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Stability aspects of arithmetic functions
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Tomasz Kochanek (Katowice)

1. Introduction. In number theory a significant role is played by two
classes of arithmetic mappings: the so called arithmetic additive functions
and arithmetic multiplicative functions.

Definition 1. A function f : N→ C is called arithmetic additive if

(1.1) f(xy) = f(x) + f(y)

for all x, y ∈ N such that (x, y) = 1. It is called arithmetic multiplicative if
f 6= 0 and

(1.2) f(xy) = f(x)f(y)

for all x, y ∈ N such that (x, y) = 1.

Definition 2. In the case where equation (1.1) (or (1.2)) holds for all
x, y ∈ N, the function f is called completely additive (respectively: completely
multiplicative).

A natural stability question for arithmetic additive functions looks like
this: assume that for a fixed ε ≥ 0 we have the conditional inequality

(1.3) x, y ∈ N, (x, y) = 1 ⇒ |f(xy)− f(x)− f(y)| ≤ ε.
Does it imply that f is approximately equal to some arithmetic additive
function?

Our aim is to establish two theorems which give an answer to this ques-
tion under two different additional assumptions.

The first problem concerning the stability of additive mappings was raised
by S. M. Ulam [13] and was partially solved by D. H. Hyers [8] in 1941. The
condition “(x, y) = 1” appearing in (1.3) causes that the Hyers sequence
method cannot be used in our case. Stability of conditional Cauchy func-
tional equations was investigated by several authors (see, e.g., Z. Gajda [2],
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R. Ger [3], R. Ger and J. Sikorska [6]). These papers concern the situation
where the Cauchy equation is approximately satisfied for “almost all” pairs
of arguments or for arguments orthogonal in some sense. The expression “al-
most all” is understood in an axiomatic way and is connected with the notion
of proper linearly invariant ideal. However, the set {(x, y) ∈ N2 : (x, y) = 1}
neither generates any proper linearly invariant ideal, nor is a subset of any
orthogonality relation. Consequently, such approaches are not applicable in
the study of hypothesis (1.3).

2. Stability type results for arithmetic additive functions. Let
P and S denote the sets of all prime numbers and of all natural powers of
primes, respectively (i.e. S = {pk : p ∈ P, k ∈ N}). Let ω : N → N ∪ {0} be
the standard arithmetic additive function given by

ω(x) = card{p ∈ P : p |x} for x ∈ N.

We start with a result guaranteeing that, under a certain regularity
assumption, an almost arithmetic additive function may be approximated
by a logarithmic function. Several mathematicians were looking for condi-
tions which force an arithmetic additive function to be of the form c log n.
The first two results of this type, due to P. Erdős [1], assert that it is the
case if f satisfies one of the following conditions:

(i) f is monotone,
(ii) limx→∞(f(x+ 1)− f(x)) = 0.

A. Rényi in [12] gave a simplified and elegant proof of the Erdős theorem
in case (ii). Later, I. Kátai [9] and A. Máté [11] strengthened the assertion,
assuming only that

(iii) lim infx→∞(f(x+ 1)− f(x)) ≥ 0,
instead of (ii) (as anticipated by Erdős). The following proposition is a nat-
ural generalization of the theorem of Erdős–Kátai–Máté from the stability
point of view.

Theorem 1. Assume that a function f : N→ R satisfies (1.3) and

(2.1) lim inf
x→∞

(f(x+ 1)− f(x)) ≥ 0.

Then there exists c ∈ R such that

(2.2) |f(x)− c log x| ≤ ε for x ∈ N.

Proof. The first step of the proof is a slightly modified computation ap-
pearing in A. Máté’s proof [11]. For µ > 0 define

H(µ) := {x ∈ N : f(x+ 1)− f(x) < −µ};
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obviously it is a finite set. Thus,

c(µ) := −
∑

x∈H(µ)

(f(x+ 1)− f(x))

is a well defined, nonnegative number. Lemma 1 from [11] says that for every
finite set M ⊂ N we have

(2.3)
∑
x∈M

(f(x+ 1)− f(x)) ≥ −(cardM)µ− c(µ) for µ > 0.

For arbitrary x, k ∈ N we have

f(xk)− kf(x) = (f(xk)− f(xk − 1)) +
k∑
i=2

(f(xi − 1)− f(xi−1 − 1)− f(x))

+ (f(x− 1)− f(x))

= (f(xk)− f(xk − 1)) +
k∑
i=2

(f(xi − 1)− f(xi − x) + εi)

+ (f(x− 1)− f(x)),

with some εi ∈ [−ε, ε]. This follows from (1.3) and the fact that xi−1 − 1
and x are relatively prime for i = 2, . . . , k. Continuing the above calculation
with the aid of (2.3), we obtain

f(xk)− kf(x) = (f(xk)− f(xk − 1))

+
k∑
i=2

x−2∑
j=0

(f(xi − x+ j + 1)− f(xi − x+ j))

+
k∑
i=2

εi + (f(x− 1)− f(x))

≥ −(1 + (k − 1)(x− 1))µ− c(µ)
−(k − 1)ε+ (f(x− 1)− f(x))

≥ −kxµ− c(µ)− (k − 1)ε+ (f(x− 1)− f(x)).

Similarly,

f(xk)− kf(x) = (f(xk)− f(xk + 1)) +
k∑
i=2

(f(xi + 1)− f(xi−1 + 1)− f(x))

+ (f(x+ 1)− f(x))

and arguing as above, we deduce

f(xk)− kf(x) ≤ kxµ+ c(µ) + (k − 1)ε+ (f(x+ 1)− f(x)).

As a result,

|f(xk)− kf(x)| ≤ kxµ+ c(µ) + (k − 1)ε+ o(k).
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The arbitrariness of µ allows us to deduce the inequality

(2.4) lim sup
k→∞

∣∣∣∣f(xk)
k
− f(x)

∣∣∣∣ ≤ ε for x ∈ N.

This estimate gives us the possibility of defining a function g(x) as some
kind of limit (lim sup or Banach limit) of the expression f(xk)/k. Assumption
(1.3) easily implies that such a mapping g is arithmetic additive; however, at
present, we are not able to show that it is completely additive. To overcome
this difficulty we proceed as follows.

Fix p ∈ P. Our present purpose is to establish that

(2.5) Zp := {z ∈ R : |f(pα)− αz| ≤ ε for all α ∈ N} 6= ∅.

Observe that

Zp =
⋂
α∈N
{z ∈ [f(p)− ε, f(p) + ε] : |f(pα)− αz| ≤ ε};

thus, it is an intersection of compact sets. To show that they form a centered
family it is enough to prove that for any finite number s of natural numbers
α1, . . . , αs there exists z ∈ R such that

|f(pαi)− αiz| ≤ ε for i = 1, . . . , s.

Let α := α1 · · ·αs. In the light of (2.4), the sequence(
f(xαk)
αk

)∞
k=1

is bounded for every x ∈ N. Choose a subsequence k1 < k2 < · · · of natural
numbers such that the limit

z := lim
n→∞

f(pαkn)
αkn

exists. For every i = 1, . . . , s we have, in view of (2.4),

|f(pαi)− αiz| =
∣∣∣∣f(pαi)− lim

n→∞

f((pαi)(α/αi)kn)
(α/αi)kn

∣∣∣∣ ≤ ε,
as desired.

By virtue of (2.5), for every p ∈ P we can select a value z(p) such that
|f(pα)− αz(p)| ≤ ε, α ∈ N. Hence,∣∣∣∣f(pαk)

k
− αz(p)

∣∣∣∣ ≤ ε

k
for p ∈ P, α, k ∈ N,

which yields

(2.6) αz(p) = lim
k→∞

f(pαk)
k

for p ∈ P, α ∈ N.
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Assumption (1.3) and formula (2.6) imply that if p, q ∈ P, p 6= q, α, β ∈ N,
then

αz(p) + βz(q) = lim
k→∞

f(pαk) + f(qβk)
k

= lim
k→∞

f((pαqβ)k)
k

,

and further, by an easy induction,

(2.7)
s∑
i=1

αiz(pi) = lim
k→∞

f((pα1
1 · · · pαs

s )k)
k

,

for all mutually different p1, . . . , ps ∈ P and α1, . . . , αs ∈ N. In particular,
(2.7) shows that the limit

lim
k→∞

f(xk)
k

exists for every x ∈ N, and moreover it is equal to g(x), where g : N → R
is the unique completely additive function satisfying g(p) = z(p) for p ∈ P.
Inequality (2.4) yields |f(x) − g(x)| ≤ ε for all x ∈ N. Hence, to finish the
proof of (2.2), it remains to prove that g satisfies some condition guaranteeing
that an additive function is a logarithmic function. By assumption (2.1),
f(x + 1) − f(x) is bounded from below, hence so is g(x + 1) − g(x), as g
approximates f to within ε. Since g is completely additive, the theorem of
E. Wirsing (see [14]) forces it to be of the form g(x) = c log x.

In the proof of the next result we use the celebrated Ramsey theorem
quoted below.

Theorem (Ramsey). Let X be an infinite set and n ∈ N. If the family
X[n] of all n-element subsets of X is partitioned into finitely many parts:

X[n] = X1 ∪ · · · ∪Xk,

then there exists an infinite set Y ⊂ X such that all its n-element subsets lie
in one part of the partition.

Assumption (2.8) appearing below states that some special expressions,
like those appearing in (1.3), may be arbitrarily small. More precisely, if
ω(r) = 1, then the difference f(rx)−f(x)−f(r) tends to zero as ω(x) tends
to infinity, x and r being coprime. Moreover, we require this convergence to
be uniform with respect to r ∈ S. This assumption may be regarded as quite
natural, compared to the one considered by P. Erdős, namely, assumption
(ii), which can be written equivalently as limx→∞(f(x+1)−f(x)−f(1)) = 0.

Theorem 2. Assume that a function f : N → C satisfies (1.3) and for
each δ > 0 there exists M = M(δ) such that

(2.8) sup
r∈S

sup{|f(rx)− f(x)− f(r)| : x ∈ N, (r, x) = 1, ω(x) ≥M(δ)} < δ.
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Then there exists an arithmetic additive function f̃ : N→ C such that

|f(x)− f̃(x)| ≤ 3ε for x ∈ N.
Proof. Define a function g : N→ C as follows: g(1) := f(1) and if x ∈ N

has a canonical factorization x = r1 · · · rs with r1, . . . , rs ∈ S pairwise re-
latively prime, then we put g(x) := f(x) − (f(r1) + · · · + f(rs)). Observe
that

(2.9) g|S = 0

and g is of the form f − f̃ , where f̃ stands for the unique arithmetic additive
function whose values on S coincide with those of f . If we show that ‖g‖sup

≤ 3ε, we will be done.
Fix an arbitrary infinite sequence R = (r1, r2, . . .) of pairwise relatively

prime elements of S. Set Rm := {r1, . . . , rm} for m ∈ N. If n ∈ N and n ≤ m,
then we write Rnm for the set of all ordered n-element sequences of elements
from Rm. Obviously

cardRnm =
m!

(m− n)!
for m,n ∈ N, n ≤ m.

We put

(2.10) Mm(n) :=
1

cardRnm

∑
A∈Rn

m

g
( ∏
a∈A

a
)

for m,n ∈ N, n ≤ m.

Observe that the decomposition g = f− f̃ , jointly with arithmetic additivity
of f̃ and assumption (1.3), imply that (1.3) remains true after replacing f
by g. A simple induction and equality (2.9) yield

|g(x)| ≤ (ω(x)− 1)ε for x ∈ N, x ≥ 2.

Evidently, the arithmetic means given by (2.10) satisfy similar inequalities:

|Mm(n)| ≤ (n− 1)ε for m,n ∈ N, n ≤ m.
This means that for every n ∈ N the sequence (Mm(n))∞m=n is in l∞(C).
Consider the Banach limit

M(n) := LIM
m→∞

Mm(n) for n ∈ N.

Some tedious calculations show that

(2.11)
∣∣∣∣(m− s− t)!m!

∑
A∈Rs+t

m

g
( ∏
a∈A

a
)
− (m− s)!

m!

∑
B∈Rs

m

g
(∏
b∈B

b
)

− (m− t)!
m!

∑
C∈Rt

m

g
(∏
c∈C

c
)∣∣∣∣ ≤ ε

for all s, t ∈ N and m ∈ N such that s + t ≤ m. Roughly speaking, this
follows from the fact that the above difference, after multiplying it by m!,
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may be partitioned into a sum of exactly m! differences of the form

g
(∏
b∈B

b
∏
c∈C

c
)
− g
(∏
b∈B

b
)
− g
(∏
c∈C

c
)

with B,C disjoint. According to condition (1.3) for the function g, the ab-
solute values of all such differences are estimated by ε.

The partition process may be described by the transformation T:Rs+tm

→ Rsm ×Rtm given by

Rs+tm 3 (a1, . . . , as, b1, . . . , bt) 7→ ((a1, . . . , as), (b1, . . . , bt)) ∈ Rsm ×Rtm.

Fix B ∈ Rsm. When A runs through the domain Rs+tm of T , the set B appears
exactly

(
m−s
t

)
t! times as the first element of the pair T (A). Since every such

A corresponds to the value g(
∏
a∈A a) with the coefficient (m− s− t)!, the

coefficient of g(
∏
b∈B b) should be equal to(

m− s
t

)
t!(m− s− t)! = (m− s)!

and, fortunately, it is precisely this.
Therefore, inequality (2.11) gives

|Mm(s+ t)−Mm(s)−Mm(t)| ≤ ε for m, s, t ∈ N, s+ t ≤ m.

Passing to the Banach limit, applying its linearity and the fact that
‖LIM‖ = 1, we obtain the ordinary ε-additivity of the function M : N→ R,
i.e.

|M(s+ t)−M(s)−M(t)| ≤ ε for s, t ∈ N.

By the classical Hyers theorem [8], there exists an additive function (from the
semigroup (N,+) into (C,+)) approximatingM to within ε. Such a function
must be of the form s 7→ cRs for some cR ∈ C depending only on the fixed
sequence R. In other words,

(2.12) |M(s)− cRs| ≤ ε for s ∈ N.

This yields

(2.13) cR = lim
n→∞

M(n)
n

.

Now we are going to prove that cR = 0. To this end, define a function
ϕ : N→ [0, ε] as follows:

ϕ(k) := sup{|g(rx)− g(x)− g(r)| : r ∈ S, x ∈ N, ω(x) = k, (r, x) = 1}.

Assumption (2.8), which remains true after replacing f by g, guarantees that

(2.14) lim
k→∞

ϕ(k) = 0.
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Fix n ∈ N and y ∈ N such that ω(y) = n and let y = r1 · · · rn be the
canonical factorization. We have

|g(y)| = |g(r1 · · · rn)− g(r2 · · · rn)− g(r1)
+ g(r2 · · · rn)− g(r3 · · · rn)− g(r2) + · · ·
+ g(rn−1rn)− g(rn)− g(rn−1)|

(recall (2.9)). Hence,

|g(y)| ≤
n−1∑
i=1

|g(ri · · · rn)− g(ri+1 · · · rn)− g(ri)|

≤
n−1∑
i=1

ϕ(n− i) =
n−1∑
i=1

ϕ(i).

Thus,
|g(y)|
n− 1

≤ 1
n− 1

n−1∑
i=1

ϕ(i),

and the arbitrariness of y such that ω(y) = n allows one to deduce, directly
from the definition of M(n), that

|M(n)|
n

≤ 1
n− 1

n−1∑
i=1

ϕ(i) −→
n→∞

0.

Comparing this with (2.13), we get the desired equality cR = 0. Furthermore,
coming back to (2.12), we deduce that

(2.15) |M(n)| ≤ ε for n ∈ N,
independently of the sequence R.

Now, we apply the quoted theorem of Ramsey. Fix η > 0 and consider
the following partition of the family R[n] of all n-element subsets of R:

R[n]=
N−1⋃
j=0

{
A ∈ R[n] : g

( ∏
a∈A

a
)

= reiϑ, where r ≥ ε+ η, ϑ ∈ [αj , αj+1]
}

∪
{
A ∈ R[n] :

∣∣∣g( ∏
a∈A

a
)∣∣∣ < ε+ η

}
,

where N and 0 = α0 < α1 < · · · < αN = 2π are chosen to satisfy

conv{reiϑ : r ≥ ε+ η, ϑ ∈ [αj , αj+1]} ∩B(0, ε) = ∅ for j = 0, . . . , N.

By the Ramsey theorem, there exists an infinite subset Q of R such that
all n-element subsets of Q belong to one of the five parts of the partition.
Because of the arbitrariness of the sequence according to which M(n) is
calculated, this must be the part {A ∈ R[n] : |g(

∏
a∈A a)| < ε + η}. If not,

the limit M(n) calculated with respect to the sequence Q would lie outside
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the ball B(0, ε), contradicting (2.15). Summarizing this part of the proof, we
state the following.

(∗) For an arbitrary sequence R of infinitely many relatively prime ele-
ments of S, and for any η > 0, n ∈ N, there exists an infinite subset
Q ⊂ R such that for all A ∈ Q[n] we have∣∣∣g( ∏

a∈A
a
)∣∣∣ < ε+ η.

To finish the proof, fix x ∈ N with factorization x = r1 · · · rs and η > 0.
By (2.14), there exists k ∈ N such that ϕ(l) < η provided l ≥ k. Statement
(∗) ensures the existence of y ∈ N with (x, y) = 1, ω(y) > k and

(2.16) |g(y)| < ε+ η.

We have |g(r1y) − g(y)| < η, hence |g(r1y)| < ε + 2η. Since |g(r1r2y) −
g(r1y)| < η, we obtain |g(r1r2y)| < ε + 3η. Repeating this argument, we
arrive at

|g(r1 · · · rsy)| < ε+ (s+ 1)η,

whereas
|g(r1 · · · rsy)− g(y)− g(x)| ≤ ε.

The last two inequalities, jointly with (2.16), yield |g(x)| ≤ 3ε + (s + 2)η,
which ends the proof.

Since the arithmetic additive function f̃ constructed in the above proof
coincides with f on S, it is a real function whenever f is real.

3. Stability type result for arithmetic multiplicative functions.
Theorems 1 and 2 may be translated to respective stability results for the
equation of arithmetic multiplicative functions which do not vanish at any
point. We consider the following assumption:

(3.1) x, y ∈ N, (x, y) = 1 ⇒
∣∣∣∣ f(xy)
f(x)f(y)

− 1
∣∣∣∣ ≤ ε.

This is a point of view different from that in [10] and may be regarded
as more natural. An assumption of this type was proposed by R. Ger [4]
for ordinary exponential mappings. R. Ger and P. Šemrl [5] solved such a
stability problem for exponential mappings making use of the Hyers theorem
(and some of its variations). Their ideas may be adapted to deduce from
Theorem 2 the following one.

Theorem 3. Assume that a function f : N→ C \ {0} satisfies (3.1) for
some ε ∈ [0, 1), and for each δ > 0 there exists M = M(δ) such that

(3.2) sup
r∈S

sup
{∣∣∣∣ f(rx)
f(x)f(r)

− 1
∣∣∣∣ : x ∈ N, (r, x) = 1, ω(x) ≥M(δ)

}
< δ.
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Then there exists an arithmetic multiplicative function f̃ : N→ C \ {0} such
that

(3.3)
∣∣∣∣f(x)

f̃(x)
− 1
∣∣∣∣ ≤ δ(ε) and

∣∣∣∣ f̃(x)
f(x)

− 1
∣∣∣∣ ≤ δ(ε) for x ∈ N,

where δ(ε) is a nonnegative number depending only on ε. Moreover , δ(ε)→ 0
as ε→ 0.

Let us start with a proposition whose proof we only sketch because it is
based on the proofs of Theorem 2.1 and Theorem 2.2 from [5].

Proposition. Let ε ∈ [0, 1). Assume that a mapping α : N→ R satisfies
the conditional congruence

(x, y ∈ N, (x, y) = 1) ⇒ α(xy)− α(x)− α(y) ∈ 2πZ + [− arcsin ε, arcsin ε],

and the following condition: for each δ > 0 there exists M = M(δ) such that

(3.4) sup
r∈S

sup{dist(α(rx)− α(x)− α(r), 2πZ) : x ∈ N,

(r, x) = 1, ω(x) ≥M(δ)} < δ.

Then there exists a function p : N→ R such that

(x, y ∈ N, (x, y) = 1) ⇒ p(xy)− p(x)− p(y) ∈ 2πZ
and |α(x)− p(x)| ≤ 3 arcsin ε for all x ∈ N.

Proof. Define I := [− arcsin ε, arcsin ε] and P := {(x, y) ∈ N × N :
(x, y) = 1}. There exist functions ψ : P → 2πZ and ϕ : P → I such that

α(xy)− α(x)− α(y) = ψ(x, y) + ϕ(x, y) for (x, y) ∈ P.
One may verify that ψ satisfies the following two equations:

ψ(x, y) = ψ(y, x) for (x, y) ∈ P,(3.5)
ψ(x, yz) + ψ(y, z) = ψ(xy, z) + ψ(x, y) for (x, y), (y, z), (z, x) ∈ P.(3.6)

Observe now that the following modification of the Hosszú theorem [7] holds:
if ψ satisfies (3.5) and (3.6), then there exists a function β : N→ R such that

(3.7) 2πZ 3 ψ(x, y) = β(xy)− β(x)− β(y) for (x, y) ∈ P.
Let γ := α− β. Then
(3.8) I 3 ϕ(x, y) = γ(xy)− γ(x)− γ(y) for (x, y) ∈ P.
Condition (3.7) implies that for all r ∈ S and x ∈ N with (r, x) = 1 we have

dist(α(rx)− α(x)− α(r), 2πZ) = |γ(rx)− γ(x)− γ(r)|.
Consequently, in view of assumption (3.4), condition (3.8) and Theorem 2,
there is an arithmetic additive function δ : N→ R such that |γ(x)− δ(x)| ≤
3 arcsin ε for x ∈ N. It remains to define p := δ + β.
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Proof of Theorem 3. Write f(x) = |f(x)| exp(i arg f(x)), where −π <
arg f(x) ≤ π. We check that the function x 7→ log |f(x)| satisfies the as-
sumptions of Theorem 2 with the constant − log(1− ε) instead of ε and the
function x 7→ α(x) := arg f(x) satisfies the assumptions of our Proposition
(here we need condition (3.2)). Consequently, there exist: a real arithmetic
additive function g such that |g(x) − log |f(x)| | ≤ −3 log(1 − ε) for x ∈ N
and a real function p which is arithmetic additive modulo 2πZ and such that
|p(x)− arg f(x)| ≤ 3 arcsin ε for x ∈ N.

We define a function f̃ : N→ C \ {0} by the formula

f̃(x) := exp(g(x) + ip(x))

and verify that inequalities (3.3) hold true with

δ(ε) =

{
(1− ε)−3

√
A(ε)2 +B(ε)2 if ε <

√
3/2,

1 + (1− ε)−3 if ε ≥
√

3/2,

where A(ε) = (
√

1− ε2)3 − 3ε2
√

1− ε2 − (1− ε)3 and B(ε) = 3ε− 4ε3.

In a similar manner we deduce from Theorem 1 the following one.

Theorem 4. Assume that a function f : N→ R \ {0} satisfies (3.1) for
some ε ∈ [0, 1), and

lim inf
x→∞

f(x+ 1)
f(x)

≥ 1.

Then there exists c ∈ R such that∣∣∣∣f(x)
xc
− 1
∣∣∣∣ ≤ ε

1− ε
and

∣∣∣∣ xcf(x)
− 1
∣∣∣∣ ≤ ε

1− ε
for x ∈ N.
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