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Ternary quadratic forms that represent zero:
the function field case

by

MIREILLE CAR (Marseille)

1. Introduction. Let K be a global function field with field of con-
stants k, a finite field with ¢ elements and odd characteristic. Let S be a
finite set of s > 0 places of K and let Rg denote the ring of S-integers of
K, that is, the set of a € K such that v(a) > 0 for each place v ¢ S. For
s-tuples m = (my)yes and n = (ny)yes of rational integers, let Qg(m,n)
denote the number of pairs (a, b) of integers of Rg such that v(a) = m, and
v(b) = n, for all v € S and the quadratic form

(fab) X2 —aY? - p7?

represents 0 over the field K. We give an asymptotic estimate for Qg(m,n)
for s-tuples m and n such that the numbers

Il = = fom, ol == fme

veS vES
tend to oo, f, denoting the degree of the place v.

The present paper can be viewed as a generalization of [1] where the
author dealt with the case of a rational function field. That case was a
polynomial analogue of questions asked by Serre [8] and solved by Hooley
[5] and Guo [4] about the size of the number H(z) of pairs (a,b) € Z? such
that |al, |b| < z and the ternary quadratic form

X? +aY? + 07>
represents 0 over the field Q. Presently no number field analogue of the
theorems proved in what follows is known.
This paper is organized as follows. Notations and statements of the main

theorems are given in Section 2. Auxiliary estimates concerning arithmetic
functions and character sums are given in the third section. Section 4 is the
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main part of the paper. In that section, we require the coefficients a and b
to belong to a ring Ry,,) since dealing with the case where S reduces to one
element vg is easier. In this setting we study a more general problem. This
study allows us to get as a corollary an estimate for Qg(m,n), obtained in
the last section.

2. Notations and statement of the results. Let g be the genus of
K and let h be its divisor class number, that is, the number of classes of
divisors of degree 0.

Let V = V(K) denote the set of places of K. When there is no danger of
confusion we denote by the same symbol a place and the normalized discrete
valuation associated with it.

The zeta-function of the field K is defined on the open disk D/, formed
by the complex numbers z such that |z| < 1/q by

Grelw) = T (1 =), (21)
veV

(Since we shall use the (-function in its rational form we have chosen to
denote it in an unusual way.)

For s-tuples m = (my)yes and n = (ny,)yes of rational integers, let
Qs(m,n), Qs(m,n) and Q1 g(m, n) denote respectively the number of pairs
(a,b) of integers in Rg, of square-free integers in Rg, and of square-free
coprime integers in Rg, such that v(a) = m, and v(b) = n, for all v € 5,
and the quadratic form

(fab) X% —ay? —bz?
represents 0 over the field K.
We prove the following theorem.

THEOREM 2.1. Let A and 6 be real numbers such that

3log2
o8 <A<1 and
2logq log q

Let m = (my)yes and n = (ny)pes be s-tuples of rational integers, let
7(m,n) be the number of indices v such that m, or n, is odd, and let

lmf| = =" fomy, |l == fon.
veS veS

(i) £f 0 < Amax(|jm][, [[n]]) < min(|m]], [jaf]), then

Os(m.n) = 27N (S) gIm i+l O<q||m+n||>
s(m,n) = —7(m,n S a )
FREES [m| ||n]

log 2
08 <6 <1.
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where
XH< )(1_1>.H<1+1 )
AN S
v¢S

and where the constants involved in the O symbol depend only on K, S
and \.
(ii) If 0 < @ max(|ml[, [[n][) < min(|[ml], |[n[]), then

Or.s( ) = 9-mma) oy (9) g/l O<q||m+n||>
s(m,n) = —7(m,n T 7
1 S P Ol

[l |+ [l ||+
Qs(m,n) = 277 Cr(5) * O<q >

VR [[ml] [n]]
where
_2¢'9(q—1) 1\ ¢
a0 = Zcey WL er)

vES

! 21_9( _1) —foy— 1
c®) ="t Las ™ T (14 gy

vES veV
vgS

and where the constants involved in the O symbols depend only on K, S
and 6.

Let v € V. Let K,,, K, O,, and U, denote respectively the completion
of the field K at the place v, the multiplicative group of the field K,, the
valuation ring of K, and the group of units of the ring O,. Moreover, let
fv denote the residual degree of v.

For a rational integer 7 > 0 let Uy ¥ denote the subgroup formed by the
u € U, such that v(u — 1) > j. Once for all we choose, for any v € V, a
uniformizing element 7, € K. There is a subfield k, of K, isomorphic to the
residual field at v such that every non-zero element o € K,, admits a unique

expansion
o0
— o
o= g a;m, (2.2)
j=n

with n = v(«), a; € ky, an # 0 [7]. Hence o is uniquely written as a product
o = sgn, (@)1 @uy (), (23
with sgn,(«) € k, and u,(a) € Ui,
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Let vg be a place of K and let R = Ry,;,. We denote by 7 = Z(R) the set
of non-zero integral ideals of R, by P = P(R) the set of prime ideals of R,
by F = F(R) the group of fractional ideals of R in K, by SF = SF(R)
the set of square-free ideals of R, by Pr = Pr(R) the monoid of non-zero
principal ideals of R, and by C¢ = C/¢(R) the ideal class group of R.

The set V' is the union of the place vy and the P-adic places vp for P
running through the set P of prime ideals of R. In order to reduce notation,
we set

fvp:fpa KUPZKpa Ul‘ZP:U](ﬁ])

for each P € P or for P = 0.

Let H € Z(R). We say that a fractional ideal J € F(R) is coprime to H
if vp(J) = 0 for any prime ideal P dividing H. For any subset £ of F(R),
we denote by £ the set of Y € £ coprime to H.

Let Cf = C/(E) be the group of characters of C/(R). Let x € Cl. The
character x* of the group of fractional ideals of R derived from y is defined
by

X (Y) = x(ct(Y))
where ¢/(Y') denotes the class of Y in the ideal class group C¢(R). In what
follows, we shall abuse language and denote by the same symbol x the
character x € C¢ and the derived character x*.

We set

fo_1q
_q

The group F(R) is free, generated by the set P(R). Thus, the subgroup
FPr(R) formed by the non-zero principal fractional ideals of R in K is free.
Let B be a basis of this free group. For each B € B, let bg € K be a
generator of B chosen once for all. Then the subgroup H of K* generated
by {bp; B € B} is isomorphic to FPr(R). Let M denote the set H N R of
integral elements of H. The set M is a multiplicative monoid such that every
principal ideal in R is generated by a unique element of M. The elements
of M will be called monic. (In the rational case, one can take for B the set
of ideals generated by the monic irreducible polynomials and for M the set
of monic polynomials.) For Ay,..., A, € Z, the greatest common divisor of
Aq,..., A, is denoted by (Ay,..., A,). For any non-zero H € Z(R), let w(H)
denote the number of distinct prime divisors of H, and |H| the number of
elements of the quotient ring R/H. Then |H| is a power of q. We define the
degree fr of the ideal H by

(2.4)

|H| =gt (2.5)

This notation agrees with the notation fp = f,, used for prime ideals. We
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note that
fu =Y vp(H)fp (2.6)

PeP
P|H
and that this notation extends in a natural way to fractional ideals.
The divisor class number h of K and the ideal class number hg of R,
that is, the order of the ideal class group C¢, are connected by the identity

ho = hfo. (2.7)

See [6] for a proof.
We shall denote by D, the open disk formed by the complex numbers z
such that |z| < 7, and by 2z/2 the branch of z — z/2 for which 1/2 = 1.
The following properties of the zeta-function (x are well-known (cf. [9]):

Pr(u)
Cr(u) = : 2.8
R = 29
where Py is a polynomial of degree 2g.
If g > 0, there exist algebraic numbers g1, ..., g4 such that
g
Pr(uw) = [[(1 = ew)(1 = gu),  |ail = Va. (2.9)
i=1
Moreover,
P (1) = h, (2.10)
and Py satisfies the functional equation
1
Pr(u) = ¢ou*9Pg | — ). 2.11
) =t () (2.11)

(For the rational function field K, we have g =0, h = 1.)

All constants occurring in this work depend on K and other param-
eters. We agree that a constant denoted a(zi,...,z,) depends only on
K,xy,...,x,, or possibly only on x1,...,x,, and that a constant denoted
b depends only on K, or is absolute. We shall denote by (a) the principal
ideal Ra and by #FE the cardinality of any finite set E. If H and Y are
ideals in Z(R) and if a is a non-zero element of R, then H|Y and H|a
will mean respectively that the ideal H divides the ideal Y or the principal
ideal (a).

3. Auxiliary estimates. In this section we collect all technical esti-
mates required for the proof. Let us introduce some new notations and
definitions.

Once for all, we choose an ideal I € F(R) such that f;, = 1. According
to [9, Chap. VII], such an ideal exists.
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REMARK 3.1.

(i) Let a € R. Then
fa) = —fovo(a). (3.1)

(ii) The map X — fx is a surjective homomorphism from F(R) onto Z.
(iii) If I and J are fractional ideals belonging to the same ideal class I,
then

fr = f; mod fo. (3.2)

Thus, there is a unique surjective homomorphism ¢ : I' — o of
the group C{ = CU(R) onto Z/Zfy such that

or=fa forany H € I. (3.3)
Proof. See [2, Remarques 111.4]. =

Let n be a non-negative integer and let I' € Cl. Let i(n) and (I, n)
denote respectively the number of ideals Y € 7 or Y € I such that fy = n.
We write n € ¢, resp. n € ¢, whenever the congruence classes n + Zfy
and @ are equal, resp. different.

PROPOSITION 3.2. Let n be a non-negative integer and let I' € C{. Then

i(Iin)=0 if n¢or, (3.4)

i(I'n) < o(R)q", i(n) < ho(R)q", (3.5)

i(Iyn) = o(R)g" 970 if n€pr and n>2g—1+ fo, (3.6)
i(n) = ho(R)g" ™97 if n>2g— 1+ fo. (3.7)

Proof. We get (3.4) from (3.2) and (3.3). If v is the unit class then
i(7,0) =i(0) = 1. Suppose n > 0. By (3.2), (3.3), and (3.4),

i(n) =Y i(Tn)= Y i(l\n).
Iece Irece
neyr
Since there are exactly ho/fo = h ideal classes I" such that n € ¢, it suffices
to prove the first part of (3.5) and (3.6) in the case where n € ¢p. Let
H € Z(R) belong to the class I'~!'. (Such an ideal exists, since if J € F(R),
then there exists a non-zero element x € R such that xJ € Z(R), and the
ideals J and xJ belong to the same class.) Then n+ fi = 0 mod fy. Let m
be defined by

Let Y € Z(R). Then Y € I' if and only if there exists y € M, necessarily
unique, such that YH = (y), and in this case, by the product formula,
fy = n if and only if —fovo(y) = n + fg. Since the group of units of
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R = R,, is the multiplicative group £*,

(2) (¢ —1)i(In) = #{y € R; vo(y) = —m, H |y}.
For r € {m, m — 1}, consider the divisor
(3) A(r,H) =rvg— > _ vp(H)vp

PeP

P|H

and the set A(A(r, H)) formed by the y € K such that v(y) > —v(A(r, H))
for any v € V(K). Then A(A(r,H)) is a k-vector space of finite dimen-
sion over k. The Riemann-Roch theorem [3] connects the dimension A, of
A(A(r, H)) and the degree

Faermy =r1fo— Z fpup(H

PeP
P|H
of the divisor A(r, H). One has
(4) Ar < max(0,1+ FA(T,H)) <n
(5) Am = Am-1 < Fa@m,iy — Fam-1,1) = fo,
and if Fy( )y > 29 — 1, then
(6) A =Fppmy +1—9g
By (2),
(7) (¢ = 1)i(Iyn) = #A(A(m, H)) — #A(A(m — 1, H)).

If A(A(m, H)) = A(A(m—1, H)), then by (7),i(I'yn) = 0 and (3.5) is proved.
If A(A ( H)) # A(A(m—1, H)), the quotient A(A(m H))/A(A(m—1,H))
has ¢fo — 1 non-zero elements, hence, by (7) and (2.4),

i(F7 77,) = Q(R)#A(A(m -1 H)),
and by (4),

i(I,n) < o(R)g".
Now, suppose n > 2g — 1 + fo. Then, by (6),
i(Iyn) = o(R)g" 170700,
proving (3.6). =
PROPOSITION 3.3. Let x be a character of CL(R). Then the series

Lix,u) = > x(Y)ul¥ (3.8)
YeTl
is absolutely convergent in the disk Dy 4, and for u € Dy,
Lixuw) = [T = x(Py/m)" (3.9)

PeP
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Moreover,
(i) if x is trivial on Ker ¢ (see Remark 3.1(iii)), then
L(x,u) = G (x(I)u)(1 = u®), (3.10)

(ii) if x is not trivial on Ker g, then L(x,u) is a polynomial of degree
29 — 2+ fo and

29—2+fo
Lix,u)= J[ (1-wuw), (3.11)
i=1
with |wi| = ¢"/2 for 1 <i <29 —2 and |w;| =1 for 29 —1 < i <

29 — 2+ f().
Proof. See [2, Proposition IIL.5]. =

PROPOSITION 3.4. Let a > 1 be a real number. Then

—ay\ (1 )(1 - q )

Pll(l IR fO“)PK(q @)’ (812)
—ay P 1—¢" 2 (1 +q°

[Ta+p = P[f;(( _2))(( QQl a))((1 i;ffoa)). (3.13)

PeP
Proof. Let u € Dy, By (2.1) and (2.8),

H (1—wu/P)™t = (1= UfO)PK(u).
P T~ w1 - qu)
We get (3.12) and (3.13) by taking u = ¢~% and u = ¢~ 2% =
Let [ > 2 be an integer and let y; denote the group of lth roots of unity.

PRroPoOSITION 3.5. Let x € C/E(E) Let W be a morphism from the group
F(R) of fractional ideals to p; and let H € Z(R). Then the series

L) = 3 x(V)w(y )l (3.14)
YeTly
is absolutely convergent in the disk D4, and for u € Dy,
L) = [ (1= x(Py(P)ufr) . (3.15)
PePy

Moreover, if ¥ is not trivial on the group FPr(R) of principal fractional
ideals and for any x € K,

x € Uo(l) and x=1mod H = ¥((z)) =1, (3.16)
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then L(x¥,u) is a polynomial of degree d(x¥) < 29 — 2+ fo+ fu and
d(x¥)
Lix,u) = ] 1+ o) (3.17)
i=1
with |o;| € {g"/%,1}.
Proof. See [2, Proposition II1.6]. =

PRropPOSITION 3.6. Let x € C/E(E) Let ¥ be a morphism from the group
F(R) to p and let H € Z(R) satisfy (3.16). Let A € Z(R) be coprime to H
and for any non-negative integer n, let

al, W, H, An)= Y x(¥V)(y)2 =), (3.18)

YESFya
fr=n

Then the series

f@)zia(x,w,H,A,n)(Z)n: 2 X<Y>W<Y)2_W(Y)<Z>fy

n=0 YESFra q
(3.19)
1s absolutely convergent in the open disk D1, the product

o= T (-2 (e (2)7) A (wmwen(2)7)) w20)

Pep
is absolutely convergent in the open disk D g, and for z € D1 we have

(‘Lf](é))f = L(Xsp, ;) G(2), (3.21)
where
Ulz) = é%} <1 + % X(P)¥(P) (;)fp> N (3.22)

Moreover, if one of the following two hypotheses is satisfied:

(i) there exists x € M with ¥((x)) # 1,
(i) H = (1), ¥ is trivial on F(R) and x is not trivial on Ker ¢,

then for anyn > 1,
la(x, ¥, H, A, n)| < ay(R)27H/290(AH) p1/2 n/2 (3.23)
with aq(R) a constant.

Proof. With the necessary adaptations the proof follows the proof of
Proposition 2.2 in [1]. =
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COROLLARY 3.7. Let H € Z(R) and let ¥ be a morphism from the group
F(R)y to the group p; non-trivial on the subgroup of principal ideals and
satisfying (3.16). Let A € Z(R) and let B € Z(R) be coprime to H. For any
non-negative integer n, let

b(W,H, A Bn)= >  w(Y)2 ), (3.24)
YeSFpu
fr=n
AY €Pr
Then
b(x, ¥, H, A,n)| < ay(R)2fn/29w(BH)p1/2¢n/2, (3.25)

Proof. By orthogonality,
(#COVWP, H, A, B,n) = > x(A)u(x,n),
xECAf
where for any integer j > 0,

ueg) = 3 d¥)E(¥)2e).

YeSFy
fr=j

The sum u(y,j) is the sum a(x, ¥, f, B, j) defined by (3.18). Then, by
(3.23),
lu(x,n)| < ag(R)2/m/290(BH)p1/2qn/2

proving (3.25). m

PRrROPOSITION 3.8. Let n € ]0,1/2[. Then, for J,A € Z(R) and any
positive integer n = — f4 mod fy,

Yoo o Bl(R)Q(J)q"n_l/Q‘

YESF
Aver < ag(R)2°Vq"?n' 2 4 ag(R,m) Ay (J)g"n ™% (3.26
n
with
_(_hetmy \? ! 1)V
pPeP
1 —1
o) = 1] <1+2P’> , (3.28)
Pep
P|J
P n—1\ —1
M) =] (1— ‘g) , (3.29)
PeP
P|J

az(R) and as(R,n) being constants.
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Proof. Let n > 0 be a rational integer and let

0 T
YeSF;
AY ePr
fy=n

By orthogonality,

(2) hozn = Y x(A)u(x,n)
xGC/Z

where

(3) u(. k)= Y x(¥)2~)
Y

for any integer £ > 0. The sum u(x, k) is the sum a(x, ¥, (1), J, k) defined
by (3.18) where ¥ is taken equal to the unit character. Let C/; = C{(R);
denote the subgroup of C/(R) formed by the x € C/(R) which are trivial on

the subgroup Ker¢. Then #CU(R); = #(CL(R)/Ker @) = #(Z/Zfo) = fo.
By (3.23),
4 > ubon)| < (o — f)ar(R)22n1 22,

x€Cl

x¢Cl
Let x € C¢; and let
) P =S e (2)

n=0

By (3.21),

(=)
(515) =#(x5)e
with U(z) and G(z) given by (3.22) and (3.20). By (3.10), and then (2.8),

(1 — (2/q)7)Pr(x(11)2/q)
L(x,z/q) = (1—x(1)z/q9)(1 — x(I1)z)’

hence,
N — a2 = /) 2 (Pe(x(1)2/9) 2
O = VO e 21— (e 7
Let n € ]0,1/2]. According to [1, Lemma 2.1],
u(x,n) n 1 1 \V2(1- (X(Ill)q)fOPK(é))l/2
(550 ()

< B(g,m) max{|U(2)| |Px (2/q)G(2)|"?; |2| = ¢"}n >
with 3(q,n) a constant.
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Since n + fa = 0mod fy and f;, = 1, we have fa + nfr, = 0 mod fy.
Since  is trivial on Ker ¢, it follows that x(I1)"x(A) = 1 and x(I;)/ = 1.
By a proof which mimics that given in [1, Prop. 2.2], we get
© [t
1 1\ 1/2 INY2 (1 Z (1/g)fo)1/2
(o) () e
x(I1) )~ \x(I1) q) w/2(1-1/q)"

< haz(R, n) A, (J)n=3/2

with A, defined by (3.29) and a3(R,n) a constant.
Since  is trivial on Ker o and f7, = 1, we have x(I1)/? = x(Z) for any
ideal Z and by (3.22), (3.20) and (2.5),

g U(5m) = 1L 1+ 2&3\)

P|AH

® (5m) iﬂp@‘fw‘@)

We conclude the proof by combining (1), (2), (4), (6), (7), (8), (2.4),
(2.10) and (2.11), with OZQ(R) = (h() — fo)Oél(R). [

PROPOSITION 3.9. Let H, A € Z(R). Then, for any positive integer n
such that n+ fa = 0 mod fo,

> )27 - By(R)I(H)q"n*/?
YeSFy
Jims
! < au(R)ng""? + as(R)g"n~>/2,  (3.30)

By(R) = <7m>1/21g3<1 + 1+12|P|> <1 - |1P|>1/2, (3.31)

-1
rHy =] <1+1+12|P|> : (3.32)

PeP
P|H

where

with as(R) and as(R) constants.

Proof. As for Proposition 3.8. We choose a particular value for n, for
instance n =1/4. =



Ternary quadratic forms that represent zero 61

PRrOPOSITION 3.10. Let n € ]0,1/2[. Then, for H,A € Z(R) and any
integer n > 0,

> V) < ag(R, n)q"n~/? (3.33)

YeSFy
fyr=n
AY ePr

with ag(R,n) a constant.

Proof. Let
(1) Th= Y A(Y)2e),
YESFy
fr=n
AY ePr
By orthogonality,
(2) hotn = x(A)u(x, H,n,n),
xEC/Z
where
(3) ul Hopn) =y x(V)A (V)27
YeSFy
fyr=n
By (3.29), A,(Y) > 0. Hence,
(4) ul Homyn)| <~ ()27,
YeESFy
fr=n

We consider the series

f(5) =3 ulxo, Ko (5) = % ><q)f

n=0 YeSFy
Proceeding as for Proposition 3.6 and Corollary 3.7, we get
|U(X7 H, m, TL)’ < a6(R, n)q”n_1/2

with ag(R,n) a constant. m

4. Quadratic forms with coeflicients in the ring R = Ry, ;. Let S
be a non-empty finite set of places of K containing vy and let » = #5. For
v € V(K) such that v # v, let P, denote the prime ideal of R associated
with the place v. For r-tuples m = (my)yes and n = (ny)yes of rational
integers, let H(S, m,n) denote the number of pairs (a,b) € R x R such that
(1)  wv(a) =my, and v(b) =n, for all v € S,

(2)  the quadratic form

(fap) X? —aY? - p7?
represents 0 over the field K.
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The goal of this section is to establish an estimate for H (S, m,n) with
— > ves Jomy and — > s fun, positive. The proof will provide an estimate
for the number H;(S, m,n) of (a,b) € R x R such that conditions (1) and
(2) above are satisfied and

(3)  the ideals a([T,cg_ (o) Po ) and b([Tyes_ (e Po ") are square-
free and coprime,

and for the number H'(S,m,n) of (a,b) € R? such that (1) and (2) are
satisfied and

(3')  the ideals a(],c5_{yy) Pv_v(a)) and b(I[,es_ v} P,,_v(b)) are square-
free.

Let
¢=1[ P (4.1)

vES
U#Uo
We note that G =1 when S = {vg}.
For a € K, let v(a) denote the r-tuple (v(a))yes. For an r-tuple m =
(my)yes of rational integers, let

I = =5 fum,. (4.2)

vES

If x € R, the principal ideal Rz may be written in a unique way as

Rz = ( I1 P;’(x))U(x)QQ(x) (4.3)
veS
VF£V0
with U(x) € Z(R) and Q(z) € SF(R) coprime to G.

Let X (S, m,n) denote the set of (a,b) € R x R such that v(a) = m, and
v(b) =ny forallv € S.If (a,b) € X(S,m,n),let D(a,b) = g.c.d.(Q(a), QD))
and let J,p(a) and J,(b) be the square-free ideals defined by Q(a) =
D(a,b)Jgp(a) and Q(b) = D(a,b)Jqp(b). Then J,p(a) and J,u(b) are co-
prime and

frant@) +2fu(a) + fDap) = [ml,
Fr0®) +2fuw) + fo@p) = 0l

For a square-free ideal D of R coprime to G, and for ideals U and V of
R coprime to G such that 2fy 4+ fp < ||m| and 2fy + fp < [n]], let
Y(S,m,n, D,U, V) denote the set of (a,b) € X(S, m,n) such that U(a) = U,
U(b) =V, and D(a,b) = D, and let Z(S,m,n,D,U,V) denote the set of
(a,b) € Y(S,m,n, D,U,V) such that the quadratic form (f,;) represents 0

(4.4)
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over K. Let Z(S,m,n,D,U,V) =#Z(S,m,n, D,U,V). Then

H(S,m,n) = > > > Z(S,m,n,D,UV).
DeSFq Uelg Velg
fpo<min(|mll,|n]) 2fy+fp<|m| 2fv+fp<|n]| (4.5)

We fix m and n with ||m|| and ||n|| positive. By symmetry, we can and will
suppose that

[m|| < {[n]. (4.6)

We fix a square-free ideal D in R, and ideals U and V in R such that
fp+2fv < |ml and fp + 2fy < |n||, all coprime to G. For brevity, set

Ql:DU2< I1 P;“v), iB:DVQ( I1 P;Lv), (4.7)

veS—{uvo} veS—{vo}
Y=Y(S,mn D UYV), Z=2(Smn D UYV), (4.8)
M = ||m|| - 2fy — fp, N = |nf| = 2fy — fp, (4.9)

and for (a,b) € Y(S,m,n,D,U,V), write J(a) = Jgyp(a) and J(b) =
J(a,b)(b)- In view of (4.4),

(avb) € y(S’m7n7D7U7 V) = fJ(a) =M, fJ(b) = N. (410)
Now, we suppose that
log ¢
M < -—==-N 4.11
+/fp < log2 (4.11)

Let A, resp. B, denote the first, resp. second projection of the set ) =
Y(m,n,D,U,V). For a € A, let ,) denote the set of b € R such that
(a,b) € Y. Similarly, for b € B, let )} denote the set of a € R such that
(a,b) € Y.

Our proof makes use of characters of order 2 of the multiplicative
group K*, defined as follows. For any v € V(K') we have chosen a uniformiz-
ing element m, € K. With this choice, every non-zero a« € K is uniquely
written as a product

o = sgn, ()7 P, (a) (2.3)
with sgn,(«) € k, and u,(a) € U Let
0u(0) { 1 if sgn,(«) is a square in ky, (4.12)
—1 otherwise.

The character @ is the unit character. If X' is a non-empty finite set of
places of K, the character @y is defined by

Ox(a) = [] bu(a). (4.13)

veXl
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Let (a,b) be a pair of non-zero elements of K. For v € V = V(K), the
Hilbert symbol (a,b), is defined by

(a,b)y = { 1 if (f(ap)) represents 0 over Ky, (4.14)

—1 if not.
It is well known that
(a,b)y = 0,(—1)" )9, (sgn, ()"0, (sgn, (b)) (4.15)

(cf. [7, Chap. XIV, 4]), and that the Hilbert symbol satisfies the product
formula

1] (@b, =1 (4.16)
veV(K)
(cf. [7, Chap. XIV, annexe]). If X' is a finite set of places of K, let
(a,0)x = [] (a,b)w, (4.17)
veY

the empty product being equal to 1.
If He Z(R), let Y(H) = {vp; P € P(R), P|H}. Let T denote the set
of v € S such that m, or n, is odd, and let 7 = 7(m, n) = #7.
REMARK 4.1. For (a,b) € Y(m,n,D,U,V), let
W(a,b) =T U{vp; P|DJ(a)J(b)}.
Then
(a,b)y =1  for v ¢ Wi(a,b), (4.18)
(@, D) w(ap) = 1- (4.19)
Proof. Let (a,b) € Y(m,n,D,U V). If P € P(R) does not divide
DJqp)(a)J(qp)(b), then vp(a) = 0 mod 2, vp(b) = 0 mod 2, and by (4.15),
(a,b)y, = 1. Similarly, if v € S is such that m, and n, are even, then
(a,b), = 1. Hence, (a,b), = 1 for any v ¢ W(a,b).
By the product formula (4.16),

1= JI @bo= II @b ] (@b=(abwey

veV(K) veV(K) veEW (a,b)
vg¢W (a,b)
with notation (4.17). =
PropoOsITION 4.2. We have
oDz = N gmel@IO) N (g b)x, (4.20)
(a,b)€Y XCW(a,b)

2P) 7 = 7\ + Zy + Zs, (4.21)
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with
Zy=2) Y 2eU@I0)(g ), (4.22)
tCT (a,b)eY
Zy=2)_ Y 2eU@IO)ap), N (a,b)xp), (4.23)
tCT (a,b)€Y Bez
B|J(b)
B#£(1)
Zg =YY o2 elU@®)gp), 3 > (a,b)sp).  (4.24)
tCT (a,b)ey HeZ Bez
H|DJ(a)  B|J(b)
(1)#£H#D.J(a)

Proof. Let (a,b) € Y(m,n, D,U,V). By the Hasse principle, (fq) rep-
resents 0 over K if and only if it represents 0 over any K, with v running
through V(K). In view of (4.14) and (4.18), (a,b) € Z = Z(m,n, D, U, V)

if and only if
I + (b)) =2#"eD),
veEW (a,b)
Otherwise this product is 0. In view of the definition of the set W (a,b),
g#W (@) _ or+u(D)+u(J(a)Ib),

thus,
o7tz = N~ gme@IO) TT (14 (a,b),).
(a,b)ey veEW (a,b)
Expanding this product and using notation (4.17), we get
(1) 9Ttw(D) 7 _ Z 9—w(J(a)J (b)) Z (a,b)x
(a,b)ey XCW(a,b)

As in the proof of Proposition 3.3 in [1], following Hooley’s idea, we split
the right hand side of (1) into three subsums Z;,1 < ¢ < 3, corresponding
to different subsets X C W(a,b).

1) The sum Z; which will give the main term contains for each (a,b) € Y
all subsets ¢ and t U X(DJ(a)J (b)) with ¢ C T, that is,

Zi="2 Y 27V ((a,b) + (@, b)um(p(a) o)
tCT (a,b)eY

For any t C T, let ¢ denote the difference set T'— t. The map t — ¢’ being
a permutation of the subsets of T,

(2) =" > 27V@ION((a,b); + (0, b)pus(Da)Im)-

tCT (a,b)eY
For (a,b) € Y and t C T,

(a,0)pus(DI@I0) = (@))% (a,0)vus(Dr()I0b)-
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By (4.17),

(a,b)pun(Di@Iw) = (@, 0)i(a; b)rus(Di@)sm) = (@, b)i(a, b)w (b
and by (4.19),

Zl = QZ Z 2- w(J(a)J a b)t

tCT (a,b)eY

2) The sum Zs contains for each (a,b) € ) all subsets t U X(B) and
tUX(DJ(a)B’") with t C T, B # (1) running over the ideals dividing J(b),
and B’ # J(b) running over the ideals dividing J(b), that is,

Z Z 27 (@I0) Z (avb)tUE(B)

tCT (a,b)€Y BeT
B|J(b)
B#(1)
+3 > (a4, b)vuspibn,
vCT B'el
B'|J(b)
B'£J(b)

where t' has the same meaning as above. If B’ € 7 divides J(b), then J(b) =
BB'. Moreover, B' # J(b) if and only if B # (1). With notation (4.17) we
find that for any subset ¢t C T,

(a,0)pus sy = (a,0)pusmn ((a,bwsm)? = (a,0) 7050 (@ 0)wsxs):
whence

=> > 27V@IOD (g b), > (a,0)5m) 1+ (0, D) wra)-

tCT (a,b)eY Bel
BlJ(b)
B#(1)
We now get (4.23) from (4.19).

3) The sum Z3 contains the remaining terms, which yields (4.24). =

We compute Z; and we bound Zy and Z3. Once more, we need new
notations. Let T7 9, Tp,1, and 71,1 denote respectively the sets of v € S such
that m, is odd and n, is even; m, is even and n, is odd; m, and n, are
odd. We denote by J(A) and J(B) respectively the sets of ideals J(a) with
a running over A, and the set of ideals J(b) with b running over 5. =

PRroOPOSITION 4.3. We have
|Zl o 2L’ S ﬁl(R)2T+T+fc/22w(D)+N/2(Nl/QqM+N/2 + M1/2qN+M/2), (425)
‘22’ < ﬁl(R)2T+T+fc/2QW(D)+N/2M1/2QN+M/2, (426)
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where
L=L(Smmn,DUV)= Y 2@/ (4.27)
(a,b)eY
with 81 (R) and [2(R) constants.

Proof. Fori=1,2, let

(1) Si=>_ > 27%V@I0D (g b),5i(a,b)
tCT (a,b)ey
with
(2) Ul(av b) =1,
(3) o2(a,b) = Z (a,0)s(B)-
BeT
BlJ(b)
B#(1)

Let (a,b) € Y(S,m,n, D, U, V). By (4.15), for v € S,
(@, 0)y = 0, (=1)""" 0y (sgn, (b))™" 0, (sgn, ()"
with 6, defined by (4.12). With notation (4.13),

@) Si= > > 2V, ()64, (0)6n i (~ab)oi(ab).

t1,0CT1,0 (a,b)€Y

t0,1CT0,1

t1,1CTh,1

We look at Si. Let (a,b) € Y. In view of (4.3), if P € P(R) divides

J(b), then vp(b) = 1 mod 2, vp(a) = 0mod 2, and by (4.15), (a,b)y, =
0y, (sgnp(a)). Hence, with notations (4.13) and (4.17), if B € Z(R) divides
J(b), then (a,b) gy = Ox(p)(a). Let b € B. Every z € )}, may be written
as a product aa with o € k* and a € M, where M is the set of monic
elements. Moreover, a € M N Y),. Hence, by (4) and (3),

{22 w(J(b) Z 9—w(J(a)) }

beB aeMNYy

{0 0uu)8r, ()61, (~ab) Y Ox(a)
t1,0CT1,0 BeTl
to,1CTo,1 B|J(b)
t1,1CTh 1 B#£(1)

X 3" 610, ()04 1 (1O (@) |-

ack*

We consider the inner sum

Qs 11,8 = Y Oyt ius(m)(a).

ack*
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Let v € to1 Ut11 U{vp; P|B}. If f, is even, then every a € k* is a square in
the field k, and by (4.12), 0,(«) = 1. If f, is odd, then by (4.12), 0,(a) =1
or —1 according as « is or is not a square in k. Hence, {2y, + , 5 =¢q—1or
t.4,t1.1,8 = 0 according as the sum

Yofot D fot D fur

v€Eto,1 vEll 1 PeP
P|B

is even or odd. With the same arguments, looking at the inner sum

Z @tl,o (ﬂ)@tu (ﬁ)v

Bek*
we conclude that in the sum Sy, there only occur the 4-tuples (¢o.1,t1,0,t1,1, B)
such that the sums

DN EED DI IR S S N A N

vEtp,1 vEtL,1 PeP v€L1,0 vEtL 1
P|B

are even. In the following, we denote this condition and analogous parity
conditions by the symbol (tg1,t1,0,t1,1, B) = 0. Hence,

(5)  Sp=y 2wV R > O1t1,6(0)O% 1 (=)

beB t1,0CT1,0 BeT
t0,1CTo,1 B‘J(b)
t1,1CTh 1 B#(1)

(to,1,t1,0,t1,1,B)=0

—w(J
x Y 27 VDe s (a).
a€Yy
We consider the last inner sum. By the parity condition, the map

Yy @to,lutl,luE(B) (y)

is trivial on the group k*. Hence, we may define a morphism ¥’ from Pr(R),
the monoid of non-zero principal ideals of R, to the group {1,—1} by
U(Y) = O ut,un)(n) if n € R generates the principal ideal Y. This
morphism extends in an obvious unique way to a morphism from the group
FPr(R) of principal fractional ideals to {1, —1}. Since FPr(R) has finite in-
dex in the group F(R), the morphism ¥’ extends to a morphism ¥ from
F(R) to the group gy of lth roots of 1 for some [. In view of the definition
of the set ),

Z 2_W(J(a))@t071Ut1,1UZ(B) (a) = (q - 1) Z 2_W(A)W(9’[A)
acyy AESFGp (v

AdePr

fa=M

with 2 defined by (4.7). Since B # (1), the map
Y — Qto,lutlﬂluz(B) (y)
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is not trivial on R, and the morphism ¥ is not trivial on the group of
principal ideals. Moreover, ¥ satisfies condition (3.16) with H = BG. Hence,
by (3.25),

(6) ‘ Z Q*W(J(a))QtOJUtMUE(B)(a)‘
ac))
b < (q — 1)041(R)2r+fc/2+f3/22w(DJ(b))M1/2qM/2‘
By (5) and (6),

1S5] < (¢ — 1)a1(R)2r+fc/22w(D)Ml/2qM/2Z Z Z 9fB/2
beB t1,0CT1,0 BET
to0,1C7o,1 B|J(b)
t11CTh 1 B#(Q)
In view of (4.7) and the definition of B, if B € Z(R) divides J(b) with b € B,
then B is square-free and coprime to GD, Rb = BBB’ with B’ square-free
and coprime to GDB. Hence,

(7) |52‘ < (q_ 1)2a1(R)27+r+fg/22w(D)M1/2qM/28
with
(8) S= > 22 3
BeSFap B/ES]'—GDB
1<fp<N BBB'€Pr
fBB’:N

The ideals B’ occurring in the inner sum above belong to the same ideal
class. Hence, by (3.5),

S<o(R) > 2PPgNTI <o(R)gY > 2fnigis

BeTcp BeT
1<fp<N 1<fp<N
Then, by (3.5),
V2 29N
9 S<h R)%2N/2gN .
) <o)

This together with (7) gives (4.26).

Now, we deal with S;. We break the sum (4) into three parts. The first
part which will give the main term is given by the triple (¢91,%1,0,t1,1) =
(0,0,0); the second part is given by the triples (to1,t1,0,t1,1) = (0,t1,0,0)
with ¢10 # 0; and the third part contains the remaining terms. In other
words,

(10) S1=511+S12+ 53
with
(11) Si= Y gel@I),

(a,b)ey
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12 S 2= Z 9w (J(a)J (b)) Z @tl 0

(a,b)€Y t1,0CTh,0
t1,0¢@
13 Sl 3= Z 27 (@) () Z @t1,o (b)9t0,1 (a)etm (_ab)‘
(a,b)eY t1,0CT1,0
to,1CTo,1
t1,1CT1 1

(to,1,t1,1)#(0,0)
We deal with S12 and S; 3 just as we have dealt with Sp. We get
S12 < (g — Day(R)27 1612 529 PIN2gN 2 4,
S13 < (g — Dar(R)27H6/2 0 522 PI 1 2gM P2 43,
where A1 2 is the number of ¢ g # () such that (0,¢10,0) =0, and ;3 is the

number of (to1,%1,1) with (t91,%1,1) # (0,0) such that (t91,0,%1,1) = 0. By
(3.5),

#A< (- Do(R)g",  #B< (¢~ De(R)".
Hence,
S10+ S1s < (g — 1)2Q(R>a1(R)27+r+fc/2(N1/2qM+N/2 +M1/2qN+M/2)’
since A1 2 + A1 3 < 7. This together with (10) and (11) gives (4.25). =

PROPOSITION 4.4. Let § € Jlog2/logq,1]. Suppose that 6N < M < N.
Then

M+N M+N

' < Ba(R,O)2 ) L

q
L~ (g~ 1*By(R)A(GD) N

vVMN

1
B3(R) = % <1 - 2>a (4.29)
T4 PeP 1P|

AH) = ] <1+|]13|>1 (4.30)

pep
P|H

for any ideal H, and B3(R,0) a constant.

(4.28)

with

Proof. In view of (4.27) and the definition of the sets ), A and 5,

(1) L=>Y 27Up(q)
ac A

with

(2) n(a) = Z 2=« (J()

be.Y
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In view of (4.7) and the definition of the sets ,),

na)=(q-1) Y 270,
BES]:GDJ(O,)

fB=N

BBcPr
Proposition 3.8 gives
(3)  In(a) = (¢ = )Bi(R)RA(GDJ(a))g" N~/

< (q— 1)(aa(R)2°CPTOINY2GN2 1 03(R,1/4) A1 j4(GDJ (a))g¥ N~3/2)

with Bi(R) defined by (3.27) and 2(H) defined by (3.28). In view of (4.7)
and the definition of the set A,

Y 2eVg(r(a) =(g-1) Y 27¢We4),
acA AeSFap
AA€PT

fa=M
and by (1) and (3),
(4) IL—(q—1)*Bi(R)(GD)¢"N~'/25]
< (q _ 1)a2(R)2r+w(D)N1/2qN/2#A

+ (¢ —1)%as(R, 1/4)X; 4(GD)g" N —3/28'
with

(5) S= Y 2Waoa,

AeSFep
fa=M
ARAEPr

(6) §= Y 2 4),
AESJ:GD
fa=M
AePr

By (3.30) and (3.33),
(7)  |S = Bo(R)I(GD)g™M M~Y?| < ay(R)M¢M/? + as(R)g™M M—3/2,
8) ' < ag(R,1/4)g" M~

with Ba(R) and I'(H) defined by (3.31) and (3.32). We have seen above
that #A < (¢ — 1)o(R)q". Hence, by (4), (7), and (8),
M+N

(9)  |L—(¢—1)?Bi(R)Bo(R)2GD)I(GD) jm
< B1(R)O(GD)(q — 1)} (ca(R)M M2 + a5 (R) g™ M—3/2)
+ (g — 1)%az(R)o(R)2 TP N1/ 2gMHTN/2

+ (g —1)*a3(R, 1/4)a6(R, 1/4) A1 ;4 (GD)gM N M2 N 32,
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By (3.27) and (3.31),

s 811 1) 0+ 1)

By (3.28) and (3.32),

rGo)RGn) = ] <1+ 1+12\P)1<1+ Hlm)l.

PeP
P|GD

By (3.28) and (3.29), 2(GD) < 1 < A\ ;4(GD) < 29(GP) = 2r+w(D) which
yields (4.28). m

PROPOSITION 4.5. We have
| Z3| < Ba(R)27T7HFc/242(D)+fp /AT M/AN1/2 (MASN/A (£ 4 1) (4.31)
with B4(R) a constant.

Proof. Interchanging the order of summation in Z3 given by (4.24) we
get

(1) Zy=3" Y 2@ 3O S mal)

tCT ac A FEeT AeT
ED  AlJ(a)
(1)#EA#DJ(a)

with

(2) dpala)=>)_ > > 27VONa,b)y s (pan).

tCT BESFapia) bELY
fB<N (a,b)ey
B|J(b)

Let j be an integer such that

(3) j < N.

We divide the sum ¢ _4(a) into two parts according as the ideals B occurring
in it satisfy fp < jor fp > j. We get

(4) ¢p,.a(a) =op ala,j) + Tr.4(a, j)

with

5)  opale,))=>, > > 279V (a,b) s (pan),

tCT BGS}—GDJ(a) beay
f5<j (a,b)eW
BlJ(b)

(6) 7E,A(a, j) Z Z Z 27 (a, b)is(rAB)-

tcT BGS]:GDJ(a) be.y
fB>i (a,b)eW
B|J(b)
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In (6) weset D = EE', J(a) = AA’, J(b) = BB' and fort C T, let t' =T —t.
Then, by (4.17),
(a,b)ws(pan) = (a,0)wusEan) (@, 0)yusE an)?
= (a, b)t’uE(E’A’B’) - (a, b)TUZ(DJ(a)J(b))
= (a,0)pus (e arpry - (@, 0)w(ap)-

In view of (4.19),

(a,0)ius(EaB) = (@,0)pus(EraBr-

Hence,

TeAlaf) =) Y > o2 (a,b)pusmaB)-

t'CT B’ ESfGDJ(a) be.y
fBI<N—j ((l,b)ey
B'|J(b)

By (5),
(7) TE’A(CL,]') = JE’,A’(a> N — ] - 1)

We now deal with the sum o 4(a, j). If P € P(R) divides D, then vp(a)
and vp(b) are odd and by (4.15), (a,b)vp, = 0y, (—sgn, (a)sgn,  (b)). If P €
P(R) divides J(a), then vp(a) is odd, vp(b) is even and by (4.15), (a,b),p
= 0Oup(sgn,,(b)). Hence, with notations (4.13) and (4.17), (a,b)spa) =
Os(p)(—ab)Os4)(b) and by symmetry, (a,b)xp) = Ox(p)(a). As in the
proof of Proposition 4.3 we get

op.a(a, j) I CI| > Oxwla)
t0,1CT0,1 BES]:GDJ(a)
IB<j
X Z @tl 1 Z 2 Qtl oUt1, 1UE(AE) (b)
t1,0CT10 bely
t1,1CT1 1 BlJ(b)

(0,t1,0,t1,1,AE)=0
Hence,

’UE,A(a;j)‘ < Z Z ‘ Z 2 @tl oUt1, 1UE(AE)(b)

to,1CTo,1 BES.FGDJ(G) be.y
t1,0CT1,0 fB<j B|J(b)
t1,1CTh1

(@,¢1,0,t1,1,AE)=0

By the parity condition, the map

(8) Yy Qtl’QUtLlUE(AE) (y)
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is trivial on the group £*. As in the proof of Proposition 4.3, we get

Z Q_W(J(b))Qtlyoutl,lux(AE) (b)

by
B|J(b)

< (g — Doy (R)2rHUct ap)/290(DI(a) N1/2((N=f5)/2,
Hence,

|0'E7A(a;j)‘ < (q— 1)a1(R)2T+(f6‘+fAE)/22W(DJ(a))Nl/QqN/Q

« 3 S g

t0,1CT0,1 BESFGpa(a)
t1,0CT1,0 fB<j
t1,1CT1 1
(@,t1,0,t1,1,AE)=0
and
log,4(a,5)| < (q— Dan (R)27 e+ an)/2
> 2w(DJ(a))N1/2qN/2 Z q_fB/Q.
BESFgp.(a)
IB<j
By (3.5),

9)  lopala,j)| < (¢ — Dho(R)ou (R)
w V9 griri(fotiar) 290D I(@) N1/2g(N+1)/2,
Ja—1
Similarly,
(10)  |ogr,a(a, N —j—1)

< (¢— Dho(R)as(R) \/(3\/?1 o7+ (o) 299(DI(@) N1/2N=(+1)/2,

Let
, 1
(1) j= |5 (N + (Foar = foa) log, (2)]
where [z] denotes the integral part of the real number x. Then, by (9) and
(10),
lop,a(a,5)] < (¢ — Dho(R)on(R)
. V4 971G /29D A9w(DI (@) N1/23N/4.
Vi—1
lopr,a(a, N = j = 1)| < (g = Dhe(R)a1 (R)

w NI grrtfa/2gfps/19e(DI@) N1/23N/4
Va—1 ’
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and with (1), (4) and (7),
(12) 1Z3| < 2(q — 1)ho(R)on (R)
% Va 2T+T+fG/2+W(D)+fD/42M/4N1/2q3N/4Z§’
Vi—1
where

(13) =Y Y 1

EcSF acA AeSF
E|D AlJ(a)
(D#EA#DJ(a)
Interchanging the order of summation, we get

Zi=(q—-1) ) > oL

E|D Jas<M AU2AA’€Pr
(W#EA#DJ(a)  f, =M
Hence, by (3.5),
75 < (g—DeR)g™ Y oo g,

EeSF AeSFep
E|D fasM
()#EA#DJ(a)
and by (3.5) and (12),
|Z3] < 2(q —1)*h?o(R)*c1 (R)

% Vi 2‘r+r+fG/2+2w(D)+fD/4+M/4N1/2qM+3N/4(M +1).
Vi—1
This gives (4.31). =
We summarize what has been proved above in the following theorem.

THEOREM 4.6. Let 0 € ]log2/logq,1]. Let m = (my)pes and n =
(ny)ves be r-tuples of rational integers such that

log ¢

Jenl ~ 2 < (Jall - 26y - fo) 252 (4.11)
and
Iml = 2fy — fp = 6(|n| = 2fv — fp) > 0. (4.32)
Then
_ —r(mm) (D) 4y L
Z(S,m,n,D,U, V) —Cy(S)2 A(D) TN

M+N
< B5(R, 0)2r+fc/29¢(D)+n/4 L (4.33)
= M5\, MN :
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with

Ci(s) = 2Ma=b H<1+ ! )1, (4.34)

mq9 Wi (q7?) e\ al
M =|m]| —2fy — fp, N = ||n|| — 2fv — fp, and B5(R,0) a constant.

Proof. By (4.21), (4.25), (4.26), (4.28) and (4.31),

M+N
q+

vVMN

M+N
< B5(R, 0)2" T/a/2Hw(D)+ /4 ¢
— ) MN

2¢(P) 7 — 21774 —1)2B3(R) A(GD)

with f5(R, ) a constant. This gives (4.33) with
C1(8) = 2(q — 1) Bs(R)A(G).
Easy computations yield (4.34). =
COROLLARY 4.7. Let 6 € Jlog2/logq,1]. Let m = (my)yes and n

IA I

(ny)ves be r-tuples of rational integers such that 0 < Hmax(m,n)
min(m, n). Then
[m|+]|n]| (|| +[n]
—7(mmn) 4 r+fa/2 4
Hi(S,m,n) — Cy(S)27 ™) T______| < g5(R,0)2H6/2
[[ml| |[n]] ([ [
(4.35)

Proof. Interchanging m and n if necessary, we apply Theorem 4.6 with
D=U=V=1n

For ideals U and V of R coprime to G and such that 2fy < |m]|| and
2fy < |nl|, let Y = Y'(S,m,n, U, V) denote the set of (a,b) € X(S, m,n)
such that U(a) = U and U(b) = V, let Z'(S,m,n,U, V) denote the set of
(a,b) € Y'(S,m,n,U,V) such that the quadratic form (f,;) represents 0
over K, and let Z' = Z/(S;m,n, U, V) = #Z'(S,m,n, D, U, V).

Fix ideals U and V of R coprime to GG. The following theorem gives an
estimate for the numbers Z’(S,m,n, U, V).

THEOREM 4.8. Let o € Jlog2/logq,1]. Let m = (my)yes and n =
(ny)ves be r-tuples of rational integers such that 2fy < |ml, 2fy < ||n||
and

min([|m| = 2fy, [n|| = 2fv) = a max(||m| - 2y, [n| - 2fv) > 0. (4.36)
Then
q||mH+Hn||—2fU—2fV
V([[m[[ = 2f7)([n] - 2fv)

gImll+inl—270-2fv

(Il = 2f) (Il = 2fv)

Z'(S,m,n,U,V) — 2770 7(S)

< Bs(R, )2 e/

(4.37)
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with
C/(S) — M H <1_|_1> . H<1+1>1 (438)
ﬁqgfch(q72) e 2qfv(1 -|— qfv) iy qfv ’
vgS

and fBs(R, ) a constant.

Proof. The set Z/(S,m,n,U,V) is the union of the sets Z(S, m,n,
D,U,V) for D running over the set of square-free ideals of R coprime to G.
Hence

(1) Z'(Smn,UV)= Y  Z(SmmnDUV)
DeSFq
fp<m
with
(2) m = min(|jm| - 2fu, [n] — 2fv).
Let
(3) M =[] = 2f, N’ =] - 2fy.
By symmetry, we may suppose
(4) M < N’
Condition (4.36) gives
(5) M' > aN'.
Obviously,

Z(S,mn,D,UV)<(¢—-1)?% Y oo

AcSF BeSF
AAcPr ‘BBePr

fap=M" fpp=N'

and by (3.5),
Z(S,m,n,D,U,V) < (q — 1)%0(R)?¢M'*+N'=2/p,
Let g2 1
a—lo o .
T —glog;lcq)gq) and O=ay—s
Then X - - 9
O o)

"= 2<°‘+ 1o§q) > Togg ™ 0= Ty
Hence
(6) M’ — 6N’ > xkM'(1 — ).
Let

(7) p= [xM],
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(8) 7= Y Z(Smmn,D,UV)
DeSFq
fo<p
Then, by (1),
0< 2 = 7" < (q—1)?e(R?*¢M™HN Y~ ¢%r,
DeSFqa
fo>p
and by (3.5),
9) 0< 2 —Z* < h(g— 1)o(R)* ¢ N~

By (6) and (7), each D occurring in the sum Z* satisfies conditions (4.11)
and (4.32). In view of Theorem 4.6,

M'+N'—2fp

Z(S7m’n7D’U7V)_2—T(m,n)*w(D)Cl<S)A(D> \/(M(/] )N = fp)
—fp — fp

M'+N'—2fp

< Bs(R, )27 H/c/29w(D)+fp/4 q )
= 5L 0) O~ P}V — fp)

By (7),

qM/+N’—2fD _ 1 2 qM’+N/—2fD
—\1-—-k

(M'— fp)(N" - fp) M'N’
Hence,

(10) Z(S,m,n,D,U,V)
M'+N'—2fp
_ 01 (S)Q—T(m,n)—w(D)A(D) q
V(M= fp)(N'" = fp)
1 2 qM/+N/
< < ) Bs(R, )\)27”+fG/22‘U(D)+fD/4

“\l—xk M'N’
For any ideal D,
ow(D)+fp/4 < qu log,(2)/4 H qu log,(2) < ’D|510gq(2)/4‘

Pep
P|D
Hence, in view of (3.5), the series
(11) Y, = Z QW(D)+fD/4q*2fD

DeSF
is convergent. By (7), (8), (10) and (11),

(12) |Z* _ Cl(S)Z—T(m,n)qM'+N’Z**|

" 1y a
<2 /2 (1—/{) }/155(}%’ 0) Wv

M'+N'
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where
—w(D) ,—2f
(13) VA Z 2 q DA(D) )
DeSF¢ \/(MI — fp)(N" = fp)
fo<p

By (6), if the ideal D is such that fp < u then

1 1 /D
14 0< — <v(la) ——=
. ~ V(M = fp)(N" = fp) VM'N' " 1) 3
with
1 1 1
15 o) = R
(15) @) \/]_—K(Oz)—l—l—li(()é)(\/l—lﬁ‘,(oé) \/a)
and by (13),
1
0< 7 — Z 27w(D)q72fDA(D)
M'N' DeSFg
fo<p
(@) (D)~
S S )
DeSFqa
fo<p
By (4.30), 0 < A(D) <1 for all D € Z. Hence, by (3.5), the series
(16) Yo=Y fp2“Wg*rA(D)
DeSFq
is convergent and
1 (D) — v(a)Ys
(17) 0< 2" — > 2Pl b A(D) < .
M'N' DeSF¢q M'N’
fp<p
The series
(18) vo= 3 27020 ()
DeSFqa

is convergent and in view of (4.30),

1
) 0= (0 s

veV
vgS

By (4.30) and (3.5),

ho(R
> 2eWPlgepDy < Y g < Lﬁ 1) g
DeSFq Del q
fo>up fo>p
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Hence by (17),

A Y3 < hQ(R) . qg” '7(05)Y2
M'N'| = ¢—1 M'N'  M'N’
and by (9) and (12),
M'4-N’

—7(m,n q

M’'4+N’

N —u o 1 \?
< (g = Do(R)*g" Y 42 +fc/2<1ﬁ> YiB5(R.6) T

+h01(5)9(R)qM'+N"“ C1(S)v()Ya.
1

- OWAIN | MN
Hence,
M/ 4N M/ N’
(20) Z' — C1(S)Ys2 T (mn) il/W < Bs(S; ) QMW

with (6(S, ) a constant. In view of (3), (20) gives (4.37) with C’(S) =
Y3C1(S). We get (4.38) from (19) and (4.34). =

COROLLARY 4.9. Let « € ]log2/logq,1]. Let m = (my)yes and n

AV

(ny)ves be r-tuples of rational integers such that min(||ml,|n||)
amax(|ml, ||[n|) > 0. Then
H( ) —— n)C’(S) glmli+lnl < 6o(R )quII+IlnH (4.39)
m,n) — , — | < (R, 0) 7—. .
EIE fmll ]

Proof. Take U =V = (1) in Theorem 4.8. =
Now, we are able to end the proof.

THEOREM 4.10. Let A € |3log2/(2logq),1]. Let m = (my)yes and
n = (ny,)pes be r-tuples of rational integers such that min(||ml, ||n||) >
Amax(||m||, ||n|) > 0. Then

H{m.n) — 2B (s) gmII+inll <55 glml+ml (1.40)
m,n)— ) - | < ) ————— )
][ Jnf| =7 [lm| [n]
with
2h{k(q %) (g — 1
o(s) = 2erta Na=1)
q
1 1 1
X 1— —— 1——|- 1+> 4.41
UI;IS( q2f”)< qf”) UEH/( 2qfe (qfv + 1) (441)
vgS

and (B7(S,\) a constant.
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Proof. We suppose that ||m|| < ||n||. Then
(1) [l = Aljnf.
In view of (4.5) and the definition of Z’(S,m,n,U, V),
(2) H(S,mn)= > > Z'(S,m,n,UV).

Uele Velg
2fu<|lml| 2fv<||n||

(3) azgx

We note that log2/logq < a < 2/3. Let E’ denote the set of pairs (U, V)
with U and V coprime to G and such that 2fy < i||m|, 2fy < $A|n||, and
let E denote the set of (U, V) € E’ such that

(4)  min(jm| — 2fo, []n] - 2f) > @ max(ml] — 2y, |0l - 2f).

Let (U,V) be a pair of ideals as in (2). Obviously, Z/(S,m,n,U, V) is less
than the number of pairs (A, B) of ideals such that A2 and BB are principal
and satisfy

fa=I|m| =2fy, fp=|nl-2fy,
with 2 and B defined by (4.7). By (3.5),
Hence,

Z Z/(S7 m’ n7 U’ V)

Uelg, Vels
(UV)¢E
2fu <|m]|,2fy <||n||

< Q(R)2q”m”+”“”( S oY vy S gy q,%)

vel Vel Vel vel
2fy>|ml||/3 2fy>A|nl|/3
Thus, by (3.5),
> Z'(S,m,n, U, V)
Uelg, Vel
(UV)¢E'

2fu<|lml|,2fv <|n]

2
<2 <q> o(R)LgIml+Inil (g~ Imll/6 | o ~Xlal /6
<w?(

and by (1),
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(5) > Z'(S,m,n,U,V)
Uelg, Vel
(U V)¢E'

2fu<|lml|,2fv <|n]| q 2
< 2h2() o(R)gImi+Inl-Aln)/6
qg—1
If (U,V) € E' is not in E then either 2fy > ||n|| — [jm| + 2fy, and in this
case 2fy > |[n| —afm[| +2afy > ||lnf| - aflm][, or 2fy < |n| - |jm[| + 2y,
and in this case 2fy > |m| — a|n| + 2afy > ||m|| — «|n||. So by (3.5),

(6) > Z(Sm,nUYV)

(UV)eE'
(UV)EE

2
< h2<q g 1) o(R)gImil+nil (g ~(nl—allml)/2 | (il -alil)/2y

Let
(7) F=F(Smmn)= > Z(SmnUYV)
(UV)eE
Then, by (2), (5), (1) and (3),
2
(8) |H(S,m,n) - F| < 4h” (qzl> o(R)* g+l =i/,

If (U,V) € E, then
min(|[mf| = 2fy, [nf| = 2fv) > a max(|[m[| = 2fy, [n] = 2fv)

with log 2/log ¢ < a < 1 and we may apply Theorem 4.8 to Z'(S, m,n, U, V).
Doing this, we get

9)  |F — 2 Tmaor(g)gImiHinl pr) < g (s, g)2r e/ 2glml+Inl p

with

(10)  F*= > ¢ Hv(Im| - 2fp) V2 (|In - 2£v) 712,
(UV)eE

(11) Fr= %" ¢*v=2V(Im| - 2fy) (|| - 2fv)~".
(UV)EE

I (U,V) € E then (U,V) € B and by (3), (Im]l — 2fu)(Im] - 2fv) >
2(3 — A)||m]| [[n||. Therefore,

/ 9 —2fu 2
F < i )

Uel

By (3.5),

, 9h*¢*o(R)?
(12) B == 2l n]]
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We have
1 1
0< —
= V([m]l = 2fu)([nll = 2fv)  /[lm][[n]
2fv
B \/ 3(v/1=A/3+1—/3)||ml[*/2|[n][*/2
2fU

F+2/3 [[ml[3/2[|n||1/2
o1 < 2fv L2y )
~ mllnll \\/2/3(/T=A/3+1-1/3)  VAL2/3+2/3))

The series

(13) Y, = Z frrq2fu—2fv
(UV)eIXT

is convergent and by (10),

(14) 0< F* Y

1 —2fy—2f
S e q vV <
[ml| |[n] U;eE IImH ]l

with

(15) k() = 2<

\/7\/1—7+1—)\/3 F+2/3)

The series

(16) Y5 = Z q72fU72fV
(U,V)EIG XZTa

is convergent. As above we get

‘YS_ Z q*2fU 2fv

2
<4h2< 1) o(R)2qmI+nl=nll/6
-

(UV)eE
and by (14),
Y:
(17) 0<F*— >
|| |[n]]
2 [[ma|+[In][—Aln]|/6
< AV +4h2< g > R)? 2 ,
= Tml[n] q—1 [ml[ [
By (8), (9), (12) and (17) we get
as)  |m(s ) g rma) (8 v g+l < Bu(R glmll+inll
7man - ’ | > P7 y —_
[} [[n]] || {n]]
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with (7(R,\) a constant. In order to complete the proof, it remains to
compute the constant

(19) C(S) = C'(S)Ys.
Expanding Y5 as a product, we get

V= [ A-¢?P)2=JJ-¢¥)2 J]Q-q?P)

PePa PeP PeP
PlG

1\?2 1 \?
vi=a() (- )

vES

By (2.1) and (4.1),

and by (4.38),
_92 .
c8) = 2hCr (¢ ") g —1) 11 <1 n i 1 >

R AT
vgS
1\ 2 1\ !
H(-gr) ()

veS

5. Quadratic forms with coefficients in the ring Rg. In this section
we end the proof of the announced theorem.

Let S be a finite, non-empty set of r places of K. For r-tuples m =
(my)ves and n = (ny)yes of rational integers, let Qg(m,n) denote the
number of (a,b) € Rg x Rg such that

(1)  w(a) =m, and v(b) =n, for all v € S,
(2)  the quadratic form
(fas) X? —aY?—b2?
represents 0 over the field K.
Similarly, let @1 ,¢(m, n) denote the number of (a,b) € Rg x Rg with ideals
Rsa and Rgb square-free and coprime and such that (1) and (2) are true;

and let Qs(m, n) denote the number of (a,b) € Rg X Rg with Rga and Rgb
square-free and such that (1) and (2) are true.

THEOREM 5.1. Let A and 0 be real numbers with 3log2/(2logq) < A <1
and log2/logq < 0 < 1. Let m = (my)yes and n = (ny)yes be r-tuples of
rational integers. If

0 < Amax([Jm[, [[n[}) < min(|m]], [nf), (5.1)
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then
Os(m.m) — 2R (s gl ot glml+nl 52
S m7n — 27 Timn S 7 ) 77 .
[[| {|n| [[m| [|n|
if
0 < f max(|[m]|, [[n]) < min([lm]|}, [[n])), (5.3)
then
gl gmII+ln]
’QLg(m,n)—QT(m’“)C S ST (5.4)
lolf [nf | [m]| [[n]’
|[m]|+||n]| [+ ||n]|
‘QCS(m,n)—w(mv“)c's z s (55)
| ||nf| ] — [m]| [[n]’

with || - ||, 7(m,n),C(S),C'(S),C1(S), 35(S,8), Bs(S,0), B7(S,\) defined as
in Section 4.

Proof. Let vg € S and let R = Ry, If S = {vo}, then (5.2), (5.4)
and (5.5) are respectively given by Theorem 4.10, Corollary 4.7 and Corol-
lary 4.9. We now assume that the set S’ =S — {vp} is not empty. Let G be
defined by (4.1). For v € S, we denote by d, the order of the ideal class of
P, in the ideal class group of the ring R, and by p, the monic element such
that Rp, = ng' Let (iv)ves’, (Mw)ves (Ju)ves’s (Mw)ves be defined by the
relations
(3)  my = 2dyiy + Ty, 0 <My < 2dy; Ny = 2dyJiy + Ty, 0 < Ty < 2dy,.

Let Xg(m,n) denote the set of (a,b) € Rg x Rg such that v(a) = m and
v(b) = n. Let (a,b) € Xg(m,n) and set
a/ —a H pv—in’ b/ —b H pv—2]v
ves’ veS’
We look at (v(a’))yey and (v(V'))pey. For v € S’, we have v(a’) = m, > 0
and v(b') =m, > 0. Forv ¢ S, v(a') = v(a) > 0 and v(V') = v(b) > 0. Hence
a’ and V' belong to the ring R = Ry, By the product formula,

vo(a’) = my, + szd for - 00(¥) = nuy + Zyvd fo.

UES’ ves’
Hence, (d/,b) € Xg(m’,n ), where

(4) m’ = (mv)v657 n = (ﬁv)UES>

with

(5) My, = My, + Z by fo, My = Ny + Z]”d fo-
f ves’ f ves’!

Moreover, the map (a,b) — (a’,b’) is bijective and the quadratic form (f4 )
represents 0 over K if and only if (f,/ ) does. Hence, Qgs(m,n) is equal
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to the number of pairs (a/,b') € Xg(m',n’) such that (f, ) represents 0
over K, that is, the number H (S, m’,n’) defined in the previous section. By

(3)-(5),
(|| =" fulity = fomuy + Y Zivdufu + Y (M — 2iudy) fo,

vES veS’ veS’
and

(6) [m’[| = [[m]}, [In"] = |n].

We now deduce (5.2) from (4.40).

Let X g(m,n), resp. X's(m,n), denote the set of (a,b) € Xg(m,n)
such that (f, ) represents zero with a and b coprime and square-free, resp.
with a and b square-free. As above, the map (a,b) — (a/,') is bijec-
tive from X; g¢(m,n) to Z(S,m’,n’,(1),(1),(1)), and from X/4(m,n) to
Z(S,m', 0, (1), (1)), the sets Z(S,m’,/, (1), (1), (1)) and Z/(S,m’,n'.
(1), (1)) being defined in Section 4. We now get (5.4) and (5.5) from (4.35)
and (4.39). =
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