation theorem. Second,

1 [ea
[,IH{L*/ /sz )de dt = 11151+;/O CH (b)), %)y - it s O
= <H(b(u(t)))|t:0, ¢>W71,s(g)xw01,s'(m

by .

Hence
(H (b)) ¥y 1.0y s ) = (H OO)le=0: D)y ) sewz+ (@)
for all ¢ € C°(Q)). By density,
H(b(uo)) = H(b(u(t)))li=0
as required. m
LEMMA 4.2. Let u and v be renormalized solutions to (P). Define
A(u, s,k) :={(z, 1) € Qr : [b(u) — b(+s)| < k}
and

W(u,v, s, k) := / b (w)a(z,t,u, Vu) - Vudz dt
A(u,s,k)

+ / b (v)a(x,t,v,Vv) - Vodz dt
A(v,s,k)

for all 0 < k < s. Then

lim inf lim sup M =0.
S5—> 00 k—0+ k
Proof. We argue by contradiction. For each s > 0 define
F(s):= / a(z,t,u, Vu) - Vudx dt + / a(z,t,v,Vv) - Vo dz dt,
[0<b(u)<s] [0<b(v)<s]

G(s) := / a(z,t,u, Vu) - Vudz dt —|—/ a(z,t,v, Vo) - Vo dzdt.
[—s<b(u)<0] [—s<b(v)<0]

Then F and G are increasing, hence are differentiable a.e. with F’ and G’ being measur-
able. Moreover,

Fls) - F(n) > /SF’(z)dz and  G(s / &z (51)

n
for all 0 < n < s.
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At the same time,

1 1
F'(s) = = limsup — [/ a(z,t,u, Vu) - Vudz dt
[s—k<b(u)<s+k]

k—0+ k
+/ a(z,t,v,Vv) - Vudz dt}
[s—k<b(v)<s+k]
1 1
G'(s) = = limsup — [/ a(x,t,u, Vu) - Vudz dt
2 g0t KL —s—k<bu)<—s+i)
+ / a(z,t,v,Vv) - Vodz dt}
[—s—k<b(v)<—s+k]

Now suppose that, contrary to the statement, there exist constants €y, sg > 0 such
that

for a.e. s > 0.

1
lim sup =W (u,v, s, k) > €
k—0+

for all s > sg. Using (H3) we deduce that

1
€0/2 < limsup EW(U’ v, 8, k)

k—0t

1
< V'(s)limsup —

U a(x,t,u, Vu) - Vudz dt
k—0+ K [J[b(s)—k<b(u)<b(s)+H]

+ / a(z,t,v,Vv) - Vodz dt}
[b(s)—k<b(v)<b(s)+k]

1
+b/'(—s) limsup — [/
k—ot+ kK [b(—s)—k<b(u)<b(—s)+k]

+ / a(z,t,v,Vv) - Vodr dt}
[—s—k<b(v)<—s+k]
— 2 (5)F(b(s)) + 26/ ()G (—b(=s))
for a.e. s > sg.
Let n > so. Integrating this last estimate over the interval (n,n+1) and then referring

to , we arrive at
F(b(n+1)) = F(b(n)) + G(=b(—n — 1)) = G(=b(-n)) = €/2,

or equivalently

a(z, t,u, Vu) - Vudz dt

/ a(z,t,u, Vu) - Vudz dt +/ a(xz,t,v, Vo) - Vodzdt > €/2.
[n<lu|<n+1]

[n<|v|<n+1]
But this contradicts (R3) in Definition n

Now we prove Theorem [I.7}
Proof of Theorem[1.7. We divide the proof into two steps.

Step 1: Let H € W2°(R) be such that supp H' is compact and n,d,k > 0. For each
r € R define
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T.(r):=<r if b(—n) <r < b(n),
b(—n) if r < b(—n)
and a smooth approximation T2 (r) of T),(r) b
0 if r < b(—n) -4,
%b(_”) if b(—n) — 6 < r < b(—n),
(T2)' () =131 if b(—n) < r < b(n),
b()gd_r if b(n) < r < b(n) + 9,
0 if r > b(n) + 4.

Since T9 € W2°°(R) and supp (f;f)/ C [b(—n) — d,b(n) + d], we may use

1~ ~
= 2T (T3 (b(w) = T (b(v))) Tjo.g
for each ¢ € (0,T) as a test function in to obtain

//8T6 @dmdsdt+// (z, t,u, V) - V((T2) (b(w))p) dz ds dt

st
+/ /21 t’yh(u) (Tn) (b(w)) pdo(zx)dt

/ / T‘s w))pdxds dt +/ / T‘S u))pdo(z)dsdt, (52)
t IR

where we denote
Q1 :=0x(0,¢) and Xq,;:=T7 x(0,¢).

In the same way,

/ /t 8T5 @dmdsdt—k/ /t x,t,v, V) (( ) (b(v))p) da ds dt

- / /zl } vh(u)(T3) (b(v))p do(x) dt

// @dxdsdt+//2 (T2) (b(v))pdo(x)dsdt.  (53)

Subtracting (53]) from , we obtain
L5k + Lon + Lopn + Lo pm

/ /t(aTéat 8T2$(“))>wdxdsdt

+/ / la(z,t,u, Vu) (Tg)/(b(u)) —a(z,t,v, Vo) (i‘f)/(b(u))] -Vpdrdsdt
0 t
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T
a(z, t,u, V) (T2)" (b(u)b (u) - Vu
#) [ Bt v @ o ve
—a(z,t,v, Vv)(T) (b(v))b' (v) - Volpdrds dt

T
) — (1YY v o(x)as
+/0 /gl,tvh(“”(T") (b(w) — (T3)' (b(v))] @ dor(x) ds dt

[ [ 1T 0w~ @) o] asae

T
w0 alEY v - (B b)) dote) dsae
0 Jui,
= mtli,k:,n + mg,k,n' (54)
Next we estimate each term separately. By Lemma [4.1]
T3 (b(w))le=o = T2 (b(v))|i=0 = T3 (b(uo))-
This in combination with [BMP89, Lemma 2.4] gives

T 78 w 6 v " _
o= %/0 /t(aTn((?lz( ) AT (b( ))>Tk(Tn(b(u))—Tn(b(v))) da ds dt
1

ot

= k/TTk (T,(b(u)) — T (b(v))) dz dt,

where

Ti(z) = / Ti(s)ds, zé€eR.
0
Using the definition of ﬁ‘f, we deduce further that
lim inf lim sup lim sup S},-,k,n = / [b(u) — b(v)|dx dt.
Qr

n—oo k—0t §—0t
In a series of technical lemmas below, we verify that
lim inf lim sup lim sup S? ko >0
n—oo k—0t §—0T ’
and

lim inf lim sup lim sup € = 0,
n—oo k—0t §—0t

. 3 4 1 2
where € is either £3, . £5, ., R5, , or R, .
Putting these estimates in (54)), we arrive at

/ |b(u) — b(v)|dzdt <0,
T
which in turn yields
b(u) =b(v) a.e. in Qr.
Since b is strictly increasing, we also have u = v a.e. in Qr as required. m
LEMMA 4.3. Let £§7k,n be defined by . Then

lim inf lim sup lim sup 23,,6,” > 0.
n—oo k—0+t §—0t
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Proof. 1t follows from the definition of 7T % that

lim (T3)'(b(w)) = Lip(—ny<bu)<bn)] = Ljjuj<n] a-e. in Qr

§—0t
and
61—i>%1+ (Tvg)/(b(u» = ]l[b(fn)gb(u)gb(n)] = ]l[\u|§n] in Lq(QT) for all 1 < q < o0.
Furthermore,
lim T°(b(u)) = To(b(u)) a.e. in Qr
6—0+
and

lim 7°(b(u)) = Ty (b(u)) in V.

50+
For all sufficiently small §, we have supp (i‘f)/ C [b(—n) — d,b(n) + ¢] and hence
(T3) (b(w))alz, t,u, Vu) = (T2) (b(w)) alz, t, Tni1(u), Tup1 (V) ae. in Qr.
It follows that

lim £5,, = ! (T —t)

5—0+ E Qr
X []l[wgn]a(x,t,Tn+1(u)7Tn+1(Vu)) — ]lHUKn]a(sc,t,TnH(v),TnH(V"z})ﬂ

X VT (T, (b(w) — T (b(v))) dz dt
1
—</ +/ +/ )...dxdt
k\Jljul<n, vl <n] [lul<n, |v|>n] [lul>n,|v|<n]
2,1 2,2 2,3
= Sk,n + Sk,n + ’Sk,n'
We estimate each term separately.

2,1
Term £, : For short, we denote

D= [Ju] <n, o] <n] N [b(u) = bv)| < K].

Then
gl= @ v b, V)] - V[b(w) — b(v)] de d
k,n_%/D( —t)[a(z, t,u, Vu) — a(zx,t,b, V)] - V[b(u) — b(v)] dz dt
1
=7 /D(T — O[a(z, t,u, Vu) — a(z, t,u, V)] - V[b(u) — b(v)] dx dt
+ % /D(T —t[a(z, t,u, Vv) — a(z,t,v,Vv)] - V[b(u) — b(v)] dz dt

. a2la 2,1b
7' S’k,n + £k,n '
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Observe that
2%’7;‘1 = %/ (T — t)[a(z,t,u, Vu) — a(x, t,u, Vv)] - (Vu — V)b (u) dx dt
D
+ %/ (T —t)[a(z, t,u, Vu) — a(z, t,u, Vo)| - (Vo) [b' (u) — b’ (v)] dx dt
D

> ]1 / (1 t)[a(xvtau, CU) - a(l',t,u, C’U)] . (Vv)[b/(u) — b/('l))] dx dt
D
1,

where we have used (H2) and (H3) in the second step.
By hypothesis, o’ is locally Lipschitz and hence

'(r) =V (s)] < C(n)lr — | <

)~ o)

for all r, s € [-n, n]. Consequently,

T
IIlscn

|a(x,t,u, Vu) —a(x, t,u, Vo)| Vo |b(u) — b(v)| dx dt

/\

\\

|a (x,t,u, Vu) — a(z, t,u, V)| |Vo| dz dt

a(x,t, Tn(

T () — a(z,t, Tp(u), VI, (v)| VT (v)| da dt.

But
Jim fa(w,t, T (), VT, (u) = ale, 6, To(u), VI (0) [ VT, (0)[1p =0 ae. in Qr
—

and
|a(z,t, Tu(u), VTu(w)) — a(z,t, Tu(u), VI ()| [VT,(v )I]lo
< a(@,t,Tn(u), VT, (u) — a(z,t, T (u), VT, (v)| VT, (v)| € LY (Qr).
By virtue of the Lebesgue dominated convergence theorem, we may conclude that
lim |I] > 0.
k—0+

This implies
2,1a

limsup £, > 0.
k—0t
Next we deal with £i g’ In view of ,
gh < / T (u (O)[En(@,1) + Gl VT (0) [PV T (b(w)) — VT3 (b(v))] dax dt.

Since u and v are renormalized solutions to (P), we have
[En(2,t) + Gl VT ()P [V T (b(w) — VT (b(v)| € LN Q).

Next recall that b’ is positive continuous function. Hence for all n > 0 there exists a
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constant «,, > 0 such that

lu—v| = |Th(u) — T (v)] < aplb(u) —b(w)]  a.e. in [Ju| < n,|v] < nl.

Therefore,
szjf < Ta, / [En(z,t) + G| VT (0) PV T, (b(w) — VT, (b(v)) | dz dt.
DAb(w) £b(v)]
But

lim Lpngp(uyzoe)] =0  ae. in Qr.
Jm 1w £b(v) a.e. in Qr

Using the Lebesgue dominated convergence theorem, we obtain

2,16
kn — 0

limsup £
k—0+

Thus,

: 2
limsup £ ,, > 0.
k—0t

2,2 2,3
Terms Sk,n and Sk,n. We have

i :% S ](T—t)a(m,t,Tn(u),VTn(u))VTk(b(u) — b(nsign(v))) dz dt
< T a(x,t, Tp(u), VI, (u)) - Vb(u) dz dt

E Jib(=n)<b(u) <b(=n)+k]U[b(n)—k<b(u)<b(n)]
provided that n > 1.
Similarly,

T

e8| < - a(z,t, T (v), VI, (v)) - Vb(v) dx dt

/[b(—n)<b(v)<b(—n)+k]u[b(n)—k<b(v)<b(n)]

provided that n > 1.
By recalling the definition of W in Lemma we infer that

T
R0 1SRl < W (u,v,n,k)

provided that n > 1.
Hence
lim inf lim sup(|£i’i| + |2i7i|) =0.

n—oo k—0+t

This verifies our claim. m

LEMMA 4.4. Let £§’7k7n be defined by . Then

lim inf lim sup lim sup Eg kn =0
n—oo k—0t §—0t
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Proof. We have

|£§,k,n
e 5\ - -
—1|[ ] et 70 (E) 00w 0T (F000) - Ti00) dedsat
0 t
e ~ - -
+E/ / a(z,t,v,Vv) - (T3)" (b(v))' (v) (Vo) Ty (T2 (b(u)) — T2 (b(v))) dxdsdt‘
0 t
T /
<-— b (w)a(x, t,u, Vu) - Vudz dt
0 Jb(—n)—o<b(u)<b(—n)]U[b(n)<b(u)<b(n)-+o]
T
<= v (v)a(z,t,v, Vo) - Vodzdt
0 Jb(—n)—o<b(v)<b(—n)]U[b(n)<b(v)<b(n)+o]
T
< —W(u,v,n,o).
(o

Now an application of Lemma [£.2] justifies the claim. m
LEMMA 4.5. Let iﬁ%kn be defined by . Then

lim inf lim sup lim sup D‘i(l; e = 0.
n—oo k—0t §—0t

Proof. We have

W=7 [ [ ST Gw) = () O] T (TL0w) - T20(0) dads .
Observe that
lim f[(T2) (b(u)) = (T2) (0(v)] = FILip(—n)<bu)<bm)] — Lp(—n)y<b(o)<bmy] 0 LH(Qr)

§—0+

and

tin, Ti(T5(6(0)) = T (0(0))) = (T b)) = Ta0@D) 4 e 0,

6—0+

Also,

~ {a.e. in Qr,

in R,

k=0t k weak™ in L (R).

1
lim — T (r) = sign(r) {
It follows that

lim lim MR}
k—0t §—0t 9,k,m

= / (T =) Loy <ty <bm)] — Lip(—m)<biw)<pny] sign (Tn(b(w)) — T (b(v))) da dt.

T

Next

lim £ {1y <b(uy<bm) — Lp(—n)<b(o)<bny)) Sign (T (b(u)) — To(b(v))) =0 a.e. in Qr

n—0o0

and

| by <t <bm)] — Lip(—ny<piw)<vny] sign (Tn (b(w)) — Tn(b(v)))| < 2|f| € LY (Qr).
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Hence

lim inf lim sup lim sup Dﬁ,k,n =0
n—oo k—0t §—0*t

in view of the Lebesgue dominated convergence theorem. m
LEMMA 4.6. Let £§7k7n and i)‘{%k . be defined by (B4). Then

lim inf lim sup lim sup 25 ko =0
n—oo k—0t §—0t

and

lim inf lim sup lim sup 9%5 g =0
n—oo k—0+t 5—0+

Proof. The proof is similar to that of Lemma [4.5] We will prove the identity concerning
9‘% kn only.
Recall that

R jon = //E [(T2) (b(w)) — (T2) (b(v))] ¢ do () ds dt.
Observe that

lim g[(77)"(b(uls,)) = (T) (b(v]s,))]

d—=0+
= gL fp(—n)<b(uln,)<bm)] = Lip(—m)<b(ols,)<b(my] 0 L(Z1)

and
Jm T (T3 (buls,)) = T3 (b(v]5,)))

— T (T bluls,)) - Tob(vls,) {

a.e. in 21,
weak™ in L%(Xq).

Also,
in R,

k—0+ k weak” in L°(R).

1
lim — Ty (r) = sign(r) {
It follows that
Jim lim 9, = /Zl(T = D9 p-n)<biuls,) <bm] ~ Lp(=n)<b(ols, ) <b(m]]
x sign (T (b(ulss, ) — Tn(b(v]s,))) dz dt.
Next
Jim gL ip(—n)<buls, )<bm) — Lip(=n)<b(vls,)<b(n))]
x sign (T, (b(uls,)) — Tn(b(v]s,))) =0 ae. in ¥y

and

|91 [p(—ny<buls, )<bn)] = Lp(—n)<b(ols, )<b(m)]]
x sign (T, (b(uls, ) — Tn(b(v]s,)))| < 2|g| € L' (S1).
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Hence

lim inf lim sup limsup R} , ,, = 0
n—oo k—0t §—=0F

in view of the Lebesgue dominated convergence theorem. m

5. Renormalized solutions versus weak and
distributional solutions

This section is devoted to the proof of Proposition[I.10] We report two preliminary results:
one concerning a regularity estimate and one concerning the initial condition in (P).

LEMMA 5.1. Let 2 — ﬁ < p < oo and k > 0. Suppose g € Lp(O,T;Wll(’)p(Q)) N

L>(0,T; LY (Q)) satisfies
lgllze 0,11 () < K
and

sup/ [VglP dzdt < k
£20 J[0<|u|<+1]

for all £ > 0. Set

qo = min{dil (p— 1),p}.
Then for all 1 < g < qq there exists a C = C(k,q) > 0 such that

||g||LQ(0,T;W1l(‘)q(Q)) <C. (56)

Proof. First, if 2 — d%_l < p < d then arguments analogous to those used in [BWZI10,

proof of Lemma 2.1] justify for all

d
<g<——(p—1).
1<q< 7 G- 1) (57)

The only difference is that [BWZ10| proof of Lemma 2.1] requires g € L?(0, T} Wol’p(Q))
in place of g € LP(0,T; Wllc’)p (€2)). This is required to ensure the validity of the Poincaré
inequality, which remains valid for g € L?(0, T} Wll(’)p (Q)) in view of (H5).
Secondly, if p > d, then we replace by
l<qg<p
and then the same arguments as before carry over. m
LEMMA 5.2. Let u be a renormalized solution to (P). Let S € W*>(R) and ¢ € C°(Qr)
be such that supp S’ is compact and S’(u)p € V. Then
Bg(u)|t=0 = Bs(ug) in .
Proof. We simply repeat the second part of the proof of Lemma with H(b(u)) replaced
by Bs(u). m

Keeping the above auxiliary results in mind, we proceed with the proof of Proposi-
tion [L.I0]
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Proof of Proposition . First assume f € Lp/(QT) and g € Lp/(Zl). Let u be a weak
solution to (P). We aim to show that u is also a renormalized solution. To derive (R1),
we argue similarly as for Lemma iv). Condition (R3) also follows due to and the
fact that v € V. It remains to verlfy (R2).

Let S € W2°°(R) be such that supp S’ is compact and ¢ € C2°([0,7T) x ;). Observe
that holds for all test functions in V' by density. Therefore, we may use S'(u)p € V
as a test function in to obtain

/ (3615 (u ))S'( )godacdt—l—/QTa(x,uu,Vu)-V(S’(u)go)dxdt—i—/E vh(u)S' (u)p do(x) dt

1

= fS’(u)(pdxdt—i-/ gS’ (u)pdo(z)dt.  (58)
Qr 3

Comparing to ([5), we see that (R2) holds if

0
/ <b(u)>5’(u)<pdxdt = —/ Bg(u)p: dz dt—i—/ Bs(ug)p(0) da. (59)
Qr ot T Q
But this is clear in view of Lemma [3.10] Indeed, applying Lemma [3.10] with
w=u, wy=ug, F=T,, B=DBs, [=DBgs(u) and [y= Bs(up),

we have

/QT (gtb(“)> S’ (u)p da dt

:/ (aatb( )>Sl(b (b(u)))p da dt

//Q (/b(u bl(s))ds>dxdt+/ (0)</b(UO)S’(b())ds>daz
//Lpt(/ () (s ds)dacdt+/ (/ S'()H (s ds)dx

which is . At this point, we may conclude that u is a renormalized solution to (P).
Now we deal with the “moreover” part. Let p > 2 — Wll and u be a renormalized
solution to (P). We aim to show that u is also a distributional solution. To this end, let

1 < g < p. We will verify that v € L(0,T; W;OQ(Q)) and u satisfies (W1) and (W2).
We first show that w € L%(0, T} Wl’q( )). Since w is a renormalized solution to (P),
we have b(u) € L>(0,T; L*(2)). From this, we deduce that

llull o 0,501 () = esssup(/ |u(z, t) |dx) = esssup(/ b= ))|dx>
0<t<T 0<t<T
<ot asssup( [ plute)lde ) = 57 6l 0y < .
Q

o<t<T

where we have used (H3) in the third step.
Consequently, for all k > 0 we have Ty (u) € V N L>(0,T; L*(2)) and

a/ VT (w)|P dzdt < |[fllLr@qr) + l9llLr sy + 16(uo)ll L2 (o) + €]
[0< | T ()| <€+1]



44 T. D. Do et al.

for all £ > 0 in view of and . It follows from that
HTk(u)||LQ(O,T;W11[‘)q(Q)) <,

where the constant C' > 0 is independent of k. Hence, we also have v € L9(0, T’ Wéoq(Q))
as required.

We proceed to verify (W1) and (W2). Recall from (6 that

r) = /0 b (5)S'(s) ds

for all » € R and S € W2°°(R) such that supp S’ is compact. Now we set

S(r) = Su(r) = / (1 [T (s) — Ta(s)]) ds
for each r € R and k£ > 0. Then
Bs, (r / V(s) (1~ [Tosr(s) — Th(s)]) ds

for all 7 € R and k > 0. Letting k — oo yields

lim B, (r) = /0 Y (s)ds = b(r)

— 00

for all » € R. It follows from Lemma [5.2| that Bg, (u)|t=0 = Bs, (uo). Hence
b(u)|t=o = lim Bg, (u)|t=0 = lim Bg, (ug) = b(ug). (60)
k—oo k—o0

In addition, we deduce from that

- Bg, (u)y dx dt +/ a(z,t,u, Vu) - V(S},(u)p) dr dt +/ vh(u) Sy (u)p do(x) dt

QT T Y

= fS,'c(u)cpdxdtwL/

Qr 31

for all p € C°([0,T) x ©1). Now we let k& — oo to arrive at

98} (u)p do(x) dt - /Q Bs, (up)(0) d

—/ b(u)py dmdt—i—/ a(x,t,u,Vu)-Vapdacdt—i—/ yh(u)p do(z) dt
T T 2y

= fodxdt+ / gpdo(x)dt — / b(uo)p(0) dx
QT ¥ Q
for all o € C°([0,T) x Q). Since f € L” (Qr) and g € L¥' (%),
9 .
En b(u) € V*. (61)

At this point, and together verify (W1).
Next, Lemma [3.10] implies

/buo 0)dx — b(u)gotdmdt:/ (ab(u)>g@daﬁdt
Qr T ot
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for all p € C2°([0,T) x ;). Consequently,

/QT (;b(u)><ﬂdxdt—|—/ a(x,t,u,Vu)-Vgoda:dt—F/ yh(u)p do(z) dt

T 31

= fodzdt+ / gpdo(z)dt  (62)
Qr 1
for all ¢ € C2°([0,T) x£21). By density, also holds for all ¢ € V| which justifies (W2).

Hence u is a weak solution to (P) as required. m
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