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Simultaneous diagonal equations over p-adic fields
by

D. BrINK (Brasilia), H. GODINHO (Brasilia) and
P. H. A. RODRIGUES (Goiania)

Let K be a finite extension of the field of p-adic numbers Q. Let O be
the ring of integers in K and let p be O’s unique maximal ideal. We say that
K is a p-adic field.

Consider R simultaneous diagonal equations

an X+ + an X% =0,
(*) : : :
aRlX{W- . "-FCLRNX]’%: 0

with coefficients a;; in O. Write the degree as k = p™m with p { m. A
solution x = (z1,...,zy) € KV is called non-trivial if at least one z; is
non-zero. It is a special case of a conjecture of Emil Artin that (x) has a
non-trivial solution whenever N > Rk?. This conjecture has been verified
by Davenport and Lewis for a single diagonal equation over @, and for a
pair of equations of odd degree over Q, (see [3] and [4]), but the general
case remains open.
The main results of the present paper are the following two theorems.

THEOREM 1. The system (x) has a non-trivial solution if the number of
variables N exceeds (Rk)*™ 2.

THEOREM 2. Let n be the degree of the field extension K/Q,. Then (x)
has a non-trivial solution if N exceeds 4nR?k?.

Theorem 1 has the virtue of being independent of K and can be compared
with Skinner [11] where the bound N > k74 is given for a single diagonal
equation. Theorem 2 is a natural generalisation of Knapp [7, Theorem 1]
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and improves Dodson [6, Theorem 1] and Knapp [7, Theorem 3]. See also
Skinner [11] for other references.

Define the integer I'(R, k) as minimal with the property that any system
(x) with N > I'(R,k) has a non-trivial solution over K. Then Theorems
1 and 2 can be restated as I'(R, k) < (Rk)?*™ and I'(R,k) < 4nR?k?,
respectively. The idea of the proof of the theorems is to first solve (%) in
the finite residue ring O/p” (for a suitable exponent 7), and then lift this
solution to K via a version of Hensel’s lemma.

A solution x € OV is called primitive if at least one coordinate xj is a
unit in @. Define the integer ®(R, k,v) as minimal with the property that
any system (x) with N > @(R, k,v) has a primitive solution modulo p”.

The Chevalley—Warning theorem (see [2, Lemma 4]) states that any sys-
tem of homogeneous polynomials over a finite field has a non-trivial zero
if the number of variables exceeds the sum of the polynomials’ degrees. In
the special case of systems of diagonal equations, the Chevalley—Warning
theorem gives

(1) ®(R,k,1) < Rk.

For general moduli a,b > 1 one has the relation
(2) B(R.k,a+b) + 1< (B(R,k,a) +1) - (B(R, k,b) +1).

This is shown using a well-known “contraction” argument (see examples in
[4] and [11]). The idea is to construct a primitive solution modulo p*+® in
N = (?(R,k,a) + 1) - (P(R, k,b) + 1) variables as follows: First divide the
left hand side of (%) into @(R, k,a) + 1 subsystems of diagonal forms, each
in (R, k,b) + 1 variables, and solve each system primitively modulo p°.
Then multiply each of these solutions by a new variable to form a system of
diagonal forms in (R, k, a)+1 variables. Since every coefficient is a multiple
of p®, to solve this new system primitively modulo p®*? is basically to solve
it modulo p®. This results in a primitive solution modulo p®*® to (*) which
proves (2).

Let A = (a;;) be the coefficient matrix of (). A solution x € O is called
non-singular if the matrix (aij:c?) has rank R modulo p, or equivalently, if
the columns of A corresponding to the indices j with z; # 0 (mod p) have
rank R modulo p.

The following strong version of Hensel’s lemma is a natural generalisa-
tion of [5, Lemma 9], from p-adic to p-adic fields. The definition of v here
is somewhat better than the value 2e7 + 1 often found in the literature (al-
though Alemu [1] has a result for one equation similar to the lemma below).
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LEMMA 1. Let e be the ramification index of K over Q, and define

1 for 7 =0,
vi=<se(tr+1) forT>0 andp # 2,
e(r+2) fort>0andp=2.

The system () then has a non-trivial solution in K if it has a non-singular
solution modulo p7.

Proof. We first show that a unit u € O* is a kth power if u = £* (mod p?)
for some £ € O*. This is the standard Hensel’s lemma for 7 = 0, so we may
assume 7 > 0. Then multiplication = +— k-z maps p® onto k-p¢ = p¢77¢ = p7
for p # 2, and p2¢ onto k - p2¢ = p? for p = 2. For any n > e/(p — 1), the p-
adic exponential function and the p-adic logarithm are inverse isomorphisms
between the additive group p™ and the multiplicative group 1+p™ ([9, Kapitel
I1, Satz 5.5]). It follows that exponentiation 2 +— x* maps 1+ p¢ (for p # 2)
and 1 + p?¢ (for p = 2) onto 1 + p7. The diagram shows the situation for

p# 2

14pe 2= o1
llog Texp
pe r—k-x pay

Therefore, the elements of the set £¥ - (14p7) = £* +p7, to which u belongs,
are all kth powers.

Now let x = (x1,...,zxN) be a non-singular solution to (*) modulo p7. We
may assume z1,...,zr Z 0 (mod p) and that the first R columns of A have
rank R modulo p, i.e. form a non-singular matrix modulo p. Row operations
on A will not change the solution set, so we may assume

aiy 0 airt1 - ain
A=

0 GRR GRR+1 --- QRN

with ai1,...,agr # 0 (mod p). For each i = 1,...,R we have zF =

i
u; (mod p7) with u; = —(Gi,R+1$l§+1 + -+ aiNxﬂ“V)/aii. By the above, the
equation X* = u; has a solution x} because it has the solution z; modulo

p7. We conclude that (z/,...,2%, €g41,...,2N) solves (x). =

The notion of a p-normalised system of diagonal equations over @, was
introduced in [5]. It is shown there that any system of the form (x) over
Qp has a non-trivial solution provided that any p-normalised system has a
non-trivial solution. All of this is easily generalised to w-normalised systems
with p-adic coefficients (see [7] for details).
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Let p(d) be the maximal number of columns of the coefficient matrix A
which, when considered modulo p, lie in a d-dimensional subspace of Fflv .
The key property of m-normalised systems is the inequality

(3) u(d) < N — (R—d)N/Rk ford=0,...,R—1.

This is [5, Lemma 11] combined with [2, eq. (9)]. An equivalent statement
of this inequality is that any matrix having R — d rows which are linear
combinations of the rows of A, independent modulo p, contains at least
(R — d)N/Rk columns which are non-zero modulo p.

The following slight strengthening of [2, Lemma 2] essentially gives one
extra non-singular submatrix.

LEMMA 2. Suppose (x) is m-normalised and has more than k(tR — 1)
variables, where t is arbitrary. Then the coefficient matriz A contains t
disjoint R x R submatrices which are non-singular modulo p.

Proof. For every d =0,..., R — 1, the assumption N > k(tR — 1) com-
bined with (3) implies p(d) < N — (R — d)t since u(d) is integral. Now the
conclusion follows by a combinatorial result of Aigner (see [8, Lemma 1] or
the comment before [2, Lemma 2]). =

Next, we extend and improve [2, Lemma 5] using the same idea of proof.

LEMMA 3. Suppose (x) is m-normalised and has more than Rk-®(R, k,v)
— k(R — 1) wariables, where v is arbitrary. Then () has a non-singular
solution modulo p”.

Proof. Suppose first that (x) has N = k(tR — 1) + 1 variables for some ¢
to be defined later. Then, by Lemma 2, A has ¢ disjoint R x R submatrices
which are non-singular modulo p. Discard all variables not belonging to
one of these ¢ submatrices. Then we have tR variables left. In each of all
but one of the ¢ submatrices, replace all R variables by one new variable.
Then we have a new system with ¢ — 1 + R variables. This system, by
definition, has a primitive solution modulo p” if t — 1 + R > ®(R, k,v),
hence if t = ®(R, k,v) — R+ 2. Not all the new variables of this solution can
be zero modulo p since the columns corresponding to the old variables form a
non-singular submatrix modulo p and so are linearly independent modulo p.
Therefore, “inflating” the new variables again gives a non-singular solution
to our original system (x) in N = Rk - ®(R, k,v) — k(R — 1)? + 1 variables,
and the lemma is proved. =

Recall that I'(R, k) is the minimal integer such that any system () with
N > I'(R, k) has a non-trivial solution. From Lemmas 1 and 3 it follows
that

(4) I'(R,k) < Rk -®(R,k,v) — k(R —1)?
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since any bound on I'(R, k) may be proved under the assumption that (x)
is m-normalised. For degree k not divisible by p, (4) and (1) give

(5) I'(R,k) < (Rk)? — k(R —1)?,

which extends [2, Theorem 3].
Now, Theorem 2 follows from (4) and the following lemma.

LEMMA 4. With v defined as in Lemma 1, we have

O(R, k) < p(p—1)"nRk forp>2,
T 4nREk forp=2.

Proof. To bound @(R, k,~), we must find a primitive solution modulo
p? to (x). The additive group of the finite residue ring O/p7 is equal to the
direct sum of n cyclic subgroups of order p/¢,

O/ =7\ - DLA,.

This can be seen for example by counting the number of elements of any
given order in both groups and noting that these numbers are the same (see
also [1] for a different proof and a more general statement). Writing each
coefficient a;; of (*) as a Z-linear combination of the A;’s, we see that it
suffices to solve nR congruences

(6) CZ'IX{C +oee +CzNXJk\:f =0 (mOd p’Y/e)7 L= 1)’ : .,TLR,

with coefficients ¢;; € Z. We shall only look for solutions x & TV where
T ={z € Q| 2P = x} is the set of Teichmiiller representatives. Since
{a¥ | z € T} = {®P~D | £ € T}, we may in (6) replace the exponent
k by (k,p —1). Now, by a theorem of Schanuel [10], the system (6) has a
non-trivial solution x € TV if N > nR(k,p—1)(p"/¢—1)(p—1)~". Recalling
k = p™m, we see that (k,p — 1) divides m and conclude that ®(R, k,~) is
bounded by nR(k,p — 1)p"™ ' (p — 1)7! < p(p — 1)"'nRk for p # 2, and by
AnRk forp=2. =

The next two lemmas and the final proof of Theorem 1 are much inspired
by the ideas presented in Skinner [11].

LEMMA 5. Any a € O can be written as
a=d +7d +7% +-- 4 ﬂprlczz_l (mod p)
with ¢c; € O and 7 being a prime element of O.

Proof. If RC O is a set of representatives for O/p, then so is {r?" |r € R},
because the map = — 2P  is a bijection F, — F,. Hence, with suitable
rn, € R, we can write
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oo pT—1 oo pT—1 0o -
NP — INT T T = j i) (mod p)
a= rb " = ™ Pigipr ™ = 0 Tjipr T mod p),
n=0 j=0 =0 j=0 i=0

which proves the lemma. =

LEMMA 6. (R, k,e) < P(Rp™,m,e).

Proof. We have to find a primitive solution x € OV to the R congruences

aile+-~-+aiNX]]%EO(modp), t1=1,...,R.
Write each polynomial in this system as a sum of p” polynomials using the
above lemma on each coefficient a = a;;. Thus it suffices to find a primitive
solution to Rp”™ congruences
cf;Xf—l---'—i-ch:,X]lf/EO(modp), i=1,...,Rp".
Since
CflTXf +---+ Clp]:fX]’i[ = (CilXin + -+ Ci]\[)(}vn)p-r (mod p),
it suffices to find a primitive solution to the Rp” congruences
cn X"+ -+ enXN =0 (modp), i=1,...,Rp".

Such a solution exists by definition for N > ®(Rp™, m,e). m

We can finally prove Theorem 1. Clearly, @(Rp™, m,e) is bounded by
I'(Rp™,m), which is in turn bounded by (Rk)? — m(Rp™ — 1) by (5) since
m is not divisible by p. For 7 = 0 we already have the bound (5) which is
superior to the one given in Theorem 1. So assume 7 > 0. Then Lemma 6
implies
(7) (R, k,e) < (RE)2.
From (4), (2), and (7) it now follows that
I(R,k) < Rk-®(R, k,7) < Rk-($(R, k,¢)+1)/° < (Rk)*V/ ! < (RE)*T5.
This concludes the proof of Theorem 1.
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