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1. Introduction

1.1. Background—the homogeneous theory. A classical result due
to Dirichlet states that for any real number x there exist infinitely many
natural numbers q such that

(1.1) ‖qx‖ ≤ 1/q,

where ‖ · ‖ denotes the distance to the nearest integer. This result can easily
be generalised to higher dimensions. In particular, the following “weighted”
simultaneous version of the above statement is valid. Choose any positive
real numbers i and j satisfying

(1.2) i, j ≥ 0 and i+ j = 1.

Then for any vector x ∈ R2 there exist infinitely many natural numbers q
such that

(1.3) max{‖qx1‖1/i, ‖qx2‖1/j} ≤ 1/q.

Here, without loss of generality, if i = 0 we employ the convention that
‖x‖1/i = 0 and so the above statement reduces to Dirichlet’s original result.
It is natural to ask whether the right hand side of inequality (1.3) can in
general be tightened, that is, whether 1/q may be replaced by c/q for some
absolute constant c ∈ (0, 1) whilst still allowing (1.3) to hold infinitely often
for all real vectors. It is still an open problem as to whether there exists
an “optimal” constant in the sense that the statement holds only finitely
often for at least one real vector if it is replaced by any smaller constant.
Conversely, in the one-dimensional setting, concerning statement (1.1), such
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an “optimal” constant (namely 1/
√

5) was found by Hurwitz (e.g., Theorems
193 & 194 in [10, Chapter XI]).

The above discussion motivates the study of real vectors x for which
the right hand side of (1.3) cannot be improved by an arbitrary positive
constant. Throughout, we will impose the following natural restriction on
these vectors. We say x := (x1, x2) is irrational (abbreviated irr.) if its
components xi together with 1 are linearly independent over the rationals.

Definition 1.1. An irrational vector x is (i, j)-badly approximable if
there exists a constant c(x) > 0 such that

max{‖qx1‖1/i, ‖qx2‖1/j} > c(x)/q ∀q ∈ N.

The set of all such vectors will be denoted Bad(i, j).

The results of this paper (for i, j > 0) do remain true when x is not
assumed to be irrational in the above and later definitions. However, we
choose to avoid this degenerate case for the sake of clarity. Furthermore, all
of the sets and arguments considered in this paper are invariant under integer
translation, so there will be no loss of generality in assuming throughout
that all vectors are confined to the unit square (or the unit n-cube when
in higher dimensions) unless otherwise stated. Accordingly, for example, if
i = 0 then the set Bad(0, 1) will be identified with [0, 1] × Bad, where
Bad is the standard one-dimensional set of badly approximable numbers.
In other words, Bad(0, 1) consists of vectors x with x1 ∈ [0, 1] and

x2 ∈ Bad := {irr. x ∈ [0, 1] : ∃c(x) > 0 ∀q ∈ N ‖qx‖ > c(x)/q}.

Definition 1.2. A mapping ψ : N→ R is an approximating function if
ψ is strictly positive and non-increasing.

Definition 1.3. For any approximating function ψ, define W(i,j)(ψ) to
be the set of vectors x ∈ [0, 1]2 such that the inequality

max{‖qx1‖1/i, ‖qx2‖1/j} ≤ ψ(q)

holds for infinitely many natural numbers q.

Application of the following classical theorem of Khintchine [13] shows
that for every pair of reals i, j satisfying (1.2) the set Bad(i, j) is of two-
dimensional Lebesgue measure zero. Lebesgue measure will hereafter be de-
noted µ.

Khintchine’s Theorem (1924). For any pair of reals i, j satisfying
(1.2) and any approximating function ψ we have

µ(W(i,j)(ψ)) =
{

0 if
∑∞

r=1 ψ(r) <∞,
1 if

∑∞
r=1 ψ(r) =∞.
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It is worth emphasising here that the choice of approximating function ψ
is completely irrelevant once the reals i, j have been fixed. We also mention
that in the i = j = 1/2 case the monotonicity restriction imposed on ψ can
be relaxed (see [9] for details). However, whether this is true in general is
still an open problem.

The question of whether each null set Bad(i, j) is non-empty was for-
mally (∗) answered by Pollington & Velani [21] who showed that for every
choice of reals i, j satisfying (1.2) we have

(1.4) dim(Bad(i, j) ∩Bad(1, 0) ∩Bad(0, 1)) = dim([0, 1]2) = 2.

Here, and throughout, “dim” denotes standard Hausdorff dimension. With
this result in mind, the aim of this paper is to obtain an expression for
Bad(i, j) in terms of “well-approximable” vectors in the area of “twisted”
inhomogeneous Diophantine approximation.

1.2. Background—the “twisted” inhomogeneous theory. An-
other result of Khintchine (see for example [11, Chapter 10, Theorem 10.2])
states that for any irrational x and any real γ there exist infinitely many
natural numbers q such that

(1.5) ‖qx− γ‖ ≤ 1 + ε√
5q
,

where ε > 0 is an arbitrary constant. The inequality is “optimal” and dif-
fers from Hurwitz’s homogeneous “γ = 0” theorem by only the constant ε.
When certain restrictions are placed on the choice of γ, a tighter “opti-
mal” inequality was found to hold by Minkowski [18]: The right hand side
of (1.5) can be replaced with 1/(4q) if it is assumed that γ is not of the
form γ = mx + n for some integers m and n. Both of these statements
lead to the implication that the sequence {qx}q∈N modulo one is dense in
the unit interval for any irrational x. Moreover, Kronecker’s Theorem (see
[16]) implies that the sequence {qx}q∈Z modulo one is dense in [0, 1]2 for
any irrational vector x. Furthermore, the sequence is uniformly distributed.
This naturally leads to the concept of approximating real vectors γ in [0, 1]2

by the sequence {qx}q∈N modulo one with increasing degrees of accuracy.
For obvious reasons we call this approach “twisted” Diophantine approxi-
mation.

Definition 1.4. For each fixed approximating function ψ, any irrational
vector x and each pair i, j satisfying (1.2) define Wx

(i,j)(ψ) to be the set of

(∗) The arguements used by Davenport in [5] to show that Bad(1/2, 1/2) is uncount-
able can easily be adapted to show that Bad(i, j) is uncountable for every choice of reals
i, j satisfying (1.2).
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vectors γ := (γ1, γ2) ∈ [0, 1]2 such that the inequality

max{‖qx1 − γ1‖1/i, ‖qx2 − γ2‖1/j} ≤ ψ(|q|)

holds for infinitely many non-zero integers q.

Establishing a Khintchine-type law (an analogue to Khintchine’s The-
orem) for the Lebesgue measure of Wx

(i,j)(ψ) is more difficult than in the
homogeneous case. That said, by utilising the Borel–Cantelli lemma from
probability theory it is easy to show that for every i, j satisfying (1.2), any
irrational x and every approximating function ψ we have

µ(Wx
(i,j)(ψ)) = 0 if

∞∑
r=1

ψ(r) <∞.

One might therefore expect that no matter what the choice of reals i, j,
irrational x or approximating function ψ we should be able to conclude that
µ(Wx

(i,j)(ψ)) = 1 if the above sum diverges. However, the following state-
ment, a consequence of Theorem 6.1 (see Appendix), suggests that once the
reals i, j have been fixed, the set of irrational vectors for which we do obtain
a set of full measure is dependent on the choice of approximating function.
This subtle distinction is what makes the metrical theory in the “twisted”
setting more delicate, and sophisticated, than its standard homogeneous
counterpart.

Theorem 1.5 (Twisted Khintchine-type theorem). Let ψ be a fixed ap-
proximating function. Then, for µ-almost all irrational vectors x ∈ [0, 1]2,

µ(Wx
(i,j)(ψ)) = 1 if

∞∑
r=1

ψ(r) =∞.

Approximating functions whose sum diverges will hereafter simply be
referred to as divergent and the set of all divergent approximating functions
will be denoted by D.

Definition 1.6. Fix a pair of reals i, j satisfying (1.2). Then, for each
ψ ∈ D, we define

V(i,j)(ψ) := {irr. x : µ(Wx
(i,j)(ψ)) = 1}.

Note that Theorem 1.5 is equivalent to the statement “µ(V(i,j)(ψ)) = 1
for each ψ ∈ D”. In view of this theorem we ask whether there exist irrational
vectors x such that a set of full measure is obtained regardless of the choice
of divergent approximating function. In other words, we wish to characterise
the set ⋂

ψ∈D
V(i,j)(ψ).
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It is certainly not obvious as to whether the intersection is non-empty. Al-
most all activity in the past has been centred on the specific i = j = 1/2
case, where elements of Bad(1/2, 1/2) are commonly referred to as simulta-
neously badly approximable pairs. The most notable breakthrough was made
by Kurzweil [17], who proved the following remarkable result.

Kurzweil’s Theorem (1955).⋂
ψ∈D

V(1/2,1/2)(ψ) = Bad(1/2, 1/2).

In fact, Kurzweil’s result was more general than the above (see §2.2 for
further discussion) but did not touch upon the weighted route with which
we are interested. His work has since been extended in various directions by
Fayad [7] (who gave a shorter proof of the above result from a dynamical
systems viewpoint), Tseng [24] and Chaika [4].

The work of Kim [14] in a similar vein inspired activity concerning real
vectors that are badly approximable in the “twisted” inhomogeneous sense.

Definition 1.7. Fix an irrational vector x ∈ [0, 1]2 and two real num-
bers i and j satisfying (1.2). Define Badx(i, j) as the set of vectors γ ∈ [0, 1]2

for which there exists a constant c(γ) > 0 such that

max{‖qx1 − γ1‖1/i, ‖qx2 − γ2‖1/j} > c(γ)/|q| for all q ∈ Z6=0.

The set Badx(i, j) represents the twisted inhomogeneous analogue of
Bad(i, j) introduced in §1.1. Previous work has again been confined to the
i = j = 1/2 setting. In particular, Bugeaud et al. [2] proved the following
result (also see the work of Tseng [23] and Moshchevitin [19] for more recent
extensions).

Theorem BHKV (2010). For any irrational x ∈ [0, 1]2,

dim(Badx(1/2, 1/2)) = 2.

Once more, the statement proved was more general than the above, which
has been simplified for our present needs. At the time of writing there were
no known results concerning the Hausdorff dimension of Badx(i, j) for a
general pair i and j.

2. The main results

2.1. Statements of results. The following statement represents our
main theorem and generalises Kurzweil’s Theorem from the classical
“1/2-1/2” statement to all “(i, j)-weightings”.

Theorem 2.1. For every pair of reals i and j satisfying (1.2),⋂
ψ∈D

V(i,j)(ψ) = Bad(i, j).
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In view of Khintchine’s Theorem and statement (1.4), Theorem 2.1 im-
mediately implies that the intersection on the LHS above is of 2-dimensional
Lebesgue measure zero and of full Hausdorff dimension two.

Our next result makes a contribution towards determining the Hausdorff
dimension of Badx(i, j).

Theorem 2.2. For any real i and j satisfying (1.2) and any x∈Bad(i, j),

dim(Badx(i, j)) = 2.

The proof of this theorem makes use of a general framework developed
by Kristensen, Thorn & Velani [15]. This framework was designed for es-
tablishing dimension results for large classes of badly approximable sets and
the above statement constitutes one further application. In all likelihood the
above result is true without the assumption on x.

Conjecture 2.3. For any real i and j satisfying (1.2) and any irrational
vector x ∈ [0, 1]2,

dim(Badx(i, j)) = 2.

It seems that the ideas of [2], which also make use of the framework
in [15], are not extendable to the full weighted setting of Conjecture 2.3;
a new approach may be required. Note that Theorem 2.2 together with (1.4)
trivially implies that the conjecture is true for a set of irrational vectors x
of full dimension.

Remark. Since submission, Nikolay Moshchevitin and the named au-
thor have strengthened Theorem 2.2 from a statement implying full Haus-
dorff dimension to the statement that Badx(i, j) is “winning” under the
given conditions. However, obtaining a solution to Conjecture 2.3 still re-
mains out of reach.

2.2. Higher dimensions. We describe the n-dimensional generalisa-
tion of the sets Bad(i, j) and V(i,j)(ψ) along with the higher-dimensional
analogue of the statements in §2.1. Fix any n-tuple of reals i := i1, . . . , in ≥ 0
such that

∑n
j=1 ij = 1. We naturally define Bad(i) to be the set of vectors

x := (x1, . . . , xn) ∈ [0, 1]n for which there exists a constant c(x) > 0 such
that

max{‖qx1‖1/i1 , . . . , ‖qxn‖1/in} > c(x)/q ∀q ∈ N.
For any approximating function ψ and any irrational vector x ∈ [0, 1]n, we
denote by Wx

i (ψ) the set of vectors γ := (γ1, . . . , γn) ∈ [0, 1]n such that

max{‖qx1 − γ1‖1/i1 , . . . , ‖qxn − γn‖1/in} ≤ ψ(|q|)
for infinitely many non-zero integers q. Also, set

Vi(ψ) := {x ∈ [0, 1]n : µn(Wx
i (ψ)) = 1},
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where µn denotes the standard n-dimensional Lebesgue measure, and once
more denote by D the set of approximating functions for which

∞∑
r=1

ψ(r) =∞.

The proof of Theorem 2.1 can be extended in the obvious way, with no
new ideas or difficulties, allowing us to establish the following statement.
For every real n-tuple i such that i1, . . . , in ≥ 0 and

∑n
j=1 ij = 1,

(2.1)
⋂
ψ∈D

Vi(ψ) = Bad(i).

Khintchine’s Theorem and statement (1.4) can also be generalised and show
that the above intersection is of n-dimensional Lebesgue measure zero and
of full Hausdorff dimension n. As alluded to above, Kurzweil proved in [17]
that equality (2.1) holds in the case that i1 = · · · = in = 1/n for every
natural number n. This includes the one-dimensional formulation of the
problem corresponding to the set Bad. However, in these generalisations the
notation gets rather awkward and so for the sake of clarity (and relevance
to the material in §1) we will prove the n = 2 case only.

The set Badx(i) can be defined in the obvious way and analogues of
Theorem 2.2 and Conjecture 2.3 can easily be established. The framework
and proof of Theorem 2.2 in §5 can easily be modified to establish the
corresponding result in higher dimensions.

3. Multiplicative Diophantine approximation. This section com-
prises a brief discussion of related problems in the area of multiplicative
Diophantine approximation, where loosely speaking the supremum norm is
replaced by the geometric mean. For example, one could consider the set of
vectors that are “well-approximable” in a multiplicative sense.

Definition 3.1. Let ψ be any approximating function. Then define

WM (ψ) := {x ∈ [0, 1]2 : ‖qx1‖ ‖qx2‖ ≤ ψ(q) for infinitely many q ∈ N}.

The relevant measure-theoretic result concerning WM (ψ) was found by
Gallagher [8] who proved a theorem implying the following.

Gallagher’s Theorem (1962). For any approximating function ψ,

µ(WM (ψ)) =
{

0 if
∑∞

r=1 ψ(r) log(1/ψ(r)) <∞,
1 if

∑∞
r=1 ψ(r) log(1/ψ(r)) =∞.

It is natural to develop a twisted theory for the multiplicative setup.
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Definition 3.2. Fix any approximating function ψ and any irrational
vector x in [0, 1]2. Then define

Wx
M (ψ) := {γ ∈ [0, 1]2 :

‖qx1 − γ1‖ ‖qx2 − γ2‖ ≤ ψ(|q|) for infinitely many q ∈ Z6=0}.

The following statement is a consequence of Theorem 6.1 (see the Ap-
pendix).

Theorem 3.3. Fix any approximating function ψ. Then for µ-almost
all irrational vectors x ∈ [0, 1]2 we have

µ(Wx
M (ψ)) =

{
0 if

∑∞
r=1 ψ(r) log(1/ψ(r)) <∞,

1 if
∑∞

r=1 ψ(r) log(1/ψ(r)) =∞.
Once more one could ask whether there exist irrational vectors x such

that a set of full measure is obtained irrespective of the choice of approximat-
ing function. Accordingly, let DM denote the set of approximating functions
for which

∑∞
r=1 ψ(r) log(1/ψ(r)) diverges and define

VM (ψ) := {irr. x : µ(Wx
M (ψ)) = 1}.

Consider the intersection

(3.1)
⋂

ψ∈DM

VM (ψ).

In view of Theorem 2.1, one might expect that (3.1) is equivalent to the
multiplicative analogue of the set of badly approximable pairs. However,
quite how such an analogue should be defined is up for debate.

One could argue that a valid choice for a set of multiplicatively badly
approximable numbers might be

BadL := {x ∈ [0, 1]2 : ∃c(x) > 0 ∀q ∈ N ‖qx1‖ ‖qx2‖ > c(x)/q}.

The famous Littlewood conjecture states that the set BadL is empty. For
recent developments and background concerning the Littlewood conjecture
see [6], [20] and the references therein.

Another candidate for the multiplicatively badly approximable numbers
is the larger set

Mad :=
{
x ∈ [0, 1]2 : ∃c(x) > 0 ∀q ∈ N ‖qx1‖ ‖qx2‖ >

c(x)
q log q

}
,

recently introduced in [1]. Hence, the following question arises:

Can
⋂

ψ∈DM

VM (ψ) be characterised as BadL or Mad?

Even establishing that BadL ⊆
⋂
ψ∈DM VM (ψ) seems non-trivial.
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4. Proof of Theorem 2.1

4.1. Proof of Theorem 2.1 (Part 1). If either i = 0 or j = 0 then
the theorem simplifies to a one-dimensional n = 1 version of Kurzweil’s
Theorem corresponding to Bad. Therefore, we can and will assume hereafter
that i, j > 0. The proof of Theorem 2.1 takes the form of two inclusion
propositions, the first of which is proved in this section.

Proposition 4.1. For every real i, j > 0 such that i+ j = 1,⋂
ψ∈D

V(i,j)(ψ) ⊆ Bad(i, j).

Proof. We will show that if x /∈ Bad(i, j) then x /∈
⋂
ψ∈DV(i,j)(ψ) and

prove the result via a contrapositive argument. In particular, we will show
that for every such x there exists an approximating function ψ0 ∈ D for
which

(4.1) µ(Wx
(i,j)(ψ0)) = 0,

i.e., the points γ := (γ1, γ2) ∈ [0, 1]2 that satisfy the inequality

max{‖qx1 − γ1‖1/i, ‖qx2 − γ2‖1/j} ≤ ψ0(|q|)
for infinitely many non-zero integers q form a null set with respect to the
Lebesgue measure.

First, if x /∈ Bad(i, j) then by definition there exists a sequence {qk}k∈N
of non-zero integers such that

(4.2) max{‖qkx1‖1/i, ‖qkx2‖1/j} <
ck
|qk|

, |qk| < |qk+1| ∀k ∈ N,

where ck > 0 and ck → 0 as k →∞. Furthermore, it can be assumed that

(4.3) 1 > ck > 23/(2min{i,j})ck+1 ∀k ∈ N.
If this were not the case then we could simply choose a suitable subsequence
of {qk}. In addition, it may also be assumed that the sequence {(ck)−1/3}k∈N
takes integer values for every index k. Note that the latter assumption, along
with condition (4.3), guarantees that for every k,

(4.4) c
−1/3
k ≥ 2.

We wish to construct a divergent approximating function ψ0 for which
equation (4.1) is satisfied. To that end, we introduce some useful notation.
For each k ≥ 1, let nk := |qk|c

−1/3
k . In view of the above assumptions the

sequence {nk}k∈N is increasing and takes strictly positive integer values for
each index k. That said, we set n0 := 0 for future conciseness. Next, for each
natural number r define

ψ0(r) :=
{ 1, r ≤ n1,
|qk+1|−1c

1/3
k+1, nk < r ≤ nk+1,
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for every k ≥ 1. It is obvious that ψ0 is a decreasing and strictly positive
function. To show ψ0 ∈ D, note that

∞∑
r=1

ψ0(r) >
∞∑
k=1

nk+1∑
r=nk+1

ψ0(r) =
∞∑
k=1

(nk+1 − (nk + 1) + 1)ψ0(nk+1)

=
∞∑
k=1

(|qk+1|c
−1/3
k+1 − |qk|c

−1/3
k )|qk+1|−1c

1/3
k+1

=
∞∑
k=1

(
1− |qk|
|qk+1|

(
ck+1

ck

)1/3)

>

∞∑
k=1

(
1−

(
ck+1

ck

)1/3)
(since |qk| < |qk+1| )

(4.3)
>

∞∑
k=1

(1− 2−1/(2min{i,j})) ≥
∞∑
k=1

1
2

=∞,

as required.
Finally, we endeavour to show (4.1) holds for our choice of divergent

function. To that end, for each non-zero integer q let

Rψ0(q) := {γ ∈ [0, 1]2 : max{‖qx1 − γ1‖1/i, ‖qx2 − γ2‖1/j} ≤ ψ0(|q|)}
denote the closed rectangular region in the plane centred at the point qx
(mod 1) of sidelengths 2ψi0(|q|) and 2ψj0(|q|). When using the notation
Rψ0(q) it will be understood that i, j and x are fixed. In addition, all
such closed rectangular regions will be referred to throughout as simply a
“rectangle” and all points within any such rectangle will tacitly be modulo
one. It follows that

(4.5) Wx
(i,j)(ψ0) = {γ ∈ [0, 1]2 : γ ∈ Rψ0(q) for infinitely many q ∈ Z6=0}

=
{

γ ∈ [0, 1]2 : γ ∈
nk⋃

|q|=nk−1+1

Rψ0(q) for infinitely many k ∈ N
}
.

In view of the Borel–Cantelli lemma, to show that equation (4.1) holds it is
enough to show that

(4.6)
∞∑
k=1

µ
( nk⋃
|q|=nk−1+1

Rψ0(q)
)
<∞.

We will estimate the LHS by estimating the measure of each union of rect-
angles of the form

R∗ψ0
(k) :=

nk⋃
|q|=nk−1+1

Rψ0(q) for k ∈ N.
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We will hereafter refer to any union of rectangles as a “collection”. For
each k, the collection R∗ψ0

(k) consists of 2(nk − nk−1) rectangles in [0, 1]2

each centred at some point qx for which nk−1 < |q| ≤ nk. By definition,
every rectangle in a collection is of the same measure, in particular each has
sidelengths 2ψi0(nk) and 2ψj0(nk).

To estimate the measure of R∗ψ0
(k) we will cover it with a collection

of larger rectangles whose measure will in some sense increase at a more
controllable rate than those of R∗ψ0

(k). This will allow us to calculate a
finite upper bound for the sum (4.6) as required. With these aims in mind,
for each index k set

S∗ψ0
(k) :=

|qk|⋃
|q|=1

{
γ ∈ [0, 1]2 : ‖qx1 − γ1‖ ≤

nk
|qk|

(
ck
|qk|

)i
+ ψi0(nk)

and ‖qx2 − γ2‖ ≤
nk
|qk|

(
ck
|qk|

)j
+ ψj0(nk)

}
.

Each collection S∗ψ0
(k) now consists of 2|qk| rectangles in [0, 1]2, one centred

at each point qx with 1 ≤ |q| < |qk|. The sidelengths of each of these
rectangles are

2
(
nk
|qk|

(
ck
|qk|

)i
+ ψi0(nk)

)
and 2

(
nk
|qk|

(
ck
|qk|

)j
+ ψj0(nk)

)
.

An upper bound for the Lebesgue measure of S∗ψ0
(k) can be easily deduced.

We have

(4.7) µ(S∗ψ0
(k)) ≤ 23|qk|

(
nk
|qk|

(
ck
|qk|

)i
+ ψi0(nk)

)(
nk
|qk|

(
ck
|qk|

)j
+ ψj0(nk)

)
for every index k ≥ 1.

We wish to show that S∗ψ0
(k) covers R∗ψ0

(k) for each k. As the rectangles
of S∗ψ0

(k) are larger than those of R∗ψ0
(k), any rectangle of R∗ψ0

(k) centred
at a point q′x with nk−1 < |q′| ≤ |qk| will automatically be contained in the
corresponding rectangle of S∗ψ0

(k). Hence, it will suffice to check that any
rectangle of R∗ψ0

(k) centred at a point q′x with |qk| < |q′| ≤ nk is covered
by some rectangle of S∗ψ0

(k). It is clear by construction and inequality (4.4)
that |qk| < nk and so rectangles of this type are present in every R∗ψ0

(k).
For each of these integers q′ we can find a natural number m such that
|q′ − mqk| ≤ |qk|. This implies there must be a rectangle of the collection
S∗ψ0

(k) that is centred at the point (q′ −mqk)x. It is also clear that m can
always be chosen in a way such that |mqk| < |q′|. Therefore

(4.8) |m| < |q
′|
|qk|
≤ nk
|qk|

.
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Now, consider the distance between the points q′x and (q′−mqk)x. We have

‖q′x1 − (q′ −mqk)x1‖ = ‖−mqkx1‖ ≤ |m| ‖qkx1‖
(4.2)
< |m|

(
ck
|qk|

)i (4.8)
<

nk
|qk|

(
ck
|qk|

)i
,

and similarly

‖q′x2 − (q′ −mqk)x2‖ <
nk
|qk|

(
ck
|qk|

)j
.

Combining the above two inequalities implies that any rectangle of R∗ψ0
(k)

centred at a point q′x with |qk| < |q′| ≤ nk is covered by the rectangle of
S∗ψ0

(k) centred at (q′−mqk)x. This shows that S∗ψ0
(k) is a cover for R∗ψ0

(k)
and so

∞∑
k=1

µ(R∗ψ0
(k)) ≤

∞∑
k=1

µ(S∗ψ0
(k)).

Estimate (4.7) justifies that the RHS is bounded above by

∞∑
k=1

8|qk|
(
nk
|qk|

(
ck
|qk|

)i
+ ψi0(nk)

)(
nk
|qk|

(
ck
|qk|

)j
+ ψj0(nk)

)

=
∞∑
k=1

8|qk|(c
−1/3
k cik|qk|−i + |qk|−ic

i/3
k )

× (c−1/3
k cjk|qk|

−j + |qk|−jc
j/3
k )

= 8
∞∑
k=1

|qk| |qk|−i−j(c
i−1/3
k + c

i/3
k )(cj−1/3

k + c
j/3
k ).

However, we have i+ j = 1 and so this reduces to

8
∞∑
k=1

(ci+j−2/3
k + c

(i+j)/3
k + c

i/3+j−1/3
k + c

i+j/3−1/3
k )

= 8
∞∑
k=1

(2c1/3k + c
2i/3
k + c

2j/3
k ) ≤ 8

∞∑
k=1

4c2min{i,j}/3
k

(4.3)
< 32

∞∑
k=1

c
2min{i,j}/3
1 2−(k−1) = 64c2min{i,j}/3

1 <∞,

as required. This completes the proof of Proposition 4.1.

4.2. Proof of Theorem 2.1 (Part 2). In this section we prove the
complementary inclusion to that of Proposition 4.1.
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Proposition 4.2. For every real i, j > 0 such that i+ j = 1,

Bad(i, j) ⊆
⋂
ψ∈D

V(i,j)(ψ).

Proof. We are required to show that if x ∈ Bad(i, j) then for every
divergent approximating function ψ we have

µ(Wx
(i,j)(ψ)) = 1.

To do this we first prove the intermediary result that for every x ∈ Bad(i, j)
we have

(4.9) µ(Wx
(i,j)(ψ)) > 0

for every ψ ∈ D.
Fix x ∈ Bad(i, j). By definition there exists a constant c(x) > 0 such

that for all natural numbers q,

max{‖qx1‖1/i, ‖qx2‖1/j} > c(x)/q.

Next, choose any function ψ ∈ D. To ensure that certain technical conditions
required later in the proof are met we will work with a refinement of ψ. Let

a∗ := 2−1/max{i,j} and a∗ := 2−1/min{i,j},

then for each r ∈ N set

ψ1(r) := min
{
ψ(r),

a∗

2
,
a∗c(x)

2|r|

}
.

Finally, choose any integer k such that

(4.10) k > 4

and for each natural number r and each t ∈ N define

ψ2(r) :=
{
ψ1(k), r ≤ k,
ψ1(kt+1), kt < r ≤ kt+1.

It is easy to see that for each r ∈ N,

(4.11) ψ2(r) ≤ ψ1(r) ≤ ψ(r)

and that ψ1 ∈ D. It is also clear that ψ2 is decreasing and strictly positive.
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Furthermore,
∞∑
r=1

ψ2(r) ≥
∞∑
t=1

kt+1∑
r=kt+1

ψ2(r) =
∞∑
t=1

(kt+1 − kt)ψ2(kt+1)

=
1
k

∞∑
t=1

(kt+2 − kt+1)ψ1(kt+1) ≥ 1
k

∞∑
t=1

kt+2∑
r=kt+1+1

ψ1(r)

=
1
k

∞∑
r=k2+1

ψ1(r) =∞,

and so ψ2 too is a divergent approximating function.
With reference to §4.1, we see that inequality (4.11) and the character-

isation of Wx
(i,j)(ψ) in terms of the rectangles Rψ(q) given by (4.5) now

guarantee that the following statement is sufficient to prove (4.9) for every
choice of function ψ. For every integer r ≥ 1,

(4.12) µ
( ∞⋃
|q|=r+1

Rψ2(q)
)
≥ a∗c(x)

8
.

Note that this statement is in terms of the constructed function ψ2. To prove
(4.12) we will show that there cannot exist a natural number t0 such that
the inequality fails to hold when r = kt0 . Assume that such a t0 exists and
consider the collection of rectangles defined by

Rt := R(ψ2, t) :=
kt⋃

|q|=kt0+1

Rψ2(q) for t = t0 + 1, t0 + 2, . . . .

We will demonstrate that the measure of the set Rt is unbounded as t
increases and in doing so reach a contradiction, as each Rt is contained in
[0, 1]2. We will do this by estimating the size of a suitable sum of the measure
of set differences of the form Rt+1 \Rt.

By construction each Rt+1 is obtained from Rt by adding 2(kt+1 − kt)
new rectangles to those of Rt. These new rectangles are centred at the
points qx for which kt < |q| ≤ kt+1. To estimate µ(Rt+1 \Rt) we will find
an upper bound to the number of the new rectangles that intersect any
existing rectangle of Rt. In particular, we will find an upper bound on the
cardinality of the set Jt+1 ∩ 2Rt, where Jt+1 denotes the set of points qx
for which kt < |q| ≤ kt+1 and

2Rt :=
kt⋃

|q|=kt0+1

R2ψ2(q) for t = t0 + 1, t0 + 2, . . . .

This will suffice as ψ2 is non-increasing. Before proceeding we first notice
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that, since the vector x was chosen from Bad(i, j), if qx and q′x are members
of Jt+1 then

(4.13) max{‖qx1 − q′x1‖1/i, ‖qx2 − q′x2‖1/j} ≥
c(x)
|q − q′|

≥ c(x)
2kt+1

,

provided that the integers q and q′ are distinct.
The collection 2Rt can be partitioned into two exhaustive subcollections

(which without loss of generality we will assume are non-empty). Recalling
that a∗ := 2−1/min{i,j}, define

2R(1)
t :=

⋃
R2ψ2(q),

where the union runs over all non-zero q with kt0 < |q| ≤ kt such that

2ψ2(|q|) < a∗c(x)
2kt+1

.

In turn, let

2R(2)
t :=

⋃
R2ψ2(q),

where this time the union runs over q with kt0 < |q| ≤ kt such that

2ψ2(|q|) ≥ a∗c(x)
2kt+1

.

The intersections Jt+1 ∩ 2R(1)
t and Jt+1 ∩ 2R(2)

t will now be dealt with
independently.

The subcollection 2R(1)
t consists of rectangles of sidelengths

2(2ψ2(|q|))i and 2(2ψ2(|q|))j ,

and we have both

2(2ψ2(|q|))i <
(
c(x)
2kt+1

)i
and 2(2ψ2(|q|))j <

(
c(x)
2kt+1

)j
.

This follows upon noticing that max{ai∗, a
j
∗} = 1/2. Thus, statement (4.13)

implies at most one element of Jt+1 can lie in each rectangle of 2R(1)
t and

so Jt+1 ∩ 2R(1)
t contains at most 2(kt − kt0) < 2kt elements.

Estimating the cardinality of Jt+1 ∩ 2R(2)
t requires more work and we

argue as follows. If a point γ0 lies in the subcollection 2R(2)
t then it must

lie in a rectangle of the form R2ψ2(q0) ⊆ 2R(2)
t for some integer q0 with

kt0 < |q0| ≤ kt. This rectangle must have sidelengths 2(2ψ2(|q0|))i and
2(2ψ2(|q0|))j and by definition we have

2(2ψ2(|q0|))i ≥ 2
(
a∗c(x)
2kt+1

)i
and 2(2ψ2(|q0|))j ≥ 2

(
a∗c(x)
2kt+1

)j
.
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It is now clear that there must exist a point y(γ0) ∈ R2ψ2(q0) such that γ0 is
contained in a subrectangle, say S(γ0), of R2ψ2(q0) centred at y(γ0) and of
sidelengths (a∗c(x)/2kt+1)i and (a∗c(x)/2kt+1)j . The fact that max{ai∗, a

j
∗}

= 1/2, twinned with equation (4.13), once more guarantees that only one
point of Jt+1 may lie in any subrectangle of this type. Moreover, any two
such subrectangles containing the respective points qx and q′x, both in Jt+1,
must be disjoint. Thus, the cardinality of Jt+1 ∩ 2R(2)

t cannot exceed
µ(2R(2)

t )/µ(S(γ0)). We estimate the size of µ(2R(2)
t ) by utilising the fol-

lowing lemma.

Lemma 4.3. For every t = t0 + 1, t0 + 2, . . . ,
µ(2Rt) ≤ 2µ(Rt).

Proof. For s ∈ N, let

Rs :=
kt0+s⋃
|q|=kt0+1

Rψ2(q) and 2Rs :=
kt0+s⋃
|q|=kt0+1

R2ψ2(q).

To prove the lemma it suffices to show that µ(2Rs) ≤ 2µ(Rs) for all s. We
proceed by induction. If s = 1, then

µ(R1) = 2ψi2(kt0 + 1) · 2ψj2(kt0 + 1) = 4ψ2(kt0 + 1).

Further,

µ(2R1) = 2(2ψ2(kt0 + 1))i · 2(2ψ2(kt0 + 1))j = 2 · 4ψ2(kt0 + 1) = 2µ(R1)

and the statement holds.
Next, assume the hypothesis holds when s = s′ and define a transforma-

tion T on the torus [0, 1]2 by

T (γ) := (2iγ1, 2jγ2) ∀γ ∈ [0, 1]2.

For any subset D ⊆ [0, 1]2, we denote by T (D) the set of all points T (γ)
where γ ∈ D. Let Ds′+1 := Rs′+1 \Rs′ ; then, since by definition ψ2 does
not exceed a∗(i, j)/2,

(4.14) µ(T (Ds′+1)) = 2i · 2j · µ(Ds′+1) = 2µ(Ds′+1).

It is also clear that
2Rs′+1 = 2Rs′ ∪ T (Ds′+1),

from which it follows that

µ(2Rs′+1) = µ(2Rs′ ∪ T (Ds′+1)) ≤ µ(2Rs′) + µ(T (Ds′+1))

≤ 2µ(Rs′) + 2µ(Ds′+1) (by assumption and (4.14) resp.)

= 2µ(Rs′ ∪Ds′+1) (since Rs′ and Ds′+1 are disjoint)

= 2µ(Rs′+1),

as required. Lemma 4.3 is proved.
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We return to our calculation. Since we are assuming that statement
(4.12) is false, Lemma 4.3 now yields

µ(2R(2)
t ) ≤ µ(2Rt) ≤ 2µ(Rt) < a∗c(x)/4.

Thus,

#(Jt+1 ∩ 2R(2)
t ) ≤ µ(2R(2)

t )
µ(S(γ0))

<
a∗c(x)

4(a∗c(x)/2kt+1)i+j
=
kt+1

2

and we have found our second upper bound.
Recalling our intention to estimate µ(Rt+1 \Rt), we can now write down

an upper bound for the number of rectangles added to Rt to make Rt+1 that
do intersect existing rectangles of Rt. Indeed, this number cannot exceed

(4.15) #(Jt+1 ∩ 2Rt) ≤ 2kt + kt+1/2,

which follows upon noticing that

Jt+1 ∩ 2Rt = (Jt+1 ∩ 2R(1)
t ) ∪ (Jt+1 ∩ 2R(2)

t ).

To complete our argument we require one final piece of notation. Let

Lt+1 := {q ∈ Z6=0 : qx ∈ Jt+1, qx /∈ 2Rt}.

The integers q ∈ Lt+1 each correspond to a rectangle of Rt+1 that does not
intersect any rectangle of Rt. So, by (4.15),

#(Lt+1) ≥ 2(kt+1 − kt)− (2kt + kt+1/2) = (2− 4/k − 1/2)kt+1(4.16)
(4.10)
> (2− 1− 1/2)kt+1 = kt+1/2.

We will now estimate µ(Rt+1 \Rt) by considering the inclusion

(4.17) Rt+1 \Rt ⊃
⋃

q∈Lt+1

Rψ2(q).

The rectangles Rψ2(q) in the above union have sidelengths 2ψi2(|q|) and
2ψj2(|q|). Further, if q, q′ ∈ Lt+1 then kt < |q|, |q′| ≤ kt+1 and so

(4.18) max{‖qx1 − q′x1‖1/i, ‖qx2 − q′x2‖1/j}
(4.13)

≥ c(x)
2kt+1

.

Recall that ψ2 is constant on each Lt+1 by definition, taking the value
ψ2(kt+1), and also that

ψ2(r) ≤ a∗c(x)
2|r|

.
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Therefore, we have both

2ψi2(|q|) = 2ψi2(kt+1) <
(
c(x)
2kt+1

)i
,

2ψj2(|q|) = 2ψj2(kt+1) <
(
c(x)
2kt+1

)j
.

Combining these inequalities with statement (4.18) yields that the rectangles
Rψ2(q) on the RHS of (4.17) are disjoint. Hence,

µ(Rt+1 \Rt) ≥
∑

q∈Lt+1

µ(Rψ2(q)) = 22
∑

q∈Lt+1

ψ2(|q|)

(4.16)
> 2kt+1ψ2(kt+1) > 2(kt+1 − kt)ψ1(kt+1)

=
kt+1∑
|q|=kt+1

ψ1(kt+1) =
kt+1∑
|q|=kt+1

ψ1(|q|).

Finally, ψ1 is divergent, i.e.
∞∑
|q|=1

ψ1(|q|) =∞,

whence
∑

t>t0
µ(Rt+1 \ Rt) = ∞. Since Rt ⊆ Rt+1 for any t > t0, this

implies that µ(Rt) → ∞ as t → ∞. However, each set Rt is contained in
[0, 1]2 and so a contradiction is reached. This means the assumption that
(4.12) fails for some r = kt0 is indeed false, and consequently

µ(Wx
(i,j)(ψ)) > 0

for every ψ ∈ D as desired.
To complete the proof of Proposition 4.2 we must now show that if

x ∈ Bad(i, j) then
µ(Wx

(i,j)(ψ)) = 1

for every ψ ∈ D. Our method will be through the application of two lemmas,
the first of which is due to Kurzweil ([17, Lemma 13]).

Lemma 4.4 (Kurzweil). Let U and V be subsets of [0, 1]2. If µ(U) > 0
and V is dense in [0, 1]2 then µ(U⊕V ) = 1, where U⊕V := {u+v (mod 1) :
u ∈ U, v ∈ V }.

Lemma 4.5. For every ψ ∈ D and for every natural number s we have
∞∑
r=1

ψ(sr) =∞.

Proof. Suppose s ≥ 1 and for the ease of notation set ψ(0) := ψ(1).
Consider the s-subseries

∑∞
r=0 ψ(sr + k) for each k = 0, . . . , s − 1. Every
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term ψ(r′), r′ ∈ N, appears exactly once in exactly one s-subseries. If every
s-subseries had a finite sum then the original series

∑∞
r=1 ψ(r) would also

have a finite sum (precisely equal to the sum of the sums of the s-subseries).
Since the original series does not have a finite sum, at least one of the
s-subseries must diverge, say

∑∞
r=0 ψ(sr + k0) = ∞. Since ψ is decreasing,

ψ(sr) ≥ ψ(sr + k0) and so
∑∞

r=0 ψ(sr) =∞, and Lemma 4.5 holds.

Returning to the proof of Proposition 4.2, fix a divergent approximating
function ψ and a vector x ∈ Bad(i, j). Once again, we will refine ψ before
proceeding. Firstly, we will construct a function ψ3 ∈ D such that

(4.19) lim
r→∞

ψ3(r)
ψ(r)

= 0.

Let r0 = 0 and choose r1 ≥ 1 such that the inequality
∑r1

r=1 ψ(r) ≥ 1 holds.
Then in general construct inductively a strictly increasing sequence {rk}∞k=0
such that for each k,

(4.20)
rk∑

r=rk−1+1

ψ(r) ≥ k.

This is always possible since
∑∞

r=1 ψ(r) diverges, so the partial sums from
any starting point must tend to infinity. Next, define cr := 1/

√
k if rk−1 <

r ≤ rk and ψ3(r) := crψ(r). Equation (4.19) therefore holds as ψ3(r)/ψ(r)
= cr tends to zero. Both ψ and {cr} are strictly positive and decreasing,
hence ψ3 is strictly positive and decreasing. Also, by construction, inequality
(4.20) guarantees that

rk∑
r=rk−1+1

ψ3(r) =
1
k

rk∑
r=rk−1+1

ψ(r) ≥ 1,

and so
rk∑
r=1

ψ3(r) ≥ k.

This shows that the sum of ψ3 diverges and we have verified that ψ3 ∈ D.
By Lemma 4.5,

∞∑
r=1

ψ3(sr) =∞

for every natural number s. Consequently, there must exist a strictly in-
creasing sequence of natural numbers {sr}r∈N with sr →∞ as r →∞ such
that

∞∑
r=1

ψ3(srr) =∞.
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Accordingly, we define ψ4(r) := ψ3(srr). Hence, for any fixed non-zero inte-
ger q′ we have

(4.21) lim
|q|→∞

ψ4(|q|)
ψ(|q + q′|)

= 0.

It is also clear that ψ4 is a divergent approximating function and therefore
we know by intermediary result (4.9) that

(4.22) µ(Wx
(i,j)(ψ4)) > 0.

In addition, if we choose some vector y such that

y ∈Wx
(i,j)(ψ4)

(4.5)
=

∞⋂
k=1

∞⋃
|q|=k

Rψ4(q),

then for every natural number k there are infinitely many integers q with
|q| ≥ k such that y ∈ Rψ4(q). It follows that y + q′x is a member of the set
of γ ∈ [0, 1]2 for which

max{‖(q + q′)x1 − γ1‖1/i, ‖(q + q′)x2 − γ2‖1/j} ≤ ψ4(|q|)
for infinitely many integers q satisfying |q| ≥ k. For large enough k, equation
(4.21) implies that for each q with |q| ≥ k the set of γ defined above is
contained in the rectangle Rψ(q+ q′). It follows that y + q′x is contained in
infinitely many rectangles of the form Rψ(q), i.e.,

(4.23) y + q′x ∈
∞⋂
k=1

∞⋃
|q|=k

Rψ(q) = Wx
(i,j)(ψ)

for every natural number q′.
We are now in a position to apply Lemma 4.4. With reference to the

lemma, set

U := Wx
(i,j)(ψ4) and V := {qx : q ∈ Z6=0}.

By (4.22) we have µ(U) > 0 and, as mentioned in §1.2, Kronecker’s Theorem
implies that V is dense in [0, 1]2 if x is irrational. Hence, Lemma 4.4 implies
that µ(U ⊕ V ) = 1, from which (4.23) gives

µ(Wx
(i,j)(ψ)) = 1

and the proof of Proposition 4.2, and indeed that of Theorem 2.1, is com-
plete.

5. Proof of Theorem 2.2. This proof makes use of the framework de-
veloped in [15], which was specifically designed to provide dimension results
for a broad range of badly approximable sets. In this section we show that
Badx(i, j) falls into this category when x is chosen from Bad(i, j). First,
we provide a simplification of the framework tailored to our needs.
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Let R := {Rα ⊂ R2 : α ∈ J}, where J is an infinite countable index set.
We will refer to the Rα as resonant sets. Furthermore, it will be assumed
that each resonant set takes the form of a cartesian product, i.e., that each
Rα can be split into the images Rα,t ⊂ R, t = 1, 2, of its two projection
maps along the two coordinate axes. Next, let β : J → R>0 : α 7→ βα be
a positive function on J such that the number of α ∈ J with βα bounded
above is finite. Thus, as α runs through J the function βα tends to infinity.
Also, for t = 1, 2, let ρt : R>0 → R>0 : r 7→ ρt(r) be any real, positive,
decreasing function such that ρt(r) → 0 as r → ∞. We assume that either
ρ1(r) ≥ ρ2(r) or ρ2(r) ≥ ρ1(r) for large enough r. Finally, for each resonant
set Rα define a rectangular neighbourhood Fα(ρ1, ρ2) by

Fα(ρ1, ρ2) := {x ∈ R2 : |xt −Rα,t| ≤ ρt(βα) for t = 1, 2},
where |xt −Rα,t| := infa∈Rα,t |xt − a|.

We now introduce the general badly approximable set to which the re-
sults of [15] relate. Define Bad(R, β, ρ1, ρ2) to be the set of x ∈ [0, 1]2 for
which there exists a constant c(x) > 0 such that

x /∈ c(x)Fα(ρ1, ρ2) ∀α ∈ J.
That is, x ∈ Bad(R, β, ρ1, ρ2) if there exists a constant c(x) > 0 such that
for all α ∈ J ,

|xt −Rα,t| ≥ c(x)ρt(βα) (t = 1, 2).

The aim of the framework is to determine conditions under which the
set Bad(R, β, ρ1, ρ2) has full Hausdorff dimension. With this in mind, we
begin with some useful notation. For any fixed integers k > 1 and n ≥ 1,
define

Fn := {x ∈ [0, 1]2 : |xt − ct| ≤ ρt(kn) for t = 1, 2}
to be the generic closed rectangle in [0, 1]2 with centre c := (c1, c2) and of
side lengths given by 2ρ1(kn) and 2ρ2(kn). Next, for any θ ∈ R>0, let

θFn := {x ∈ [0, 1]2 : |xt − ct| ≤ θρt(kn) for t = 1, 2}
denote the rectangle Fn scaled by θ. Finally, let

J(n) := {α ∈ J : kn−1 ≤ βα < kn}.
The following statement is a simplification of Theorem 2 of [15], made

possible by the properties of the 2-dimensional Lebesgue measure µ.

Theorem KTV (2006). Let k be sufficiently large. Suppose there exists
some θ ∈ R>0 such that for any n ≥ 1 and any rectangle Fn there exists
a collection C(θFn) of disjoint rectangles 2θFn+1 contained within θFn such
that

(5.1) #C(θFn) ≥ κ1
µ(θFn)
µ(θFn+1)
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and

(5.2) #{2θFn+1 ⊂ C(θFn) : Rα ∩ 2θFn+1 6= ∅ for some α ∈ J(n+ 1)}

≤ κ2
µ(θFn)
µ(θFn+1)

,

where 0 < κ2 < κ1 are absolute constants independent of k and n. Further-
more, suppose

(5.3) dim
(⋃
α∈J

Rα

)
< 2.

Then
dim(Bad(R, β, ρ1, ρ2)) = 2.

Proof of Theorem 2.2. Fix two positive reals i, j with i+j = 1 and some
x ∈ Bad(i, j). It is once more assumed that i, j > 0, for in this case the
theorem would otherwise follow immediately from Corollary 1 of [2]. With
reference to the above framework, set

J := {q ∈ Z6=0}, α := q ∈ J, Rα := Rq = {qx + p : p ∈ Z2},
βα := βq = |q|, ρ1(r) := 1/ri, ρ2(r) := 1/rj .

By design we then have

Bad(R, β, ρ1, ρ2) = Badx(i, j)

and so the proof is reduced to showing that the conditions of Theorem KTV
are satisfied.

For k > 1 and m ≥ 1, let Fm be a generic closed rectangle with centre
in [0, 1]2 and of side lengths 2k−mi and 2k−mj . For k sufficiently large and
any θ ∈ R>0 it is clear that there exists a collection C(θBm) of closed rect-
angles 2θFm+1 within θFm each, of side lengths 4θk−(m+1)i and 4θk−(m+1)j .
Moreover, the number of rectangles in this collection exceeds⌊

2θk−mi

4θk−(m+1)i

⌋
·
⌊

2θk−mj

4θk−(m+1)j

⌋
.

Here, the symbol b·c denotes the integer part. For large enough k the above
is strictly positive and is bounded below by

1
2
· 2θk−mi

4θk−(m+1)i
· 1

2
· 2θk−mj

4θk−(m+1)j
=

1
16
· 4θ2k−m(i+j)

4θ2k−(m+1)(i+j)
=

1
16
· µ(θFm)
µ(θFm+1)

.

Hence, inequality (5.1) holds with κ1 := 1/16.
We endeavour to show that the additional condition (5.2) on the collec-

tion C(θFm) is satisfied. To this end, we fix m ≥ 1 and proceed as follows.
Choose two members of distinct moduli from the set J(m+ 1), i.e., choose
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two integers q and q′ such that

(5.4) km ≤ |q′| < |q| < km+1.

Associated with the integers q and q′ are the resonant sets Rq and Rq′ ,
whose elements take the form qx + p and q′x + p′ respectively (for some
p,p′ ∈ Z2). Consider the minimum distance between a point in Rq and one
in Rq′ . For t = 1, 2,

|(qxt + pt)− (q′xt + p′t)| = |(q − q′)xt + pt − p′t| ≥ ‖(q − q′)xt‖.
Since x ∈ Bad(i, j), either

‖(q − q′)x1‖ ≥
(

c(x)
|q − q′|

)i (5.4)
>

(
c(x)

2km+1

)i
or

‖(q − q′)x2‖ ≥
(

c(x)
|q − q′|

)j (5.4)
>

(
c(x)

2km+1

)j
.

Therefore, if we set

θ :=
1
2

min
{(

c(x)
2k

)i
,

(
c(x)
2k

)j}
then the rectangle θFm has side lengths

2θk−mi = min
{(

c(x)
2k

)i
,

(
c(x)
2k

)j}
k−mi ≤

(
c(x)

2km+1

)i
,

2θk−mj = min
{(

c(x)
2k

)i
,

(
c(x)
2k

)j}
k−mj ≤

(
c(x)

2km+1

)j
.

So, for any two integers q, q′ of distinct moduli in J(m + 1), if a member
of Rq lies in θFm then no members of Rq′ may lie in θFm. Only one point
of Rq may lie in θFm (since µ(θFm) < 1) and so only two points over all
possible resident sets may lie in any rectangle θFm: those corresponding to
q and −q. Hence,

#{2θFm+1 ⊂ C(θFm) : Rq ∩ 2θFm+1 6= ∅ for some q ∈ J(m+ 1)} ≤ 2,

which for large enough k is certainly less than
k

32
=

1
32
· µ(θFm)
µ(θFm+1)

.

So, with θ as defined above and with κ2 := 1/32 < κ1, the collection C(θFm)
satisfies inequality (5.2).

Finally, note that the family R of resonant sets takes the form of a
countable number of countable sets and so

dim
(⋃
q∈J

Rq

)
= 0
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and inequality (5.3) trivially holds. Thus, the conditions of Theorem KTV
are satisfied and Theorem 2.2 follows.

6. Appendix. We conclude the paper by proving a general result im-
plying Theorems 1.5 & 3.3 as stated in the main body of the paper. The
result is an extension of Cassels’ inhomogeneous Khintchine-type theorem
[3, Chapter VII, Theorem II]. The proof is a modification of Cassels’ original
argument and also borrows ideas from the work of Gallagher.

Theorem 6.1. For any sequence {Aq}q∈N of measurable subsets of [0, 1)d

let A denote the set of all pairs (x,γ) ∈ [0, 1)d× [0, 1)d for which there exist
infinitely many q ∈ N and p ∈ Zd such that

(6.1) qx− γ − p ∈ Aq.
Then

µ2d(A) :=
{

0 if
∑∞

r=1 µd(Ar) <∞,
1 if

∑∞
r=1 µd(Ar) =∞,

where µs denotes s-dimensional Lebesgue measure.

Proof. We begin by considering the case in which the sum
∑∞

r=1 µd(Ar)
converges. Fix γ ∈ [0, 1)d. For each natural number q, a vector x satisfying
(6.1) uniquely determines the integral vector p in such a way that |p| < q.
Therefore, the measure of the set of all x ∈ [0, 1)d that satisfy (6.1) for
each q is given by

µd

( ⋃
p∈[0,q)d

(Aq ⊕ γ)⊕ p
q

)
=

∑
p∈[0,q)d

µd

(
(Aq ⊕ γ)⊕ p

q

)
,

since the union is disjoint. The dilation property of µd implies that this is
equivalent to

q−d
∑

p∈[0,q)d

µd((Aq ⊕ γ)⊕ p) = q−dqd · µd(Aq ⊕ γ) = µd(Aq),

by the translational invariance of µd. Now, if
∑∞

r=1 µd(Ar) < ∞, then for
any ε > 0 the set of vectors satisfying (6.1) for any q ≥ Q has measure at
most

∑
q≥Q µd(Aq) < ε for large enough Q. In particular, the set of x with

infinitely many solutions to (6.1) has measure at most ε. This completes the
proof of the convergence case.

Let us now assume that the sum
∑∞

r=1 µd(Ar) diverges. Define the func-
tion αq : Rd → R for each natural number q as follows. Let

αq(x) :=
{

1 if ∃p ∈ Zd, x− p ∈ Aq,
0 otherwise.

It is clear that each αq is measurable since it is equivalent to the character-
istic function of a countable union of measurable sets in Rd. Next, for every
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natural number Q define the function AQ : [0, 1)d × [0, 1)d → R by

AQ(x,γ) :=
∑
q≤Q

αq(qx− γ).

We wish to verify that AQ is measurable. To that end, we introduce the
following lemma, which is a generalisation of a well-known result in measure
theory and follows via simple modification of the classical proof (see for
example [22, Chapter 2, Proposition 3.9]).

Lemma 6.2. If f is a measurable function on Rd then the function
Fq(x,γ) :=f(qx− γ) is measurable on Rd×Rd for every natural number q.

Since αq is finite-valued (and finite sums of finite-valued measurable
functions are measurable functions) Lemma 6.2 implies that AQ is indeed
measurable on [0, 1)d × [0, 1)d. Furthermore, by construction, it is apparent
that AQ(x,γ) is simply the number of natural q with q ≤ Q such that

qx− γ − p ∈ Aq for some p ∈ Zd.

Hence, to complete the proof of Theorem 6.1 it suffices to show AQ(x,γ)
→ ∞ almost everywhere as Q → ∞. We will hereafter consider AQ as a
random variable in a probability space with probability measure µd.

For any positive measurable function f : [0, 1)d×[0, 1)d → Rd
≥0 we denote

the expectation of f by

E(f) :=
�

[0,1)d

�

[0,1)d

f(x,γ) dx dγ.

If the variance V (f) := E(f2)−E(f)2 of f is finite then the famous Paley–
Zygmund inequality (see for example [12, ineq. II, p. 8]) states that

µd({(x,γ) : f(x,γ) ≥ εE(f)}) ≥ (1− ε)2E(f)2

E(f2)

for any sufficiently small ε > 0. We will use this inequality to reach our
desired conclusion.

Before applying the Paley–Zygmund inequality to AQ we must show that
V (AQ) is finite. It suffices to show that both E(AQ) and E(A2

Q) are finite.
To do this we require the following lemma [3, Chapter VII, Lemma 3].

Lemma 6.3 (Cassels). Let α be a measurable function of period one of
the variable x ∈ Rd. Then�

[0,1)d

α(qx + γ) dx =
�

[0,1)d

α(x) dx

for any vector γ ∈ Rd and any integer q 6= 0.
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We note that αq is of period one and so

E(AQ) =
�

[0,1)d

�

[0,1)d

AQ(x,γ) dx dγ(6.2)

=
∑
q≤Q

�

[0,1)d

�

[0,1)d

αq(qx− γ) dx dγ

Lem. 6.3=
∑
q≤Q

�

[0,1)d

�

[0,1)d

αq(x) dx dγ

=
∑
q≤Q

�

[0,1)d

�

[0,1)d

χAq(x) dx dγ =
∑
q≤Q

µd(Aq),

which is indeed finite. Further,

E((AQ)2) =
�

[0,1)d

�

[0,1)d

(AQ(x,γ))2 dx dγ

=
∑
q,r≤Q

�

[0,1)d

�

[0,1)d

αq(qx− γ)αr(rx− γ) dx dγ

=
∑
q,r≤Q

�

[0,1)d

�

[0,1)d

αr−s(−γ ′)αr(sx′ − γ ′) dx′ dγ ′,

via the change of variables x′ := x, γ ′ := γ − qx and s := r − q. Here,
the range of both x′ and γ ′ can be taken as [0, 1)d since the function αq is
periodic. Let

A(r,s)(x′,γ ′) :=
�

[0,1)d

�

[0,1)d

αr−s(−γ ′)αr(sx′ − γ ′) dx′ dγ ′.

Then for r = q we have s = 0 and

A(r,s)(x′,γ ′) =
�

[0,1)d

�

[0,1)d

(αq(−γ ′))2 dx′ dγ ′

=
�

[0,1)d

�

[0,1)d

αq(−γ ′) dx′ dγ ′ = µd(Aq).

However, if r 6= q then s 6= 0 and we get

A(r,s)(x′,γ ′) =
�

[0,1)d

αr−s(−γ ′) dx′
�

[0,1)d

�

[0,1)d

αr(sx′ − γ ′) dx′ dγ ′

Lem. 6.3= µd(Ar−s)
�

[0,1)d

�

[0,1)d

αr(x′) dx′ dγ ′ = µd(Aq)µd(Ar).

These equivalences yield
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E((AQ)2) =
∑
q,r≤Q

A(r,s)(x′,γ ′) =
∑
q≤Q

µd(Aq) +
∑
q,r≤Q
q 6=r

µd(Aq)µd(Ar)

≤
∑
q≤Q

µd(Aq) +
(∑
q≤Q

µd(Aq)
)2
≤ (1− ε)−2

(∑
q≤Q

µd(Aq)
)2

= (1− ε)−2(E(AQ))2

for any sufficiently small ε > 0 and large enough Q (since
∑

q≤Q µd(Aq)→∞
as Q→∞ by assumption). Note that the final bound is finite as required.

In view of the Paley–Zygmund inequality we have

µd

({
(x,γ) : AQ(x,γ) ≥ ε

∑
q≤Q

µd(Aq)
})
≥ (1− ε)4 ≥ 1− 4ε.

Finally, since AQ increases monotonically with Q, we have AQ(x,γ) → ∞
in [0, 1)d× [0, 1)d except on a set of measure at most 4ε. This completes the
proof as the choice of ε is arbitrary.
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