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On determination of GL3 cusp forms
by

QINGFENG SUN (Weihai)

1. Introduction. In 1997, Luo and Ramakrishnan [LR] studied to what
extent modular forms can be characterized by central values of twisted L-
functions and their derivatives. Since then, this subject has been studied by
many authors for various modular forms (see Luo [L] and Ganguly, Hoffstein
and Sengupta [GHS|). The determination of G'Ls cusp forms by central
values of twisted L-functions was first studied by Chinta and Diaconu [CD]
as a generalization of the results in [LR]. Recently, Liu [Liu| studied the
question of determining a G L3 self-dual Hecke-Maass cusp form by central
values of its GLy twisted L-functions. Precisely, let f be a fixed self-dual
Hecke-Maass cusp form for SL3(Z) and let A(m,n) denote its (m,n)th
Fourier coefficient. Liu proved that f is uniquely determined by the family
{L(1/2,f x g) : g € Hy}, where Hy, is an orthogonal basis of holomorphic
cusp forms of weight k = 0 (mod 4) for SLy(Z).

In this paper, we will show that f is also uniquely determined by the fam-
ily {L'(1/2, f x g) : g € B}, where By, is an orthogonal basis of holomorphic
cusp forms of weight £ = 2 (mod 4) for SLy(Z).

THEOREM 1.1. Let f and f' be fized self-dual Hecke—Maass cusp forms
for SL3(Z). Let ¢ # 0 be a constant. If
(1.1) L'(1/2,f x g) = cL'(1/2, " x g)
for all g € By, then f = f.

As in [Liu], we will prove Theorem 1.1 by establishing an asymptotic

formula for the first twisted moment of L'(s, f X g) at s = 1/2, where g runs
over By. Let Aj(n) be the normalized nth Fourier coefficient of g € Bj, and

k—1
Y9 T o

where L(s,sym?g) is the symmetric-square L-function associated to g.

L(1,sym?g),
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THEOREM 1.2. Let h be a fixed positive valued, smooth function of com-
pact support on [1,2], with derivatives satisfying h() <; 1. Given any
prime p, we have

> h(k’;{l) > w 'L (172, f % 9)Ag(p)
k=2 (mod 4) 9€By;
_3(AL,p) —p LA, £+
= b h(0)K log K
(A(Lp) —p~H(2L'(1, f) + coL(1, f))+
n W 0 h(0)K

L(1, FYRO)K + Oc 1 p(K°)

logp
pVp

for any e > 0 and K > 0 large enough, where cg = —6log2 — 3logm — log p.

_|_

The proof of Theorem 1.2 starts from an approximate functional equation
and then an application of Petersson’s trace formula. Subsequently, we need
to deal with a diagonal term and an off-diagonal term as expected. For
the diagonal term, we use the analytic continuation of a Dirichlet series
which may be of interest in other problems. For the off-diagonal term, we
apply a result of Iwaniec, Luo and Sarnak [ILS] to deal with an averaging of
J-Bessel functions. Goldfeld and Li’s Voronoi formula for GL3 in [GL] plays
an important role in estimating the off-diagonal term. Theorem 1.2 yields
the following non-vanishing result.

COROLLARY 1.3. For each K large enough, there exists g € By with
K <k < 2K such that for any prime p,

L'(1/2, f x g)Aq(p) # 0.

Proof. Let p be a fixed prime. By Jacquet and Shalika |JS], L(1, f) # 0
Then by Theorem 1.2, if A(1,p) # p~!,

S (5 T v
k=2 (mod 4) 9€By;
3(A(L,p) —p~HL(, f)7
2/p

~

(0)K log K,

and if A(1,p) =p~*,
> n(B) S e a2 s < o) ~ LI o)k
K

k=2 (mod 4) g€By PvP
It follows that there exists g € By, such that L'(1/2, f x g)\g(p) # 0. =
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Now we can prove Theorem 1.1. Let A(1,p) and A’(1,p) be the normal-
ized (p,1)th Fourier coefficients of f and f’, respectively. By the strong
multiplicity one theorem (see Theorem 12.6.1 in Goldfeld [G]), we only
need to prove A(1,p) = A'(1,p) for all but finitely many primes p. If
A(l,p) = A'(1,p) = p~!, then we are done. In the following, we assume
that A(1,p) #p~ ! and A'(1,p) # p~!. In [S], the author proved that

> h<K> > w 'L(1/2, f x g) ~ 5 h(0)K log K.
k=2 (mod 4) 9EBy,
Thus under the condition (1.1]), we have
(1.2) L(1, f) = cL(L, ).

On the other hand, by (1.1)) and Theorem 1.2, we have

3A(L) —p YLD G S (L) —p LA P
2yp 2\p
By (1.2) and ({1.3]) we obtain A(1,p) = A’(1,p). This proves Theorem 1.1.

In Section 2, we recall some basic facts about Maass cusp forms for
SL3(Z). In Section 3, we study the properties of GL3 x GLy L-functions.
We will prove Theorem 1.2 in Sections 4-6.

(1.3) 1(0).

2. Maass cusp forms for SL3(Z). Let f be a Maass cusp form of
type (v1,v2) for SL3(Z) and let A(mq,ms) denote the (my,mg)th Fourier
coefficient of f. Assume f is normalized so that A(1,1) = 1. We have (see
Remark 12.1.8 in [G])

(2.1) > 1A(my, ma)| <5 Nlmal.

mo<N

Let ]7 denote the dual Maass form of f. Then ]? is of type (v2,v1) and the
(my, mg)th Fourier coefficient of f is the corresponding (msg, m;)th Fourier
coefficient of f. If f is self-dual, then the Fourier coefficients are all real and
A(ml, mg) = A(mz, ml).

For Rs > 1, we define the Godement—Jacquet L-function associated to f,

L(s, f) =Y _A(l,n)n"*,

which has a holomorphic continuation to all s € C and satisfies the functional
equation

(2.2) V(s f)L(s, f) =71 =5, /)L(1 = s, )
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where

e aen=rr(5) () (55,
20 =m0 (M),

2 2 2
with
a=-v1—2in+l, [B=-vi1+vy, ~v=2uv1+rvy—1.

Here L(s, f) is the L-function associated to the dual Maass form fv By Luo,
Rudnick and Sarnak [LRS|] we have |Ral, |R3|, |Ry| < 1/2 —1/10.

Let p be a fixed prime. For s > 2, we define

(2.5) Ly(s, )= Y2 A,
m>1

(2.6 Ly(s.J) = 3 AU
m>1

The following result shows Ly(s, f) and Ly(s, f) have holomorphic continu-
ations to all s € C.

LEMMA 2.1. Let p be a fized prime. Then Ly(s, f) and Ly(s, f) defined
in (2.5) and (2.6) have holomorphic continuations to all s € C and satisfy
the functional equation

(A(Lp) =" (s, NLp(s, f) = (A, 1) = p~)F(1 = 5, f) (1 =5, ),
where y(s, f) and ¥(s, f) are defined in (2.3 and , respectively.
Proof. Applying the multiplicative property

A(ml,l)A(l,mg) = Z A<T’;1,TZQ>, mi, Mo Z 1,

d|(m1,mz2)
we have
(2.7) Ly(s, f) = (A(p,1) = p~°)L(s, f),
Ly(s, f) = (A(L,p) —p ")L(s, f).
Then the lemma follows from the functional equation (2.2)). m

Let ¢ (x) be a smooth function compactly supported on (0,00) and de-
note the Mellin transform of ¥ (x) by

3s) = § w2
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For k=0, 1, we set

[’( 1+S+22k+a ) I ( 1+S+22k’+ﬁ ) F( 1+8+22k+’}/ )

(28)  Tp(z)= | (#2)™

Rs=oc F(—Sz—a)r(*sgﬁ)lﬂ(*sgv)rv
X (—s—k)ds
with o > max{—1 — Ra, —1 — RG, -1 — Ry},
-3.3
(2.9) 00 | (x) = W () + 5wy (),
ninat
-3.3
1 . _ T c'm
(2.10) Ui (2) = Yo(x) i oy ().

We have the following Voronoi formula for GL3 (see Goldfeld and Li [GL]):

LEMMA 2.2, Let ¢ € C2°(0,00). Let d,d,c € Z with ¢ # 0, (d,c) = 1
and dd =1 (mod ¢). Then

S A(m,n) (”d)wn)

n>0

2
n2 nl _ non
—————=5(md, ng; men; 1)@&( 1)

K 3
nin com
nl\cmn2>0 1752

2

TLQ 7”L1 _ non
228 (md, —ng; meny WL L),
) 1 0,1 3

ning c'm

nilem n2>0

As pointed out in Li [Li2], 7 1¥;(z) has similar asymptotic behavior to
Yy (z). Therefore, we only need to consider ¥y(x). The following result is
Lemma 6.1 of Li [Lil]. For a = § =~ = 0, it was proved by Ivi¢ [I].

LEMMA 2.3. Suppose i is a smooth function compactly supported on
[X,2X]. Let Wy(x) be defined as in (2.8). Then for any fived integer M > 1
and xX > 1, we have

, c; cos(6mzl/3yl/3) + d; sin(6mzt/3y1/3
Wo(w) = 2n'wi | v(y) Y~ ( (ngy)jj/s ( ) ay
0 j=1

+ O((aX) M),

where ¢; and d; are constants depending on o, 3 and ~. In particular, c; = 0

and dy = —2/+/3m.

3. Rankin—Selberg L-functions. Let f be a self-dual Hecke—Maass
cusp form of type (v, v) for SL3(Z) and By, be an orthogonal basis of holomor-
phic cusp forms of weight k£ = 2 (mod 4) for SL2(Z). The Rankin-Selberg
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L-function of f and g € By, defined by
s frg)= 3 3 dalatm)
m>1n>1
is entire and satisfies the functional equation
A(Svf X g) = _A(l _Saf X g)
where A(s, f x g) = v(s,k)L(s, f x g) and for & = —3v + 1,

k=1 _ k=1 k=1
(3.1) 'y(s,k):ﬂ_3sf<8+ 22 a>F<s+22 >F<S+ 22 +oz>

k+1 k+1 kt1
XF<S+—;Q>F<S+2;>F<S+—§+Q>.

Set G(u) = e“’. We define

(3.2) V(g k) = —— | y"G(u)
(3)

v(1/2 + u, k) du

270 v(1/2,k) w2

One has the following approximate functional equation for L'(1/2, f x g)
(see Iwaniec and Kowalski [IK]).

LEMMA 3.1. For a self-dual Hecke—Maass cusp form f of type (v,v) for

SL3(Z) and g in an orthogonal basis of holomorphic cusp forms of weight
k =2 (mod 4) for SLa(Z), we have

L'(1/2,f x g) _222 1/2 A1) g2, 1y

m>1n>1

where V (y, k) is defined in (3.2]).

V(y, k) has the following properties (see Lemma 4.2 in Sun [9)).

LEMMA 3.2. Fory > 0 and k large enough, we have

V(. k) <ga (K /)%,
and
V(y, k) = log(k®/y) + co + Of(y /K> + k1),

where cg = —6log2 — 3log .

4. Proof of Theorem 1.2. Petersson’s trace formula states that for
any m,n > 1,

(4.1) Z wy ' Ag(m)Ag(n) = S + 27" Z S(m;mC)Jkl <4W\£ﬁ>7

gEeBy, c>1
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where 0., = 1if m = n, and is 0 otherwise, J_1(x) is the J-Bessel function
and S(m,n;c) is the classical Kloosterman sum defined by

Smm)= 3 e<md+”d).

_ C
dd=1 (mod c)

Applying Lemma 3.1 and Petersson’s trace formula (4.1]) we have

3 h(kgl)E:w;ETUZfXgMAM

k=2 (mod 4) gE€By,;
= Z < > Z w_l)\ { Z Z 1/2 V(an,k‘)}
k=2 (mod 4) gEB) m>1n>1
1 B
-2 Y () S A, m{ > )}
k=2 (mod 4) m>1 n>1 g€By,
=D+ ND,
where
42) D=2 Y h("?) 3 APy,
k=2 (mod 4) m>1 m
_ -1
(4.3) D= —4n sznl/QZc S(n,p;c)
m>1 n>1
— 4m./
X Z h(kKl>V(m2n,k)Jk_1< T np>.
k=2 (mod4) ¢

Then Theorem 1.2 follows from

3(A(L,p) —p~
2yp

(A(Lp) —p H2L'(L, f) + coL(1, f))

2Vp

P L FROK + 05 (1),

(4.5) ND = O 1 p(K°).

We will establish and in Sections 5 and 6, respectively.

(4.4) D= DL, f)ﬁ(O)KlogK

+ h(0)K

+

5. Estimation of D. By (4.2]) we have

(5.1) o223 h(’?)A(k),

k=2 (mod 4)
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where

ARy = A(:i’p)V(me, k).

m>1

By the definition of V' (y, k) in (3.2)),

(5.2)  A(k) = ZM 1 S(mzp)_uG(u)w du

= oom 2mi @) v(1/2,k)  u?
L Ay L2+ 0k du
= 31 ) (Z m1+2u> G E) e
(3) m>1
1 _ v(1/2 + u, k) du
= L,(1+2 v _—
2171 S p( + u, f)p G(U) 7(1/2’ ]{7) U2 ’

3)

where L,(s, f) is defined in (2.5). By Lemma 2.1, we can move the line of
integration in (5.2)) to ®u = —1/2, picking up a double pole at u = 0,

G(u) v(1/2 + u, k:))
phu? y(1/2,k)

—ugy(y Y (L/2H U, k) du
<§/2>Lp(1+2u’f)p Wz w

First we compute the residue in (5.3)). By the duplication formula, (s, k)
in (3.1) is

(s, k) = 773/2—3523—3(s+(k—1)/2)1~(8 n % B a)F(s n k;1>

XF(S-{—]{;;l-f-a).

(5.3)  A(k) =resy— (Lp(l + 2u, f)

1
21

Thus,

5.4y YW2Hwk) o s Dt k)2 )l (ut k/DI(ut k/2 4 a)
' v(1/2,k) (k)2 — a)[(k/2)T(k/2 + a) !

and

(5.5) lim d (/2 +uk)

u—0du  v(1/2,k)

I'k/2—a) I'(k/2) T'(k/2+«)
rk/2—a) I'(k/2) T'(k/24+a)
By Stirling’s formula, for |arg z| <7 — 4, § > 0,

I'(z) 1 1
T =logz — 2z+06<|z|2)'

= —3log(2m) +
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Thus by (5.5)),
- d y(1/2+u,k)
u—0 du  y(1/2,k)
and the residue in (j5.3)) is

= —3log(27) + 3log(k/2) + Of(k_l)a

d
(56)  lim - (Lp(l +2u, f)

G(u) v(1/2 4+ u, k:)>
p* y(1/2,k)

/ Cood (124 k
= 2Ly(1, )~ Ly(L H)logp + Ly(1,) i . YLD

= 3Ly(1, f)logk + 2L, (1, f) + coLp(1, f) + Of(k™1),

where ¢y = —6log 2—3log m—log p. Here we have used the fact that G(0) = 1
and G'(0) = 0. By (2.7)), we have

Lp(lv f) = (A(l,p) —p_l)L(L f),
Ly ) = (ALp) ~p DL (L) + B2 L1, 1),
So by , the residue in (|5.3)) is

G(u 1/2 4w,k
(5.7)  resu=o <Lp(1 +2u, f) p“(u2) W(v(/l/;, k) )>

= B(A(l,p) _pil)L(lv f) logk + (A(l,p) _pil)(2L/(1a f) + COL(]-’f))
2198 11 py 1 0pkY).

_.|_

Next, we compute the integral in (5.3). By Stirling’s formula, for |arg z|
<m—90,0>0,

1 1 1
logI'(z) = | z— = |logz — z+ —log(27) + Os [ — ).
2 2 |z
Thus, for v = —1/2 + v, we have
I'u+k/2 —a)
Ir'k/2 —a)

= <—1+I;—§Ra+i(v—%a)> log<—;+§—§ﬁa+i(v—%a)>

log

~ (—; - g — Ra +i(v — %a)> + %log(%) +o5(1)

1k o~ k )
N e T _ 1 M reY
( 5 + 5 Ra z\soz> og<2 Ra z\sa>

+ (; — Ra — i%a) — %log(%r) +04(1)
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k , koo
= —1—|—§—§Ra+2(v—%a) log §—|—w

1k ~ k r .
- (—2 + 5 —§Roz—z\ya> log<2> + <2 —zv>

_ _ ey
—i—(—l—i-k—?Ra—i—i(v—%a))log(l—i— 1/2 — Ra “O‘)

2 k/2 4 iv
1 k —Ra — iSa
— (4% -Ra—iSa|log( 1+ ———— 1).
( 5T 35 Ra z\sa> 0g< + 52 >+0f()
For —1 < x <1, we have
2 3 4 n
x x x x
log(1 N H N H i o
og(l+z)=z 2+3 T +(—1) n+

Thus for k sufficiently large, we have

—1/2 = Ra —iSa) -1/2 — R — S«
k/2 +iv ) B (‘ k/2 +iv
%ai%a) _O<’%ai%a
k/2 k/2

log(l +

o)
)-o(3)

log<1 +

Therefore,

I'u+k/2 - a)
(k)2 — )

2 1/2
= (1 + g - %a) 10g<]1 + v2) — (v —Sa) arctan<2kv>

1k k .
_ <_2 + 5 §Ra> log<2> +10 + O¢(1),

2 1/2
0 = (v—SSa)log k—+v2 + —1+E—ﬂ?a arctan v
4 2 k
— (Sa) log<§> — 0.

By (5.8)), we obtain

I'u+k/2—a)
I'(k/2—a)

(5.8) log

(k/? + ’U‘)71+k/278%a6§(\v|+|3a|)
(k/2)~1/2+k/2—Ra

9 —1+k/2—Ra
<5 k72 <1 + L”')

(5.9) ‘

emlol/2
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Similarly,
14k/2
(5.10) F(}‘(Z/ZQ) ‘ <5 k2 (1 + 2k> ™Iz,
—14k/24+Ra
(511) F(u+k/2+a) < k_1/2 M 7r|v|/2,
I'k/2+ a) k
By (5.4) and 7, we have
Y(1/2 + u, k) —3/2 2 o\ THTR Glvl/2
12 _ —
I RAL ;

By (2.7)), (5.12) and the convexity bound for L(s, f):
L(o +iv, f) <5 (14 [v])?02 0<o <1,
for any € > 0, we have

(5.13) QLM | L+ 2u,f)p_"G(u)M du

2
. W2
v(1/2+u, k)| du
< L(1+2u, f Gu‘
(-1/2)
- ] B 2| ‘ —3+3k/2 dv
3/2 3/2+¢e, —v i ] 37|v|/2
<ipk _io(l+|v|) e <1+ p ) e e
<jp k732
for k sufficiently large. By (5.3, (5.7) and (5.13)), we have
(5.14) A(k) = 3(A(1,p) —p~")L(1, f) logk

+ (A(L,p) —p 2L/ (1, f) + coL(1, f))
4 28py g 4 O (k).

Then (4.4) follows from (5.1)) and (5.14)). Here we have used the fact that

1) h(?)zKﬁ(O)—i—OA(K_A)

k=2 (mod 4)

for any A > 0.

6. Estimation of ND. In this section, we estimate ND of (4.3). Let w
be a smooth function of compact support on [1,2]. By Lemma 3.2, we only
need to estimate
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m?n
(6.1) ND* = ZZ 1/2 < N )ZCIS(n,p;c)

c>1
k—1 41 /np
x>y h(K>V(m2n,/~c)Jk_1( . )
k=2 (mod 4)

with N < K3*¢ for any € > 0.
The following result is Proposition 8.1 in Iwaniec, Luo and Sarnak [ILS].

LEMMA 6.1. Fiz a real valued function h € C§°(R™) and K > 1. Then

4 ) h<k;(1> J_1(x)

k=2 (mod 4)

where
T (V)
H(v) = e du
) §) V2mu
Applying Lemma 6.1 for z = 4w,/np/c we have
k—1
62 4 > h<K>V(m2n, k)Jy_1(z)
k=2 (mod 4)
ol E v K o ((im-imagg (K2 =z
_h<K>V(m n,:c+1)+\/5\s<e H(Qx + Oy 73 |
where
H(v) = S (Vo) V(m*n, VuK + 1)e™ du.
0 2mu
By multiple partial integration, we have
K3\"
A
(63) H(U) <<f7A7B |U‘ <’]’n2n>

for any A, B > 0. By Weil’s bound for Kloosterman sums,
|S(n,p;c)| < ¢*(n,p, ) *7(0).
Thus the contribution from the error term in (6.2)) to ND* in (6.1]) is
|A m,n) m2n 112 1/2 _g4m/np
6 <y 33 O (Y s e AT

m>1 n>1 c>1

ot K 5 e S (22 e

m>1 n>1 c>1
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Lepp K7 ) m™t > |A(m,n)|

m<v2N n<2N/m?2
Le f.p K Z m~ - Nm™! Le, f.p NK—® Le fp K
m<+v2N

for any € > 0. Here we have used the bound (2.1)). By (6.1]), (6.2) and (6.4)),

we need to estimate the quantities

(6.5) => Z 1/2 (”ﬁ”) 3 e 1S(n,pie)

m>1n>1 c>1

h<4ﬂ‘/@>v<m2n,w +1>,

(66)  ND, - ZZ L (m”>z S(n,pic

m>1 n>1 c>1
% K\[ AT /P c—im /Ay K?c ‘
(p )1/4 8m\/pn

Note that
2.

8my/n

for any € > 0, so by -, ), NDy in is negligible.
It remains to estimate ND;. Note that 1 < 47,/np/(cK) < 2 and 1 <
m2n/N < 2. Thus

>, K2N~ 1/2>> K1/2—¢

2m\/pN e 4/2pN
—— <c< ———.
Km —

(6.7) < 2

Opening the Kloosterman sum in (6.5)), we have

68) MDY Y AT, (m;”)zl

m>1n>1
d 4./ 4./
X Z €<pd—|—nd>h< T mD)V(rnQn,7r np+1>
_ c cK c
dd=1 (mod c)
Zm IZ -1 Z e(pd>{ZA(m n)e<nd>1[)(n)}
c ’ c ’
m=>1 dd=1 (mod c) n=1

where

W(y) = yl/Qw(m;y> (47;\[?) <m2y, @ + 1>.
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Applying the Voronoi formula in Lemma 2.2 for the n-sum, we have

(6:9) ZA<m,n>e(7fl)w<n>

n>1
TlQ 77,1 _ non
222 S(md, ng; men N ®, 1
ning ’

nl\cmn2>0

A(ng,ny) _ nan
—2 22 S(md, —ng; meny WL — L,
ning ’ com

nilem n2>0

where WO 1(x) and !Z/O 1(x) are defined in (2.9) and (2.10)), respectively. By
and , We only need to estimate

ND?:%szlz > (%)

m>1 c1 gd=1 (mod c)
2
n2 nl _ non
X g g 2 S(md, ng; meny )P 3—1 .
ning com

nilem n2>0

y (6.7),
2 3
nony N nan? K 3 \r—1/2 3/2-c
—5 =N N(—) =K°N K

c3m m2 (cm) >>p (\/ﬁ) >
for any € > 0. Thus by Lemma 2.3 for z = ngn%/(c m),
R . G cos(6mz'/Byl/3) 4+ d; sin(6mz!/3y1/3) g

Y

Wy (x) = 2tz | (y) > (n3xy)if3

0 j=1

N O<(n2n% N) (M+2)/3)’

where ¢; and d; are constants depending only on f. In particular, ¢; = 0
and d; = —2/v/3m. Denote

c;j cos(6mz'/3y'/3) 4 d; sin(6mxl/3yl/3)

7 (x) = 2 wi §) ¥(y) (m3ay)i/3

M 9 (—M+2)/3
; N
. noni '
jzzl 0(@) <<c3m m?2

8. Then the contribution from the O-term above to NDy

dy.

Then

Take M =
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negligible. Now we estimate ¥ (z):

< dy sin(6mzt/341/3 T .
03(o) = 2rtai | wlo) T dy = 25, | ) sin(aty)
0 XYy 0

where a(y) = 6rz'/3y"/? and

2
_ 56, (MY 4. /py o 4m\/py
by) =y w( N >h< K Vim Vo +1].

Since a'(y)y > K'/2~¢ by multiple partial integration, one shows that the
contribution from W} (z) to NDY is negligible. Repeating the above argu-

ments for ¥3(z), j = 2,...,M, one shows that the other terms are also
negligible. Thus NDY is negligible. This proves ([4.5)).
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