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Stability aspects of arithmetic functions
by

Tomasz KOCHANEK (Katowice)

1. Introduction. In number theory a significant role is played by two
classes of arithmetic mappings: the so called arithmetic additive functions
and arithmetic multiplicative functions.

DEFINITION 1. A function f: N — C is called arithmetic additive if

(1.1) flxy) = flx) + f(y)
for all z,y € N such that (z,y) = 1. It is called arithmetic multiplicative if
f#0and

(1.2) f(zy) = f(2)f(y)
for all z,y € N such that (z,y) = 1.

DEFINITION 2. In the case where equation (1.1) (or (1.2)) holds for all
x,y € N, the function f is called completely additive (respectively: completely
multiplicative).

A natural stability question for arithmetic additive functions looks like
this: assume that for a fixed € > 0 we have the conditional inequality

(1.3) z,y €N, (z,y) =1 = [f(zy) — f(z) - fly)| <e.
Does it imply that f is approximately equal to some arithmetic additive
function?

Our aim is to establish two theorems which give an answer to this ques-
tion under two different additional assumptions.

The first problem concerning the stability of additive mappings was raised
by S. M. Ulam [13] and was partially solved by D. H. Hyers [8] in 1941. The
condition “(x,y) = 1” appearing in (1.3) causes that the Hyers sequence
method cannot be used in our case. Stability of conditional Cauchy func-
tional equations was investigated by several authors (see, e.g., Z. Gajda [2],
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R. Ger [3], R. Ger and J. Sikorska [6]). These papers concern the situation
where the Cauchy equation is approximately satisfied for “almost all” pairs
of arguments or for arguments orthogonal in some sense. The expression “al-
most all” is understood in an axiomatic way and is connected with the notion
of proper linearly invariant ideal. However, the set {(z,y) € N : (z,y) = 1}
neither generates any proper linearly invariant ideal, nor is a subset of any
orthogonality relation. Consequently, such approaches are not applicable in
the study of hypothesis (1.3).

2. Stability type results for arithmetic additive functions. Let
P and S denote the sets of all prime numbers and of all natural powers of
primes, respectively (i.e. S = {p* : p € P, k € N}). Let w: N — NU {0} be
the standard arithmetic additive function given by

w(z) =card{peP:p|z} forxze N

We start with a result guaranteeing that, under a certain regularity
assumption, an almost arithmetic additive function may be approximated
by a logarithmic function. Several mathematicians were looking for condi-
tions which force an arithmetic additive function to be of the form clogn.
The first two results of this type, due to P. Erdgs [1], assert that it is the
case if f satisfies one of the following conditions:

(i) f is monotone,

(i) lim,—oo(F(z + 1) — f(x)) = 0.

A. Rényi in [12| gave a simplified and elegant proof of the Erdds theorem
in case (ii). Later, I. Katai [9] and A. Maté [11] strengthened the assertion,
assuming only that

(i) lim inf,—ool(f( + 1) — f(2)) > 0,
instead of (ii) (as anticipated by Erdés). The following proposition is a nat-
ural generalization of the theorem of Erdgs—Katai-Maté from the stability
point of view.

THEOREM 1. Assume that a function f: N — R satisfies (1.3) and
(2.1) lim inf(f(z +1) - f(z)) > 0.
Then there exists ¢ € R such that
(2.2) |f(z) —clogz| <e forx eN.

Proof. The first step of the proof is a slightly modified computation ap-
pearing in A. Maté’s proof [11]. For 4 > 0 define

H(p) :={z eN: flz+1) - f(z) < —p};
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obviously it is a finite set. Thus,
cp) ==Y (fla+1) = f(x)
z€H ()

is a well defined, nonnegative number. Lemma 1 from [11] says that for every
finite set M C N we have

(23) D (flw+1) = f(2) > —(card M) — c(p)  for p > 0.
reM
For arbitrary x,k € N we have
k

f@h) —kf(@) = (F@") = f@F =)+ 3 (F@ = 1) = f@'T1 =1) = f(2)
S @)
()~ k= 1) 4 Y0 1)~ - 0) 40
S @),

with some ¢; € [—¢,¢]. This follows from (1.3) and the fact that 2= — 1
and x are relatively prime for ¢ = 2, ..., k. Continuing the above calculation
with the aid of (2.3), we obtain

F@¥) = kf(z) = (f(a¥) = f(a¥ = 1))

k z—2

Y D (f@ a4+ 1) - f@' — 2+ )
i=2 j=0
k

+Y it (flz—1) - f(2))
i=2

> —(1+ (k- 1)z — 1) — ()
—(k=De+ (f(z—1) = f(z))
> —kxp—c(p) — (k= 1De+ (f(z —1) = f(z)).
Similarly,
k

F@b) = kf(@) = (f(&") = FEF+ 1)+ D (f@ +1) = @ +1) = f(x)
1=2
+(flz+1) — f(2))

and arguing as above, we deduce
F(a*) = kf(2) < kapt c(p) + (k= De + (f(z +1) = f(x)).
As a result,
| (*) = kf(2)] < kap+ c(p) + (k — Ve + o(k).
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The arbitrariness of p allows us to deduce the inequality
k
(2.4) lim sup ‘f(lj) — f(:):)‘ <e forzeN.
k—oo

This estimate gives us the possibility of defining a function g(z) as some
kind of limit (lim sup or Banach limit) of the expression f(z*)/k. Assumption
(1.3) easily implies that such a mapping ¢ is arithmetic additive; however, at
present, we are not able to show that it is completely additive. To overcome
this difficulty we proceed as follows.

Fix p € P. Our present purpose is to establish that

(2.5) Zy:={z€eR:|f(p*) — az| <e forall « € N} # 0.
Observe that
Zy = (z € f(0) —&. f(p) +e]: |f (") —az| < e}
a€eN

thus, it is an intersection of compact sets. To show that they form a centered
family it is enough to prove that for any finite number s of natural numbers
ai, ..., o there exists z € R such that

lf(p™) —aiz| <e fori=1,...,s.
Let o := ay - - - as. In the light of (2.4), the sequence
<f($ak)>°°
ak ).,

is bounded for every x € N. Choose a subsequence k1 < ky < --- of natural
numbers such that the limit

akn
z:= lim F™™)
n—oo  aky
exists. For every ¢ = 1,...,s we have, in view of (2.4),
f((pai)(a/ai)kn>

as desired.

By virtue of (2.5), for every p € P we can select a value z(p) such that
|f(p®) — az(p)| < e, a € N. Hence,

ak
‘f(]; ) —az(p)| < % forpeP, a,keN,
which yields
ak
(2.6) az(p) = klim f(]; ) forpe P, a e N.
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Assumption (1.3) and formula (2.6) imply that if p,q € P, p # q, o, € N,
then
F@*) + f™) _ . f((0%eD)Y)

k k—o0 k ’

az(p) + fz(q) = lim
k—o0
and further, by an easy induction,

s a1, sk
=1

for all mutually different py,...,ps € P and ay,...,as € N. In particular,
(2.7) shows that the limit

- fa®)

lim 2/

exists for every x € N, and moreover it is equal to g(x), where g: N — R
is the unique completely additive function satisfying g(p) = z(p) for p € P.
Inequality (2.4) yields |f(z) — g(z)| < € for all x € N. Hence, to finish the
proof of (2.2), it remains to prove that g satisfies some condition guaranteeing
that an additive function is a logarithmic function. By assumption (2.1),
f(z 4+ 1) — f(x) is bounded from below, hence so is g(z + 1) — g(x), as g
approximates f to within e. Since g is completely additive, the theorem of
E. Wirsing (see [14]) forces it to be of the form g(z) = clogz. =

In the proof of the next result we use the celebrated Ramsey theorem
quoted below.

THEOREM (Ramsey). Let X be an infinite set and n € N. If the family
X|[n] of all n-element subsets of X is partitioned into finitely many parts:

X[n] = X1 U+ UXp,

then there exists an infinite set Y C X such that all its n-element subsets lie
i one part of the partition.

Assumption (2.8) appearing below states that some special expressions,
like those appearing in (1.3), may be arbitrarily small. More precisely, if
w(r) = 1, then the difference f(rz)— f(z)— f(r) tends to zero as w(z) tends
to infinity,  and r being coprime. Moreover, we require this convergence to
be uniform with respect to r € S. This assumption may be regarded as quite
natural, compared to the one considered by P. Erdds, namely, assumption
(ii), which can be written equivalently as limg oo (f(z+1)— f(x)—f(1)) = 0.

THEOREM 2. Assume that a function f: N — C satisfies (1.3) and for
each 6 > 0 there exists M = M(0) such that

(2.8) ilé;g)supﬂf(rx) —f@)=f(r)|:zeN, (rz)=1,wx) > M)} <.
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Then there exists an arithmetic additive function f: N — C such that

|f(x) — f(z)| <3¢ forxeN.

Proof. Define a function g: N — C as follows: g(1) := f(1) and if z € N
has a canonical factorization x = ry---rs with r1,...,rs € S pairwise re-
latively prime, then we put g(z) := f(z) — (f(r1) + -+ + f(rs)). Observe
that

(2.9) gls=0

and g is of the form f — f, where fstands for the unique arithmetic additive
function whose values on S coincide with those of f. If we show that |/g||sup
< 3¢, we will be done.

Fix an arbitrary infinite sequence R = (71, 72,...) of pairwise relatively
prime elements of S. Set R, := {r1,...,rpm} form € N.If n € Nand n < m,
then we write R}, for the set of all ordered n-element sequences of elements
from R,,. Obviously

cardR) = —— form,ne N, n <m.
™ (m—n)! T
We put

1
: m 2275 ; ;S m.
(2.10) M, (n) card R g(Ha) for m,n e N, n <m
AERy,  acA

Observe that the decomposition g = f — f, jointly with arithmetic additivity
of f and assumption (1.3), imply that (1.3) remains true after replacing f
by g. A simple induction and equality (2.9) yield

lg(z)] < (w(z) —1)e forxzeN, z>2.
Evidently, the arithmetic means given by (2.10) satisfy similar inequalities:
|My,(n)| < (n—1)e  for myn € N, n <m.

This means that for every n € N the sequence (M;,(n))
Consider the Banach limit

M(n) := LIM M,,(n) forn € N.

is in [*°(C).

o0
m=n

Some tedious calculations show that

mtm S (M) - S o( DY)

AcRSft  a€A " DBeRs, beB
(m —1t)!
— > o(Ile)
m/!
CeRY, ceC

for all s, € N and m € N such that s +¢ < m. Roughly speaking, this
follows from the fact that the above difference, after multiplying it by m!,

(2.11)

<e
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may be partitioned into a sum of exactly m! differences of the form

(11 -o(T19) (11

beB ceC ceC
with B, C disjoint. According to condition (1.3) for the function g, the ab-
solute values of all such differences are estimated by e.
The partition process may be described by the transformation T: RS
— RS, x Rt given by
R;:H > (alj...,as,bl,...,bt) — ((al,...,as),(bl,...,bt)) S an X Rﬁn

Fix B € R:,. When A runs through the domain R:f* of T, the set B appears
exactly ("', °)t! times as the first element of the pair T(A). Since every such
A corresponds to the value g(][,c 4 @) with the coefficient (m — s —t)!, the
coefficient of g(] [, 5 b) should be equal to

(mt_8>t!(m—s—t)! = (m — s)!

and, fortunately, it is precisely this.
Therefore, inequality (2.11) gives

| M (s +1) — My (s) — My (t)] <e form,s,t €N, s+t <m.

Passing to the Banach limit, applying its linearity and the fact that
|ILIM|| = 1, we obtain the ordinary e-additivity of the function M: N — R,
ie.

|[M(s+1t)—M(s)— M(t)| <e fors,teN.

By the classical Hyers theorem [8], there exists an additive function (from the
semigroup (N, +) into (C, +)) approximating M to within e. Such a function
must be of the form s — cgs for some cg € C depending only on the fixed
sequence R. In other words,

(2.12) |M(s) —crs| <e forseN.
This yields

(2.13) ep = lim M0

n—oo n
Now we are going to prove that cp = 0. To this end, define a function
¢: N — [0,¢] as follows:
p(k) :=sup{lg(rz) — g(x) —g(r)[ : 7 €8,z €N, w(x) = k, (r,x) = 1}.
Assumption (2.8), which remains true after replacing f by g, guarantees that

(2.14) lim ¢(k) = 0.

k—o0
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Fix n € N and y € N such that w(y) = n and let y = r;---7, be the
canonical factorization. We have
lgW)l = lg(ri---mn) —g(ra---ra) —g(r1)
+g(ra--rn) —g(rs ) —g(ra) + -+
+g(rn—17m0) — 9(rn) — g(rn-1)|
(recall (2.9)). Hence,

n—1
l9(y)| < Z lg(ri -+ 1) = g(ric1 - mn) — g(r3)]
:Lill n—1
<> pn—i) =Y i)
=1 =1
Thus,

o) _ 1
n—1-n-1 — e (i),

and the arbitrariness of y such that w(y) = n allows one to deduce, directly
from the definition of M (n), that

[M(n) < nilnz_:l(ﬁ(l) — 0.
=1

n n—oo

Comparing this with (2.13), we get the desired equality cg = 0. Furthermore,
coming back to (2.12), we deduce that
(2.15) |M(n)| <e forneN,

independently of the sequence R.
Now, we apply the quoted theorem of Ramsey. Fix n > 0 and consider
the following partition of the family R[n] of all n-element subsets of R:

R[n]zNLJl {A € R[n] :g( H a) = e where r > e 41, 9 € [aj,aj+1]}

=0 acA
o{acrp:|o( T o)| <t}
acA

where N and 0 = qp < a1 < --- < any = 27 are chosen to satisfy

conv{re” :r >ec+n, 9 € [aj, 1]} NB0,e) =0 forj=0,...,N.
By the Ramsey theorem, there exists an infinite subset ) of R such that
all n-element subsets of ) belong to one of the five parts of the partition.
Because of the arbitrariness of the sequence according to which M (n) is

calculated, this must be the part {A € R[n] : |g([[,c4 @)l < €+ n}. If not,
the limit M (n) calculated with respect to the sequence @ would lie outside
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the ball B(0, ), contradicting (2.15). Summarizing this part of the proof, we
state the following.

(¥)  For an arbitrary sequence R of infinitely many relatively prime ele-
ments of S, and for any nn > 0, n € N, there exists an infinite subset
@ C R such that for all A € Q[n] we have

‘g(Ha>’<€+n.

acA
To finish the proof, fix x € N with factorization x =ry---75 and . > 0.
By (2.14), there exists k € N such that ¢(I) < n provided | > k. Statement
(x) ensures the existence of y € N with (z,y) =1, w(y) > k and

(2.16) (W)l <e+n.
We have |g(r1y) — g(y)| < n, hence |g(r1y)| < & + 2n. Since |g(rirey) —
g(riy)| < m, we obtain |g(r1r2y)| < € + 3n. Repeating this argument, we
arrive at
lg(r1--rsy)| <e+ (s + 1),
whereas
lg(r1---rsy) — g(y) — g(x)| <e.

The last two inequalities, jointly with (2.16), yield |g(x)| < 3e 4+ (s + 2)n,
which ends the proof.

Since the arithmetic additive function fconstructed in the above proof
coincides with f on S, it is a real function whenever f is real.

3. Stability type result for arithmetic multiplicative functions.
Theorems 1 and 2 may be translated to respective stability results for the
equation of arithmetic multiplicative functions which do not vanish at any
point. We consider the following assumption:

f(zy)

(3.1) z,y e N, (z,y)=1 = ‘f(x)f(y) 1| <e
This is a point of view different from that in [10] and may be regarded
as more natural. An assumption of this type was proposed by R. Ger [4]
for ordinary exponential mappings. R. Ger and P. Semrl [5] solved such a
stability problem for exponential mappings making use of the Hyers theorem
(and some of its variations). Their ideas may be adapted to deduce from
Theorem 2 the following one.

THEOREM 3. Assume that a function f: N — C\ {0} satisfies (3.1) for
some ¢ € [0,1), and for each § > 0 there exists M = M () such that

f(rz)
(3:2)  sup S”p{ @) ()

—1|:zeN,(rz) =1, w(x) >M(5)} < 0.
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Then there exists an arithmetic multiplicative function f: N — C\ {0} such
that

(3.3) ’%—1'35(5) and ‘%—1‘35(5) for z €N,

X

where §(¢) is a nonnegative number depending only on €. Moreover, 6(¢) — 0
as € — 0.

Let us start with a proposition whose proof we only sketch because it is
based on the proofs of Theorem 2.1 and Theorem 2.2 from [5].

PROPOSITION. Lete € [0,1). Assume that a mapping a: N — R satisfies
the conditional congruence

(x,y €N, (z,y) =1) = a(zy) —a(r) — ay) € 2nZ + [— arcsin g, arcsin €],
and the following condition: for each § > 0 there exists M = M (J) such that
(3.4)  supsup{dist(a(rz) — a(x) — a(r),27Z) : x € N,
res
(ryz) =1, w(x) > M(§)} <.
Then there exists a function p: N — R such that
(z,y €N, (z,y) =1) = p(zy) —p(z) —py) € 27Z

and |a(x) — p(x)| < 3arcsine for all x € N.

Proof. Define I := |[—arcsine,arcsine] and P := {(z,y) € N x N :
(x,y) = 1}. There exist functions ¢: P — 27Z and ¢: P — I such that

a(zy) — a(x) — aly) = (z,y) + ¢(z,y) for (z,y) € P.

One may verify that ¢ satisfies the following two equations:
(3.5) Y(z,y) =Y(y,z) for (z,y) € P,
(3.6) (x,yz) +¥(y, 2) = Yy, 2) + Y(x,y)  for (z,y),(y, 2), (2,2) € P.

Observe now that the following modification of the Hosszti theorem |7] holds:
if 1 satisfies (3.5) and (3.6), then there exists a function §: N — R such that

(3.7) 22> p(x,y) = Bzy) — B(z) — Bly) for (z,y) € P.

Let v := a — 3. Then

(3:8) I3 ¢(z,y) =~(zy) —y(x) =~(y) for (z,y) € P.

Condition (3.7) implies that for all » € S and x € N with (r,2) = 1 we have
dist(a(rz) — a(z) — a(r), 27Z) = |y(rz) — y(z) = y(r)|-

Consequently, in view of assumption (3.4), condition (3.8) and Theorem 2,

there is an arithmetic additive function 6: N — R such that |y(z) — (z)| <
3arcsine for x € N. It remains to define p: =56+ 3. =
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Proof of Theorem 3. Write f(x) = |f(z)|exp(iarg f(x)), where —m <
arg f(z) < m. We check that the function = +— log|f(x)| satisfies the as-
sumptions of Theorem 2 with the constant —log(1 — ) instead of € and the
function = — a(z) := arg f(x) satisfies the assumptions of our Proposition
(here we need condition (3.2)). Consequently, there exist: a real arithmetic
additive function g such that |g(z) — log|f(z)|| < —3log(l —¢) for z € N
and a real function p which is arithmetic additive modulo 27Z and such that
Ip(z) — arg f(z)| < 3arcsine for z € N.

We define a function f: N — C\ {0} by the formula

f(@) = exp(g(x) + ip(x))
and verify that inequalities (3.3) hold true with
5(e) = (1—¢e)3/A(e)2 + B(e)? ife </3/2,
1+(1—-¢)73 if ¢ >/3/2,
where A(e) = (V1 —¢2)3 —3e2/1 -2 — (1 —¢)? and B(e) = 3¢ — 4. »
In a similar manner we deduce from Theorem 1 the following one.

THEOREM 4. Assume that a function f: N — R\ {0} satisfies (3.1) for
some € € [0,1), and

lim inf M > 1.
z—oo  f(x)
Then there exists ¢ € R such that
f(z) z* £
— 1< d |— -1 < — N.
por S{—; o ) <71, forz e
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