ALGEBRAIC ANALYSIS AND RELATED TOPICS BANACH CENTER PUBLICATIONS, VOLUME 53 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2000

AN ALGEBRAIC DERIVATIVE ASSOCIATED TO THE OPERATOR D^{δ}

V. M. ALMEIDA, N. CASTRO and J. RODRÍGUEZ

Departamento de Análisis Matemático, Universidad de La Laguna 38271 La Laguna (Tenerife), Canary Islands, Spain E-mail: valmeida@ull.es

Abstract. In this paper we get an algebraic derivative relative to the convolution

$$(f * g)(t) = \int_0^t f(t - \psi)g(\psi)d\psi$$

associated to the operator D^{δ} , which is used, together with the corresponding operational calculus, to solve an integral-differential equation. Moreover we show a certain convolution property for the solution of that equation.

1. Introduction. W. Kierat and K. Skórnik [2], using the Mikusiński operational calculus, have solved the differential equation

$$t\frac{d^2x}{dt^2} + (c-t)\frac{dx}{dt} - ax = 0 \qquad (c, a \in \mathbb{C})$$

which for c=1 reduces to the Laguerre differential equation and one of its solutions is

$$x_a(t) = \sum_{k=0}^{\infty} {\binom{-a}{k}} (-1)^k \frac{t^k}{\Gamma(k+1)}$$

satisfying the convolutional property

$$\frac{d}{dt}(x_a * x_b)(t) = x_{a+b}(t)$$

where * represents the Mikusiński convolution.

We define the algebraic derivative

$$\mathcal{D}f(t) = \frac{-I^{\delta-1}}{\delta}tf(t), \quad \text{ for the convolution } \quad (f*g)(t) = \int_0^t f(t-\psi)g(\psi)d\psi$$

where $I^{\alpha}f(t)=\frac{1}{\Gamma(\alpha)}\int_0^t{(t-\tau)^{\alpha-1}f(\tau)d\tau}$ represents the Riemann-Liouville fractional integral operator.

²⁰⁰⁰ Mathematics Subject Classification: 44A40, 26A33, 33A20.

The paper is in final form and no version of it will be published elsewhere.

The convolution * is defined on the set

$$C_{\delta} = \left\{ f(t) = \sum_{k=1}^{\infty} a_k t^{k\delta - 1} \text{ uniformly convergent on compact subsets of } [0, \infty) \right\}$$

introduced by Alamo and Rodríguez in [1].

Using a similar technique as in[2] and the appropriate operational calculus for * we can get a solution of the following integral-differential equation

$$-\mathcal{D}(D^{\delta})^{2}x + (1+\mathcal{D})D^{\delta}x - ax = 0 \quad (a \in \mathbb{C}) \quad (\delta > 1)$$

which we denote by $x_a(t)$, satisfying

$$D^{\delta}[x_a * x_b](t) = x_{a+b}(t).$$

2. An operational calculus for D^{δ} . The algebraic derivative \mathcal{D} . Let $\delta > 1$ be a fixed real number (when $\delta = 1$, it reduces to Kierat and Skórnik's case). As Alamo and Rodríguez [1] did, we define the set of positive real variable functions with complex values

$$C_{\delta} = \Big\{ f(t) = \sum_{k=1}^{\infty} a_k t^{k\delta - 1} \text{ uniformly convergent on compact subsets of } [0, \infty) \Big\}.$$

They proved that $(C_{\delta}, +, \cdot_{\mathbb{C}})$ is a vector space.

Unlike these authors, we will consider in C_{δ} the Mikusiński convolution given by $(f * g)(t) = \int_0^t f(t - \psi)g(\psi)d\psi.$

From the definition of * we get immediately the following propositions.

PROPOSITION 1. 1.
$$t^{k\delta-1} * t^{m\delta-1} = B(k\delta, m\delta)t^{(k+m)\delta-1}$$

2.
$$(f * g)(t) = \sum_{k=2}^{\infty} \{\sum_{j=1}^{k-1} a_j b_{k-j} B[j\delta, (k-j)\delta]\} t^{k\delta-1}$$
.

Here $B(u,v) = \int_0^1 (1-t)^{u-1} t^{v-1} dt$ represents the beta function, $f(t) = \sum_{k=1}^\infty a_k t^{k\delta-1}$ and $g(t) = \sum_{k=1}^\infty b_k t^{k\delta-1}$.

This proposition shows us that * is a closed operation on C_{δ} , so we can conclude that $(C_{\delta}, +, *)$ is a subring of (C, +, *). Here C represents the set of continuous complex functions of a positive real variable. Mikusiński [3] and Yosida [5] showed that the convolution * has no zero divisors and there is no unit element on the set C, thus we can state the next proposition.

Proposition 2. $(C_{\delta}, +, *)$ is a commutative non-unitary ring without zero divisors.

REMARK. It can be proved in a direct way that $(C_{\delta}, +, *)$ is a ring.

Therefore, C_{δ} can be extended to its field of fractions $M_{\delta} = C_{\delta} \times (C_{\delta} - \{0\}) / \sim$, where the equivalence relation \sim is defined, as usual, by $(f_1, g_1) \sim (f_2, g_2) \Leftrightarrow f_1 * g_2 = g_1 * f_2$; actually M_{δ} is a subfield of the Mikusiński field. The elements of M_{δ} will be called operators, and from now on we denote by $\frac{f}{g}$ the equivalence class of the pair (f,g).

The operations of sum, multiplication and product by a scalar can be defined on M_{δ} through

$$\bullet \ \frac{f_1}{g_1} + \frac{f_2}{g_2} = \frac{f_1 * g_2 + g_1 * f_2}{g_1 * g_2}$$

$$\bullet \frac{f_1}{g_1} \cdot \frac{f_2}{g_2} = \frac{f_1 * f_2}{g_1 * g_2}$$

$$\bullet \alpha \frac{f}{g} = \frac{\alpha f}{g}$$

Alamo and Rodríguez [1] showed that the operator D^{δ} is an endomorphism on C_{δ} and proved that for all $f(t) = \sum_{k=1}^{\infty} a_k t^{k\delta-1}$ in C_{δ}

$$D^{\delta} I^{\delta} f(t) = f(t),$$

$$I^{\delta} D^{\delta} f(t) = f(t) - a_1 t^{\delta - 1} = f(t) - [t^{1 - \delta} f(t)]_{t=0} t^{\delta - 1},$$
(2.1)

$$(I^{\delta})^{m}(D^{\delta})^{m}f(t) = f(t) - \sum_{j=1}^{m} a_{j}t^{j\delta-1}.$$
(2.2)

These identities will be useful for our development.

The next proposition allows us to identify the operator I^{δ} and its positive integer powers with certain functions in C_{δ} .

PROPOSITION 3. Let $f(t) \in C_{\delta}$ and $k \in \mathbb{N}$, then we have

$$\begin{split} &1.\ \frac{t^{\delta-1}}{\Gamma(\delta)}*f(t)=I^{\delta}f(t).\\ &2.\ \frac{t^{k\delta-1}}{\Gamma(k\delta)}*f(t)=(I^{\delta})^kf(t)=I^{k\delta}f(t). \end{split}$$

PROOF. The first asertion is a consequence of the definition of the convolution *, and using induction method we can get the second one.

Following Mikusiński [3], we denote by $l_{\delta} = \frac{t^{\delta-1}}{\Gamma(\delta)} \equiv I^{\delta}$. So when we write $l_{\delta}f(t)$ we will understand $I^{\delta}f(t)$.

Now we remark that we can consider $C_\delta \subset M_\delta$ since C_δ is isomorphic to a subring of M_δ through the map $f \rightsquigarrow \frac{l_\delta f}{l_\delta}$. In a similar way the field $\mathbb C$ of complex numbers can be embedded into M_δ by associating with every $\alpha \in \mathbb C$ the so called numerical operator $[\alpha] = \frac{\alpha t^{\delta-1}}{t^{\delta-1}}$. The following basic properties of these numerical operators are immediate.

PROPOSITION 4. 1.
$$[\alpha] + [\beta] = [\alpha + \beta]$$
. 2. $[\alpha] \cdot [\beta] = [\alpha \beta]$.

From now on we denote the numerical operators $[\alpha]$ by α when it leads to no confusion.

PROPOSITION 5. Let $v_{\delta} \in M_{\delta}$ be the algebraic inverse of l_{δ} . For any function $f(t) = \sum_{k=1}^{\infty} a_k t^{k\delta-1}$,

$$v_{\delta}f(t) = D^{\delta}f(t) + \Gamma(\delta)a_1 \tag{2.3}$$

$$v_{\delta}^{m} f(t) = (D^{\delta})^{m} f(t) + \sum_{j=1}^{m} a_{j} \Gamma(j\delta) v_{\delta}^{m-j}$$

$$\tag{2.4}$$

PROOF. To see (2.3), having the identity (2.1) we act on both sides by the operator v_{δ} and take into account that $a_1 t^{\delta-1}$ is identified with $\frac{l_{\delta} a_1 t^{\delta-1}}{l_{\delta}} \in M_{\delta}$, so $v_{\delta} a_1 t^{\delta-1} = \frac{a_1 t^{\delta-1}}{l_{\delta}} = [\Gamma(\delta) a_1] = \Gamma(\delta) a_1$. For (2.4) it is analogous, acting on both sides of (2.2) by v_{δ}^m .

The next step is to define an operator over C_{δ} which will be an algebraic derivative.

DEFINITION 1. Let $f \in C_{\delta}$. We define the operator \mathcal{D} as follows:

$$\mathcal{D}f(t) = -\frac{I^{\delta-1}}{\delta}tf(t).$$

We need to know how \mathcal{D} acts on any member of C_{δ} .

PROPOSITION 6. $\mathcal{D}f(t) \in C_{\delta}$ for all $f(t) \in C_{\delta}$.

PROOF. It is not difficult to show that if $f(t) = \sum_{k=1}^{\infty} a_k t^{k\delta-1}$, then

$$-\frac{I^{\delta-1}}{\delta}tf(t) = \sum_{k=1}^{\infty} b_k t^{(k+1)\delta-1}$$

where $b_k = -a_k \frac{k\Gamma(k\delta)}{\Gamma[(k+1)\delta]}$. An equivalent and more manageable expression is

$$-\frac{I^{\delta-1}}{\delta}tf(t) = (-t^{\delta-1}) * \left[\sum_{k=1}^{\infty} c_k t^{k\delta-1}\right]$$

where $c_k = \frac{ka_k}{\Gamma(\delta)}$.

Now we establish a proposition which shows that \mathcal{D} is an algebraic derivative on C_{δ} .

Proposition 7. For any functions f and g in C_{δ} , we have:

1.
$$\mathcal{D}[f(t) + g(t)] = \mathcal{D}f(t) + \mathcal{D}g(t)$$
.

2.
$$\mathcal{D}(f * g)(t) = ([\mathcal{D}f] * g)(t) + (f * [\mathcal{D}g])(t).$$

PROOF. 1. It immediately follows by taking into account that $\frac{-I^{\delta-1}}{\delta}t$ is a linear operator.

2. Let
$$f(t) = \sum_{k=1}^{\infty} a_k t^{k\delta-1}$$
 and $g(t) = \sum_{k=1}^{\infty} b_k t^{k\delta-1}$, then we have:

$$\mathcal{D}(f * g)(t) = \mathcal{D}\sum_{k=2}^{\infty} \left\{ \sum_{j=1}^{k-1} a_j b_{k-j} B[j\delta, (k-j)\delta] \right\} t^{k\delta-1}.$$

If we denote $c_k = \sum_{j=1}^{k-1} a_j b_{k-j} B[j\delta, (k-j)\delta]$, by using the result obtained in the proof of proposition 6 and the second identity of proposition 1, we can get

$$\mathcal{D}(f * g)(t) = (-t^{\delta - 1}) * \sum_{k=2}^{\infty} \frac{k}{\Gamma(\delta)} c_k t^{k\delta - 1}.$$

In a similar way, it can be proved that

$$([\mathcal{D}f] * g)(t) = (-t^{\delta - 1}) * \left[\sum_{k=2}^{\infty} \left\{ \sum_{j=1}^{k-2} \frac{j}{\Gamma(\delta)} a_j b_{k-j} B[j\delta, (k-j)\delta] \right\} t^{k\delta - 1} \right]$$

and

$$(f * [\mathcal{D}g])(t) = (-t^{\delta-1}) * \left[\sum_{k=2}^{\infty} \left\{ \sum_{j=1}^{k-2} \frac{(k-j)}{\Gamma(\delta)} a_j b_{k-j} B[j\delta, (k-j)\delta] \right\} t^{k\delta-1} \right]$$

and using the last three identities the proof is concluded.

Now we can extend the definition of \mathcal{D} to the field M_{δ} , as usual, by:

$$\mathcal{D}\frac{f}{g} = \frac{[\mathcal{D}f] * g - f * [\mathcal{D}g]}{g * g} \quad (f \in C_{\delta}, \ g \in (C_{\delta} - \{0\})),$$

$$\mathcal{D}\frac{p}{g} = \frac{[\mathcal{D}p] \cdot q - p \cdot [\mathcal{D}q]}{g^{2}} \quad (p \in M_{\delta}, \ q \in (M_{\delta} - \{0\})).$$

The next proposition shows the behavior of the algebraic derivative over some particular members of M_{δ} and will be used to solve an integral-differential equation.

Proposition 8. Let $1 = \frac{t^{\delta-1}}{t^{\delta-1}}$ the unit of M_{δ} , $0 = \frac{0}{t^{\delta-1}}$, $v_{\delta} = \frac{1}{l_{\delta}}$ the algebraic inverse of l_{δ} in M_{δ} and $n \in \mathbb{N}$. Then:

- 1. $\mathcal{D}1 = 0$.
- 2. $\mathcal{D}\alpha = 0$ (α being a numerical operator).
- 3. $\mathcal{D}(\alpha p) = \alpha \mathcal{D} p$ (for any $p \in M_{\delta}$).
- 4. $\mathcal{D}l_{\delta}^{n} = -nl_{\delta}^{n+1}$ 5. $\mathcal{D}v_{\delta}^{n} = nv_{\delta}^{n-1}$.
- 6. $\mathcal{D}(1-\alpha l_{\delta})^n = n\alpha l_{\delta}^2 (1-\alpha l_{\delta})^{n-1}$.
- 7. $\mathcal{D}(v_{\delta} \alpha)^n = n(v_{\delta} \alpha)^{n-1}$

PROOF. (1) and (2) follow by a simple calculation. (3) is a direct consequence of (2). In (4) we will use induction. Since in our case

$$\mathcal{D}l_{\delta} = \mathcal{D}\frac{t^{\delta-1}}{\Gamma(\delta)} = -\frac{t^{2\delta-1}}{\Gamma(2\delta)} = -l_{\delta}^2,$$

if we suppose that (4) is true for n = k, then

$$\mathcal{D}l_{\delta}^{k+1} = \mathcal{D}(l_{\delta} \cdot l_{\delta}^{k}) = [\mathcal{D}l_{\delta}] \cdot l_{\delta}^{k} + l_{\delta} \cdot [\mathcal{D}l_{\delta}^{k}] = -(k+1)l_{\delta}^{k+2}.$$

For (5) we consider the fact that $v_{\delta} = \frac{1}{l_{\delta}}$, so it is not difficult to see that $\mathcal{D}v_{\delta} = 1$ using (1) and (4), afterwards we can use induction again. Finally, to get (6) and (7),

$$\mathcal{D}(1 - \alpha l_{\delta})^{n} = \mathcal{D}\left[\sum_{k=1}^{n} \binom{n}{k} (-\alpha l_{\delta})^{n-k}\right] = -\sum_{k=1}^{n} \binom{n}{k} (-\alpha)^{n-k} (n-k) l_{\delta}^{n-k+1}$$
$$= -\sum_{k=1}^{n} n \binom{n-1}{k} (-\alpha) l_{\delta}^{2} (-\alpha l_{\delta})^{n-k-1} = n\alpha l_{\delta}^{2} (1 - \alpha l_{\delta})^{n-1}$$

however $(v_{\delta} - \alpha)^n = \frac{(1 - \alpha l_{\delta})^n}{l_{\delta}^n}$, using (6), (4) and the definition of \mathcal{D} on M_{δ} the proof can be concluded.

REMARK. The last proposition holds for $n \in \mathbb{Z}$ since $p^{-n} = \frac{1}{p^n}$ for any $p \in M_{\delta}$.

The second identity of the last proposition tell us that the algebraic derivative of the numerical operators is zero, but furthermore we can establish the inverse result.

PROPOSITION 9. Given $p \in M_{\delta}$, if $\mathcal{D}p = 0$ then p is a numerical operator.

PROOF. Let $p = \frac{f}{g}$ and $\mathcal{D}p = 0$. Since

$$\mathcal{D}p = \frac{([\mathcal{D}f] * g)(t) - (f * [\mathcal{D}g])(t)}{(g * g)(t)}$$

it follows that:

$$([\mathcal{D}f] * g)(t) - (f * [\mathcal{D}g])(t) = 0.$$
(2.5)

If we denote $f(t) = \sum_{k=1}^{\infty} a_k t^{k\delta-1}$ and $g(t) = \sum_{k=1}^{\infty} b_k t^{k\delta-1}$, then we have

$$([\mathcal{D}f] * g)(t) = (-t^{\delta - 1}) * \left[\sum_{k=2}^{\infty} \left\{ \sum_{j=1}^{k-1} \frac{j}{\Gamma(\delta)} a_j b_{k-j} B(j\delta, (k-j)\delta) \right\} t^{k\delta - 1} \right]$$

and

$$(f * [\mathcal{D}g])(t) = (-t^{\delta-1}) * \left[\sum_{k=2}^{\infty} \left\{ \sum_{j=1}^{k-1} \frac{(k-j)}{\Gamma(\delta)} a_j b_{k-j} B(j\delta, (k-j)\delta) \right\} t^{k\delta-1} \right]$$

so, (2.5) implies that

$$\sum_{j=1}^{k-1} (2j-k)a_j b_{k-j} B[j\delta, (k-j)\delta] = 0 \quad (\forall k \ge 2).$$
 (2.6)

Now let us suppose $b_1 \neq 0$. If we take in (2.6) k = 3 and k = 4 we can get respectively

$$a_1b_2 = a_2b_1$$
 and $a_1b_3 = a_3b_1$;

next it is easy to prove that $a_m b_n = a_n b_m$ when $a_1 b_n = a_n b_1$ and $a_1 b_m = a_m b_1$.

Finally, in order to get that $a_1b_k=a_kb_1$ for any $k\geq 2$ we take into account the following identities

$$\sum_{j=1}^{k-1} (2j-k)a_j b_{k-j} B[j\delta, (k-j)\delta]$$

$$= \sum_{j=1}^{r-1} (2j-2r)(a_j b_{2r-j} - a_{2r-j}b_j) B[j\delta, (2r-j)\delta] \quad (k=2r),$$

$$\sum_{j=1}^{k-1} (2j-k)a_j b_{k-j} B[j\delta, (k-j)\delta]$$

$$= \sum_{j=1}^{r} [2j-(2r+1)](a_j b_{2r+1-j} - a_{2r+1-j}b_j) B[j\delta, (2r+1-j)\delta] \quad (k=2r+1).$$

Therefore if $b_1 \neq 0$ we can establish that $a_k = \frac{a_1}{b_1} b_k$ for any $k \geq 1$, in other words

$$\frac{f}{g} = \frac{\alpha g}{g} = \frac{\alpha t^{\delta - 1}}{t^{\delta - 1}} = [\alpha] \quad \left(\alpha = \frac{a_1}{b_1}\right).$$

To conclude the proof we remark that, however $b_1 = 0$ and $a_1 \neq 0$ allow us to prove that $b_k = 0$ for any k in opposition to the fact that $g(t) \in C_\delta - \{0\}$, $b_1 = 0$ implies $a_1 = 0$ so we can start with $b_2 \neq 0$ and so on.

3. The use of \mathcal{D} to solve an integral-differential equation. As an application of the results obtained in the preceding section, we will solve the integral-differential equation

$$-\mathcal{D}(D^{\delta})^{2}x(t) + (1+\mathcal{D})D^{\delta}x(t) - ax(t) = 0 \quad (x(t) \in C_{\delta}) \quad (a \in \mathbb{C})$$
$$[t^{1-\delta}x(t)]_{t=0} = 0. \tag{3.1}$$

Making use of (2.1), (2.2), (2.3), (2.4) and proposition 8, the equation (3.1) becomes

$$\frac{\mathcal{D}x(t)}{x(t)} = \frac{a-1}{v_{\delta}} - \frac{a}{v_{\delta}-1} = \frac{l_{\delta}[l_{\delta}(1-a)-1]}{1-l_{\delta}}.$$
 (3.2)

Several facts are immediately deduced from this expression.

$$\begin{split} & \text{Proposition 10. 1. } x_a = l_\delta (1 - l_\delta)^{-a} \in M_\delta \text{ is a solution of } (3.2). \\ & 2. \ x_a(t) = \frac{t^{\delta - 1}}{\Gamma(a)} {}_1 \Psi_1 \left[\begin{array}{c} (a, 1); \\ (\delta, \delta); \end{array} \right] \text{ is a solution of } (3.1). \\ & 3. \ D^\delta \int_0^t \frac{(t - \tau)^{\delta - 1}}{\Gamma(a)} {}_1 \Psi_1 \left[\begin{array}{c} (a, 1); \\ (\delta, \delta); \end{array} \right] \frac{\tau^{\delta - 1}}{\Gamma(b)} {}_1 \Psi_1 \left[\begin{array}{c} (b, 1); \\ (\delta, \delta); \end{array} \right] d\tau \\ & = \frac{t^{\delta - 1}}{\Gamma(a + b)} {}_1 \Psi_1 \left[\begin{array}{c} (a + b, 1); \\ (\delta, \delta); \end{array} \right] \end{split}$$

where $_{1}\Psi_{1}$ represents the Wright generalized hypergeometric functions (cf. [4]).

PROOF. 1. We have

$$\mathcal{D}(1 - l_{\delta})^{-a} = \mathcal{D}\left[1 + \sum_{k=1}^{\infty} {\binom{-a}{k}} (-1)^{k} \frac{t^{k\delta - 1}}{\Gamma(k\delta)}\right]$$
$$= \sum_{k=1}^{\infty} (-a) {\binom{-a - 1}{k - 1}} (-1)^{k-1} \frac{t^{(k+1)\delta - 1}}{\Gamma[(k+1)\delta]} = (-a)l_{\delta}^{2} (1 - l_{\delta})^{-a - 1}$$

thus

$$\frac{\mathcal{D}[l_{\delta}(1-l_{\delta})^{-a}]}{l_{\delta}(1-l_{\delta})^{-a}} = \frac{l_{\delta}[l_{\delta}(1-a)-1]}{1-l_{\delta}}.$$

2. The solution $x_a = l_\delta (1 - l_\delta)^{-a}$ admits a representation of the form (cf. [3, p. 171])

$$x_{a} = l_{\delta}(1 - l_{\delta})^{-a} = \sum_{k=0}^{\infty} {\binom{-a}{k}} (-1)^{k} l_{\delta}^{k+1} = t^{\delta - 1} \sum_{k=0}^{\infty} \frac{(a)_{k}}{\Gamma(k+1)} \frac{t^{k\delta}}{\Gamma[(k+1)\delta]}$$
$$= \frac{t^{\delta - 1}}{\Gamma(a)} \sum_{k=0}^{\infty} \frac{\Gamma(k+a)}{\Gamma(k\delta + \delta)} \frac{t^{k\delta}}{\Gamma(k+1)}$$

thus (cf. [4, p. 50])

$$x_a(t) = \frac{t^{\delta-1}}{\Gamma(a)} {}_1\Psi_1 \left[\begin{array}{cc} (a,1); \\ (\delta,\delta); \end{array} \right].$$

3. It is consequence of the preceding items.

REMARK. If $-a \in \mathbb{N}$ the series which appears in the proof of the last proposition becomes a polynomial of fractional degree.

References

- J. A. Alamo and J. Rodríguez, Cálculo operacional de Mikusiński para el operador de Riemann-Liouville y su generalizado, Rev. Acad. Canar. Cienc. 1 (1993), 31–40.
- W. KIERAT and K. SKÓRNIK, A remark on solutions of the Laquerre differential equation, Integral Transforms and Special Functions 1 (1993), 315–316.

- [3] J. MIKUSIŃSKI, Operational Calculus, Pergamon, Oxford, 1959.
- [4] H. M. SRIVASTAVA and H. L. MANOCHA, A Treatise on Generating Functions, Ellis Horwood, 1984.
- [5] K. Yosida, $Operational\ Calculus.\ A\ Theory\ of\ Hyperfunctions, Springer-Verlag, New York, 1984.$