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An odd square as a sum of an odd number of odd squares

by

Heng Huat Chan (Singapore), Shaun Cooper (Auckland) and
Wen-Chin Liaw (Min-Hsiung)

1. Introduction. Let sk(n) be the number of representations of n as
sum of k positive odd squares. The generating function for sk(n) is

Sk(q) :=
∞∑
n=0

sk(n)qn =
( ∞∑
j=0

q(2j+1)2
)k
,

and clearly sk(n) = 0 if n 6≡ k (mod 8). The goal of this article is to prove
that for any odd positive integer n and every positive integer k,

(1.1) s8k+1(n2) = −(24k − 1)B4k

8k

∑
d|n

µ(d)d4k−1s16k

(
8n
d

)
+O(n6k−1),

where Bk is the kth Bernoulli number (1) given by

x

ex − 1
=
∞∑
k=0

Bk
xk

k!
,

and

µ(n) =


1 if n = 1,
(−1)j if n = p1 · · · pj , for distinct primes p1, . . . , pj ,
0 otherwise.
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(1) Note that B4k < 0.
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When k = 1 or 2, the error term in (1.1) is zero, and we obtain the identities

s9(n2) =
1
16

∑
d|n

µ(d)d3s16

(
8n
d

)
,

s17(n2) =
17
32

∑
d|n

µ(d)d7s32

(
8n
d

)
.

When n = p is prime, these simplify further to

s9(p2) =
1
16
s16(8p),(1.2)

1
17
s17(p2) =

1
32
s32(8p).(1.3)

The method we shall use in proving (1.1) is motivated by the work of
A. Hurwitz [5]. In Section 2, we illustrate the main idea by proving (1.1) in
the case when k = 1 and deducing (1.2).

In Section 3, we prove (1.1) and give a precise formula for the error term.
We also give an asymptotic formula for s8k+1(n2) in terms of the divisors
of n.

2. Proof of (1.1) for k = 1. Let

(2.1) Tk(q) =
∞∑
n=0

tk(n)qn =
( ∞∑
j=0

q(2j+1)2/8
)k
.

Note that Tk(q8) = Sk(q) and for all positive integers n,

(2.2) t8k(n) = s8k(8n).

Next, recall that for |q| < 1,

(2.3)
∞∑
n=0

t8(n)qn =
∞∑
n=1

n3qn

1− q2n
.

Identity (2.3) is the classical sum of eight triangular numbers formula of
Legendre [7, p. 133] and Jacobi [6, p. 170]. It was rediscovered by Ramanujan
[9, p. 191], and many proofs have since been given. For example, see [3,
eq. (3.71)]. Equating coefficients of qn on both sides of (2.3), we deduce that

(2.4) t8(n) =
∑
d|n

ε(d)
(
n

d

)3

,

where

(2.5) ε(n) =
{

0 if n is even,
1 if n is odd.
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From (2.4), we see that the corresponding Dirichlet series for T8(q) (for
Re s > 4) is

ζT8(s) :=
∞∑
n=1

t8(n)
ns

= ζ(s− 3)L(s),

where ζ(s) is the Riemann zeta function, and

L(s) =
∞∑
n=1

ε(n)
ns

.

Hence ζT8(s) has the Euler product

(2.6) ζT8(s) =
∏
p

1

1− ε(p)+p3

ps + ε(p)
p2s−3

.

For positive integers m, k and some arithmetical function χ, let Tm,χ be
the operator on a power series

A(q) =
∞∑
n=0

a(n)qn

defined by

Tm,χ(A(q)) =
∞∑
n=0

b(n)qn,

where

b(n) =
∑

d|gcd(m,n)

χ(d)dk−1a

(
mn

d2

)
.

Let

Γ0(N) =
{(

a b

c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 (mod N)
}
.

Let Mk(N) = M(Γ0(N), k, 1) be the space of weight k modular forms on
Γ0(N) with multiplier 1. When χ = ε with ε given by (2.5), Tm,ε are the
Hecke operators on Mk(2).

It is known that if A(q) ∈ Mk(2), with a(1) = 1, and the corresponding
Dirichlet series for A(q) has an Euler product, then (see for example [8,
Theorem 4.5.16])

Tm,ε(A(q)) = a(m)A(q).

Hence

(2.7) a(m)a(n) =
∑

d|gcd(m,n)

ε(d)dk−1a

(
mn

d2

)
.
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Using (2.6) and the fact that T8k ∈ M4k(2) [10, p. 222, Theorem 7.1.4]
for q = e2πiτ , we deduce from (2.7) that

(2.8) t8(m)t8(n) =
∑

d|gcd(m,n)

ε(d)d3t8

(
mn

d2

)
.

When m = 2 and n is any positive integer, we deduce from (2.8) that

(2.9) t8(2)t8(n) = t8(2n).

We now state and prove a simple lemma.

Lemma 2.1. If f satisfies

(2.10) f(m)f(n) =
∑

d|gcd(m,n)

g(d)f
(
mn

d2

)
,

where g is a completely multiplicative function, then

f(mn) =
∑

d|gcd(m,n)

µ(d)g(d)f
(
m

d

)
f

(
n

d

)
(2.11)

=
∑
d

µ(d)g(d)f
(
m

d

)
f

(
n

d

)
,

where we use the convention that the coefficient f(n/d) is zero if d is not a
divisor of n.

Proof. Let N be any positive integer. Let m and n be any positive in-
tegers satisfying N = gcd(m,n) and write m = Ns and n = Nt, with
gcd(s, t) = 1. From (2.10), we have

f(Ns)f(Nt) =
∑
d|N

g(d)f
(
stN2

d2

)
.

Since ∑
d|N

h(d) =
∑
d|N

h(N/d),

we conclude that

f(Ns)f(Nt) =
∑
d|N

g

(
N

d

)
f(std2),

or
f(Ns)f(Nt)

g(N)
=
∑
d|N

1
g(d)

f(std2).

Applying the Möbius inversion formula, we find that
f(stN2)
g(N)

=
∑
d|N

µ

(
N

d

)
f(ds)f(dt)

g(d)
.
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Simplifying the above, we obtain the first equality of (2.11). The second
equality of (2.11) follows immediately.

Applying Lemma 2.1 with f = t8 and using equation (2.8), we conclude
that

(2.12) t8(mn) =
∑
d

ε(d)µ(d)d3t8

(
m

d

)
t8

(
n

d

)
.

We are now ready to prove the main result of this section.

Theorem 2.2. For all odd positive integers n,

s9(n2) =
1
16

∑
d|n

µ(d)d3s16

(
8n
d

)
.

Proof. Observe that

s9(n2) =
∑

0<i<n
i odd

s8(n2 − i2) =
∑

0<i<n
i odd

s8

(
4
(
n+ i

2

)(
n− i

2

))
.

Since n− i and n+ i are both even, let n− i = 2j so that n+ i = 2(n− j).
Then

s9(n2) =
(n−1)/2∑
j=1

s8(4j(n− j)) =
1
2

n−1∑
j=1

s8(4j(n− j)).

Now apply (2.2), (2.9), (2.12) and then (2.1) to get

s9(n2) =
1
2

n−1∑
j=1

t8

(
j(n− j)

2

)
=

1
16

n−1∑
j=1

t8(j(n− j))

=
1
16

n−1∑
j=1

∑
d odd

µ(d)d3t8

(
j

d

)
t8

(
n− j
d

)
=

1
16

∑
d|n

µ(d)d3[qn/d](T16(q)),

where [qn]f(q) denotes the coefficient of qn in the Taylor series expansion of
f(q) about q = 0. By (2.1) and (2.2), we finally obtain

s9(n2) =
1
16

∑
d|n

µ(d)d3t16

(
n

d

)
=

1
16

∑
d|n

µ(d)d3s16

(
8n
d

)
.

From Theorem 2.2, we immediately obtain (1.2) by letting n be an odd
prime.
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3. The main result. Let M ′4k(2) denote the subspace of M4k(2) that
consists of forms which vanish at q = 0. The space M ′4k(2) has a basis
consisting of the functions [10, p. 222]

Fk,0(q) =
∞∑
n=0

fk,0(n)qn =
∞∑
j=1

j4k−1qj

1− q2j
,

(3.1)

Fk,r(q) =
∞∑
n=r

fk,r(n)qn = (η(2τ))24r−8k(η(τ))16k−24r, 0 < r < k.

Since T8k(q) ∈M ′4k(2) [10, p. 222, Theorem 7.1.4], we have the following
lemma.

Lemma 3.1. Let k be a positive integer. Then there exist unique rational
numbers ak,0, ak,1, . . . , ak,k−1 such that

(3.2) T8k(q) =
k−1∑
r=0

ak,rFk,r(q).

Remarks. The equality in (3.2) is equivalent to the theorem for sums
of 8k triangular numbers, discovered by Ramanujan [9, p. 191, eqs. 12.6,
12.61]. Ramanujan’s formula showed further that

(3.3) ak,0 =
−8k

24k(24k − 1)B4k
.

For another proof of Lemma 3.1, including the value of ak,0, see [3, Theo-
rem 3.6].

Our proof of (1.1) given in Section 2 relies heavily on the fact that the
coefficients t8 of T8 satisfy (2.7). The modular form Fk,0 satisfies (2.7) by
the same argument we gave for T8. However, in general, the cusp forms

Fk,r =
∞∑
n=r

fk,r(n)qn, 1 ≤ r ≤ k − 1,

do not have coefficients fk,r that satisfy (2.7).
In order to prove (1.1) using the ideas in Section 2, we need the following

lemma:

Lemma 3.2. The space M ′4k(2) has a basis of modular forms

{Ek,r | 0 ≤ r ≤ k − 1},
with Ek,0 = Fk,0, such that the coefficients of the series expansion of each
Ek,r at q = 0 satisfy (2.7).

Proof. The space M ′4k(2) can be written as

M ′4k(2) = CFk,0 ⊕ S4k(2),
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where C is the field of complex numbers and S4k(2) is the space of cusp
forms on Γ0(2) of weight 4k and multiplier 1. It is known that the space of
cusp forms can be further written as [1, Theorem 5]

S4k(2) = Snew
4k (2)⊕ Sold

4k (2),

where Snew
4k (2) and Sold

4k (2) are the spaces of newforms and oldforms, respec-
tively. Furthermore, it is known [1, Theorem 5] that the space of newforms
can be expressed as a direct sum of one-dimensional subspaces generated by
eigenforms of Tm,ε, for all positive integers m. As a result, the eigenforms
that generate the space of newforms satisfy (2.7).

It remains to show that there is a basis of eigenforms of Tm,ε for the
space of oldforms.

Using the notation in Section 2, we denote by Mk(1) the space of modular
forms of weight k on SL2(Z). The corresponding Hecke operators on Mk(1)
are Tm,u with u(n) = 1 for all integers n.

It is known that

(3.4) Sold
4k (2) =

⊕
Oi,

where Oi is a two-dimensional space generated by fi(q) and fi(q2), where
fi(q) is an eigenform of the Hecke operators Tm,u. Note that when m is odd
and f(q) ∈Mk(1), the actions of Tm,u and Tm,ε on f(q) are identical. Hence
if fi(q) is an eigenform for Tm,u for odd m then fi(q) is also an eigenform
for Tm,ε for odd m.

Using fi(q) and fi(q2), we proceed to construct ei(q) and e∗i (q) which are
eigenforms for T2,ε and generate Oi. From now on, we drop the subscript
and normalize

f(q) =
∞∑
n=1

a(n)qn

so that a(1) = 1. Note that

f(q2) =
∞∑
n=1

a(n/2)qn,

where a(k) = 0 when k 6∈ Z+. We also let

e(q) =
∞∑
n=1

α(n)qn and e∗(q) =
∞∑
n=1

α∗(n)qn

so that α(1) = α∗(1) = 1. Note that e(q) is a linear combination of f(q) and
f(q2) and we may write

e(q) = c1f(q) + c2f(q2).

Since both f(q) and e(q) are normalized, by comparing coefficients of q, we
deduce that c1 = 1.
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Next, we want e(q) to satisfy the relation

T2,ε(e(q)) = α(2)e(q).

This leads to the relation

(3.5) a(2n) + c2a(n) = (a(2) + c2)(a(n) + c2a(n/2)).

When n = 2, (3.5) gives

(3.6) a(4) + c2a(2) = (a(2) + c2)(a(2) + c2).

Since f(q) is an eigenform of T2,u, we find that

(3.7) a(4) + 24k−1 = a2(2).

Substituting (3.7) into (3.6), we conclude that

c22 + a(2)c2 + 24k−1 = 0.

In order to obtain two distinct values of c2 that correspond to two eigenforms
e(q) and e∗(q) of T2,ε, we must show that

(3.8) a2(2) 6= 4 · 24k−1.

To establish (3.8), we follow an argument by J.-P. Serre [11]. First, note that
if

a2(2) = 4 · 24k−1,

then

(3.9) a2(2) ≡ −1 (mod 3).

On the other hand, from [4, (5)], we find that (a(p)−1−p)/3 is an algebraic
integer. When p = 2, this says that

a(2) ≡ 0 (mod 3).

This clearly contradicts (3.9), and (3.8) must hold. Hence, we conclude that
each Oi in (3.4) is spanned by two eigenforms of Tm,ε, and this completes
our proof of Lemma 3.2.

Since Ek,0 = Fk,0, we deduce from Lemmas 3.1 and 3.2 that

(3.10) T8k(q) =
k−1∑
r=0

a′k,rEk,r(q),

where (see (3.3))

a′k,0 = ak,0 =
−8k

24k(24k − 1)B4k
.

We are now ready to prove the generalization of Theorem 2.2.
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Theorem 3.3. Let n be an odd positive integer and Ek,r be the basis
given in Lemma 3.2. Then

s8k+1(n2) =
∑
d|n

µ(d)d4k−1[qn/d]
{ k−1∑
r=0

ck,rE
2
k,r(q)

}
,

for some complex numbers ck,r, 1 ≤ r ≤ k − 1, and

(3.11) ck,0 =
ak,0
24k

=
−8k

28k(24k − 1)B4k
.

Proof. The proof is similar to that for Theorem 2.2. We write

s8k+1(n2) =
1
2

n−1∑
j=1

t8k

(
j(n− j)

2

)
.

From (3.10), we can rewrite the above as

s8k+1(n2) =
1
2

n−1∑
j=1

k−1∑
r=0

a′k,rek,r

(
j(n− j)

2

)
,

where ek,r(n) are given by

(3.12) Ek,r(q) =
∞∑
n=0

ek,r(n)qn.

Since each ek,r(n) satisfies (2.7), we find that

s8k+1(n2) =
1
2

n−1∑
j=1

k−1∑
r=0

bk,rek,r(j(n− j)),

with
bk,r =

a′k,r
ek,r(2)

.

Hence, by Lemma 2.1, we deduce that

s8k+1(n2) =
∑
d|n

µ(d)d4k−1[qn/d]
k−1∑
r=0

ck,rE
2
k,r(q),

where ck,r = bk,r/2. Furthermore,

ck,0 =
bk,0
2

=
a′k,0

2ek,0(2)
=

ak,0
2fk,0(2)

=
ak,0
24k

,

where fk,0 is given by (3.1).

Corollary 3.4. For odd positive integers n,

s8k+1(n2) =
∑
d|n

µ(d)d4k−1[qn/d](F (q)),

where F (q) ∈M8k(2) with a zero of order at least two at τ = i∞.
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As an application of Corollary 3.4, we give a proof of (1.3).

Proof of (1.3). By Corollary 3.4 with k = 2, we have

(3.13) s17(n2) =
∑
d|n

µ(d)d7[qn/d](F (q)),

where F (q) ∈ M16(2) has a zero of order at least two at τ = i∞. It is
known [2, proof of (1.8)] that F (q) is a linear combination of T2kT2l, where
2k + 2l = 16, l ≥ k > 1, and

Tk =
∞∑
n=1

nk−1qn

1− q2n
.

Accordingly, let
F (q) = c1T4T12 + c2T6T10 + c3T 2

8 ,

where c1, c2 and c3 are some constants to be determined. If we use this in
(3.13), successively let n = 3, n = 5, and solve, we obtain

F (q) =
17

32 · 75600

(
T4T12 −

25
4
T6T10 +

21
4
T 2

8

)
(3.14)

+ c

(
T4T12 +

15
4
T6T10 − 16T 2

8

)
,

where c is an arbitrary constant. Now [2, (1.9)]

(3.15)
1

75600

(
T4T12 −

25
4
T6T10 +

21
4
T 2

8

)
= T32(q),

and the methods in [2] can be used to show that

(3.16) T4T12 +
15
4
T10T6 − 16T 2

8

= −45
4
q2
∞∏
j=1

(1− q2j)24

(
1 + 240

∞∑
j=1

j3q2j

1− q2j

)
,

which clearly contains only even powers of q. If we substitute the results of
(3.14)–(3.16) into (3.13), we obtain

s17(n2) =
17
32

∑
d|n

µ(d)d7[qn/d](T32(q)) =
17
32

∑
d|n

µ(d)d7s32

(
8n
d

)
.

If we let n = p be prime, we obtain (1.3).

We are now ready to prove (1.1).

Theorem 3.5. Let n be an odd positive integer. Then

s8k+1(n2) = −(24k − 1)B4k

8k

∑
d|n

µ(d)d4k−1s16k

(
8n
d

)
+O(n6k−1).
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Proof. We begin by writing the result of Theorem 3.3 as

s8k+1(n2) =
∑
d|n

µ(d)d4k−1[qn/d]ck,0E2
k,0(q)(3.17)

+
∑
d|n

µ(d)d4k−1[qn/d]
{k−1∑
r=1

ck,rE
2
k,r(q)

}
.

Now

E2
k,0(q)− 1

a2
k,0

T16k(q) = E2
k,0(q)− 1

a2
k,0

(T8k(q))2

=
1
a2
k,0

(ak,0Ek,0(q)− T8k(q))(ak,0Ek,0(q) + T8k(q)).

By (3.10) this can be written as

(3.18) E2
k,0(q)− 1

a2
k,0

T16k(q)

= − 1
a2
k,0

(k−1∑
r=1

a′k,rEk,r(q)
)(

2ak,0Ek,0(q) +
k−1∑
r=1

a′k,rEk,r(q)
)
.

Substituting (3.18) into (3.17), we deduce that

s8k+1(n2) =
ck,0
a2
k,0

∑
d|n

µ(d)d4k−1s16k

(
8n
d

)
+
∑
d|n

µ(d)d4k−1[qn/d]
∑

0≤r,m≤k−1
(r,m)6=(0,0)

dk,r,mEk,r(q)Ek,m(q),

for some numbers dk,r,m. From (3.1), (3.12) and Lemma 3.2, we find that

ek,0(n) = O(n4k−1).

The order of ek,r(n), 1 ≤ r ≤ k − 1, on the other hand, is given by [10,
Theorem 4.5.2(i)]

ek,r(n) = O(n2k).

This implies that

s8k+1(n2) =
ck,0
a2
k,0

∑
d|n

µ(d)d4k−1s16k

(
8n
d

)
+O(n6k−1).

Rewriting ck,0/a2
k,0 using (3.3) and (3.11), we conclude our proof of Theo-

rem 3.5.
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Corollary 3.6. Let n be an odd positive integer. Then

s8k+1(n2) =
B4k

28k−1(24k + 1)B8k

∑
d|n

µ(d)d4k−1σ8k−1

(
n

d

)
+O(n6k−1),

where
σk(n) =

∑
d|n

dk.

Proof. From Lemma 3.2, we may write

(3.19) s16k

(
8n
d

)
= t16k

(
n

d

)
= − 16k

28k(28k − 1)B8k
σ8k−1

(
n

d

)
+O(n4k).

Substituting (3.19) into Theorem 3.5, we deduce Corollary 3.6.

It is clear that when p is prime, we have

s8k+1(p2) ∼ B4k

28k−1(24k + 1)B8k
p8k−1.
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