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On the k-free divisor problem (II)

by

Jun Furuya (Okinawa) and Wenguang Zhai (Jinan)

1. Introduction. Let d(n) denote the divisor function. Dirichlet first
proved that the error term

∆(x) :=
∑ ′

n≤x
d(n)− x log x− (2γ − 1)x, x ≥ 2,

satisfies ∆(x) = O(x1/2), where
∑′

n≤x means that the term for n = x should
be halved when x is an integer. The exponent 1/2 was improved by many
authors. The latest result is due to Huxley [4], who proved that

∆(x)� x131/416(log x)26957/8320.

It is conjectured that

(1.1) ∆(x) = O(x1/4+ε),

which is supported by the classical mean-square result

(1.2)
T�

1

∆2(x) dx =
(ζ(3/2))4

6π2ζ(3)
T 3/2 +O(T log5 T )

proved by Tong [12].
Let k ≥ 2 denote a fixed integer. An integer n is called k-free if pk does

not divide n for any prime p. Let d(k)(n) denote the number of k-free divisors
of the positive integer n and define

D(k)(x) :=
∑ ′

n≤x
d(k)(n).
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Then the expected asymptotic formula for D(k)(x) is

(1.3) D(k)(x) = C
(k)
1 x log x+ C

(k)
2 x+∆(k)(x),

where C(k)
1 , C

(k)
2 are two constants, and ∆(k)(x) is the error term. In 1874

Mertens [7] proved that ∆(2)(x)� x1/2 log x. In 1932 Perron [9] proved that

∆(k)(x)�


x1/2 if k = 2,
x1/3 if k = 3,
x33/100 if k ≥ 4.

For k = 2, 3, it is very difficult to improve the exponent 1/k in the bound
∆(k)(x) � x1/k, unless we have substantial progress in the study of the
zerofree region of ζ(s). Therefore it is reasonable to get better improvements
by assuming the truth of the Riemann Hypothesis (RH). Such results have
been given in [1, 2, 6, 8, 10, 11]. In particular, in [2] R. C. Baker proved
∆(2)(x)� x4/11+ε and in [6] Kumchev proved∆(3)(x)� x27/85+ε under RH.
For k ≥ 4, it is easy to show that if ∆(x)� xα, then ∆(k)(x)� xα log x.

We believe that the estimate

(1.4) ∆(k)(x)� x1/4+ε

is true for any k ≥ 2, which is an analogue of (1.1). For k ≥ 4 the conjecture
(1.4) is partly supported by the asymptotic formula

T�

1

|∆(k)(x)|2 dx =
Bk
6π2

T 3/2 +
{
O(T 3/2e−cδ(T )) for k = 4,
O(T δk+ε) for k ≥ 5,

(1.5)

proved in [3], where c > 0 is an absolute constant and

Bk :=
∞∑
m=1

g2
k(m)m−3/2, gk(m) :=

∑
m=nlk

µ(l)d(n)lk/2,

δ(u) := (log u)3/5(log log u)−1/5,

δ5 := 29/20, δk := 3/2− 1/2k + 1/k2 (k ≥ 6).

The approach in [3] fails for k = 3 and gives only a weak result for k = 4.
However, if RH is true, we can do much better. In this short note, we shall
prove the following

Theorem. If RH is true, then
T�

1

|∆(k)(x)|2 dx =
Bk
6π2

T 3/2 +O(T 3/2−ηk+ε)(1.6)

with ηk := (k − 2)/(12k − 8) (k = 3, 4, 5, 6), where the implied constant
depends only on ε.
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Corollary. If RH is true, then

∆(3)(x) = Ω(x1/4).

Acknowledgements. The authors deeply thank the referee for valu-
able suggestions.

2. Proof of Theorem

2.1. Mean square of ∆(k)
2,y(x). Suppose RH is true. It is obvious that

∞∑
n=1

d(k)(n)
ns

=
ζ2(s)
ζ(ks)

(<s > 1),

which implies that

d(k)(n) =
∑
n=lkm

µ(l)d(m).

Let y > 2 be a parameter. Define

d
(k)
1,y(n) :=

∑
n=lkm
l≤y

µ(l)d(m), d
(k)
2,y(n) :=

∑
n=lkm
l>y

µ(l)d(m).

Then
d(k)(n) = d

(k)
1,y(n) + d

(k)
2,y(n).

It is easy to see that for <s > 1 we have
∞∑
n=1

d
(k)
2,y(n)
ns

= ζ2(s)fy(ks),(2.1)

where fy(s) :=
∑

l>y µ(l)/ls. It is well-known that under RH, the function
fy(s) can be analytically continued to <s > 1/2 and that uniformly in the
strip 1/2 + ε < <s ≤ 1 the estimate

(2.2) fy(s)� y1/2−σ+ε(1 + |t|)ε

holds.
Let

D
(k)
i,y (x) :=

∑ ′

n≤x
d

(k)
i,y (n) (i = 1, 2).

Then

D(k)(x) = D
(k)
1,y(x) +D

(k)
2,y(x).(2.3)

Note that here y is independent of x. We have D(k)
2,y(x) ≡ 0 when y > x1/k.
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For D(k)
1,y(x), we have

D
(k)
1,y(x) =

∑
l≤y

µ(l)
∑ ′

m≤x/lk
d(m)(2.4)

=
∑
l≤y

µ(l)
{
x

lk
log

x

lk
+ (2γ − 1)

x

lk
+∆

(
x

lk

)}

= Ress=1

(
ζ2(s)

xs

s

∑
l≤y

µ(l)
ls

)
+
∑
l≤y

µ(l)∆
(
x

lk

)
.

By Perron’s formula we know that

(2.5) D
(k)
2,y(x) =

1
2πi

2+i∞�

2−i∞
ζ2(s)

xs

s
fy(ks) ds.

Moving the line of integration in (2.5) to some c < 1 (but close to 1), by the
residue theorem we get

(2.6) D
(k)
2,y(x) = Ress=1

(
ζ2(s)

xs

s
fy(ks)

)
+

1
2πi

c+i∞�

c−i∞
ζ2(s)

xs

s
fy(ks) ds.

Let

∆
(k)
2,y(x) :=

∑ ′

n≤x
d

(k)
2,y(n)− Ress=1

(
ζ2(s)

xs

s
fy(ks)

)
.

Then

(2.7) ∆
(k)
2,y(x) =

1
2πi

c+i∞�

c−i∞
ζ2(s)

xs

s
fy(ks) ds.

Since ζ2(s)fy(ks)s−1 → 0 uniformly in the strip 1/4 < <s < 1 when
|t| → ∞, (2.7) is true for any 1/4 < c < 1. Replacing in (2.7) x by 1/x,
taking c = 1/4+ε and then using Parseval’s identity (see for example, (A.5)
of Ivić [5]) we get

(2.8)
∞�

0

|∆(k)
2,y(x)|2

x3/2+2ε
dx =

1
2π

∞�

−∞

|ζ(1/4 + ε+ it)|4|fy(k(1/4 + ε+ it))|2

|1/4 + ε+ it|2
dt.

From (2.2) we have

(2.9) |fy(k(1/4 + ε+ it))|2 � y1−k/2−2kε+2ε(1 + |t|)2ε.
Under RH we have, for any 0 ≤ σ ≤ 1/2,

ζ(σ + it)� (1 + |t|)1/2−σ+ε/4.

Thus
|ζ(1/4 + ε+ it)|4 � (1 + |t|)1−3ε,
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which combined with (2.8) and (2.9) implies

∞�

0

|∆(k)
2,y(x)|2

x3/2+2ε
dx� y1−k/2−2kε+2ε

∞�

−∞
(1 + |t|)−1−ε dt� y1−k/2.

Hence for any M > 2 we have
2M�

M

|∆(k)
2,y(x)|2

x3/2+2ε
dx� y1−k/2,

so
2M�

M

|∆(k)
2 (x)|2 dx�M3/2+εy1−k/2.(2.10)

2.2. Completion of proof. Suppose T ≥ 10 is large. It suffices to evaluate
the integral

	2T
T |∆

(k)(x)|2 dx. From (2.3)–(2.7) we have

∆(k)(x) = ∆
(k)
1,y(x) +∆

(k)
2,y(x),(2.11)

where
∆

(k)
1,y(x) :=

∑
l≤y

µ(l)∆(x/lk).

Let T ε � y � T 1/4−ε and T ε � z � T 1−ε be two parameters to be
determined later. Let

∆1(u) :=
u1/4

√
2π

∑
n≤z

d(n)
n3/4

cos(4π
√
nu− π/4), ∆2(u; z) := ∆(u)−∆1(u).

Then we can write

(2.12) ∆
(k)
1,y(x) = R

(k)
1 (x) +R

(k)
2 (x),

where

R
(k)
1 (x) :=

x1/4

√
2π

∑
l≤y

µ(l)
lk/4

∑
n≤z

d(n)
n3/4

cos
(

4π
√
nx

lk
− π

4

)
,

R
(k)
2 (x) :=

∑
l≤y

µ(l)∆2

(
x

lk
; z
)
.

Taking z = T 1−ε we deduce from (3.3) of [3] that
2T�

T

|R(k)
2 (x)|2 dx�

{
T 3/2z−1/2y1/2 log4 T + Ty2 log6 T if k = 3,
T 3/2z−1/2 log5 T + Ty2 log6 T if k ≥ 4,

(2.13)

� Ty2 log6 T (k ≥ 3).
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Now we consider the mean square of R(k)
1 (x). By the elementary formula

cosu cos v =
1
2

(cos (u− v) + cos (u+ v))

we may write

|R(k)
1 (x)|2 =

x1/2

2π2

∑
l1,l2≤y

µ(l1)µ(l2)
(l1l2)k/4

∑
n1,n2≤z

d(n1)d(n2)
(n1n2)3/4

(2.14)

× cos
(

4π
√
n1x

lk1
− π

4

)
cos
(

4π
√
n2x

lk2
− π

4

)
= S1(x) + S2(x) + S3(x),

where

S1(x) =
x1/2

4π2

∑
l1,l2≤y;n1,n2≤z

n1lk2=n2lk1

µ(l1)µ(l2)
(l1l2)k/4

d(n1)d(n2)
(n1n2)3/4

,

S2(x)

=
x1/2

4π2

∑
l1,l2≤y;n1,n2≤z

n1lk2 6=n2lk1

µ(l1)µ(l2)
(l1l2)k/4

d(n1)d(n2)
(n1n2)3/4

cos
(

4π
√
x

(√
n1

lk1
−
√
n2

lk2

))
,

S3(x)

=
x1/2

4π2

∑
l1,l2≤y;n1,n2≤z

µ(l1)µ(l2)
(l1l2)k/4

d(n1)d(n2)
(n1n2)3/4

sin
(

4π
√
x

(√
n1

lk1
+
√
n2

lk2

))
.

From (3.7) and (4.4) of [3] we have

(2.15)
2T�

T

S1(x) dx =
Bk
4π2

2T�

T

x1/2 dx+O(T 3/2+εy−1/2+1/k).

From (3.8) and (5.10) of [3] we get

(2.16)
2T�

T

S2(x) dx� T 1+εy2 + T 1+(k+1)/3k+ε.

From (3.9) of [3] we have

(2.17)
2T�

T

S3(x) dx� Ty2 log4 T.

From (2.14)–(2.17) we obtain
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2T�

T

|R(k)
1 (x)|2 dx =

Bk
4π2

2T�

T

x1/2 dx+O(T 3/2+εy−1/2+1/k)(2.18)

+O(T 1+εy2 + T 1+(k+1)/3k+ε).

From (2.13), (2.18) and the Cauchy inequality we get

(2.19)
2T�

T

R
(k)
1 (x)R(k)

2 (x) dx� T 5/4y log3 T.

From (2.13), (2.18) and (2.19) we get
2T�

T

|∆(k)
1,y(x)|2 dx =

Bk
4π2

2T�

T

x1/2 dx+O(T 3/2+εy−1/2+1/k)(2.20)

+O(T 5/4y log3 T + T 1+(k+1)/3k+ε),

which combining (2.10) with M = T gives
2T�

T

∆
(k)
1,y(x)∆(k)

2,y(x) dx� T 3/2+εy−(k−2)/4.(2.21)

From (2.20), (2.21) and (2.10) with M=T and then taking y=T k/2(3k−2)

we get
2T�

T

|∆(k)(x)|2 dx =
Bk
4π2

2T�

T

x1/2 dx+O(T 3/2+εy−1/2+1/k)(2.22)

+O(T 5/4y log3 T + T 1+(k+1)/3k+ε)

=
Bk
4π2

2T�

T

x1/2 dx+O(T 3/2−ηk+ε)

where ηk was defined in the Theorem upon noting that (k−2)/4 ≥ 1/2−1/k.
Hence our Theorem follows from a splitting argument.
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