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Simultaneous diagonal equations over p-adic fields

by

D. Brink (Braśılia), H. Godinho (Braśılia) and
P. H. A. Rodrigues (Goiânia)

Let K be a finite extension of the field of p-adic numbers Qp. Let O be
the ring of integers in K and let p be O’s unique maximal ideal. We say that
K is a p-adic field.

Consider R simultaneous diagonal equations

(∗)
a11X

k
1 + · · ·+ a1NX

k
N = 0,

...
...

...
aR1X

k
1 + · · ·+ aRNX

k
N = 0

with coefficients aij in O. Write the degree as k = pτm with p - m. A
solution x = (x1, . . . , xN ) ∈ KN is called non-trivial if at least one xj is
non-zero. It is a special case of a conjecture of Emil Artin that (∗) has a
non-trivial solution whenever N > Rk2. This conjecture has been verified
by Davenport and Lewis for a single diagonal equation over Qp and for a
pair of equations of odd degree over Qp (see [3] and [4]), but the general
case remains open.

The main results of the present paper are the following two theorems.

Theorem 1. The system (∗) has a non-trivial solution if the number of
variables N exceeds (Rk)2τ+5.

Theorem 2. Let n be the degree of the field extension K/Qp. Then (∗)
has a non-trivial solution if N exceeds 4nR2k2.

Theorem 1 has the virtue of being independent ofK and can be compared
with Skinner [11] where the bound N > k6τ+4 is given for a single diagonal
equation. Theorem 2 is a natural generalisation of Knapp [7, Theorem 1]
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and improves Dodson [6, Theorem 1] and Knapp [7, Theorem 3]. See also
Skinner [11] for other references.

Define the integer Γ (R, k) as minimal with the property that any system
(∗) with N > Γ (R, k) has a non-trivial solution over K. Then Theorems
1 and 2 can be restated as Γ (R, k) ≤ (Rk)2τ+5 and Γ (R, k) ≤ 4nR2k2,
respectively. The idea of the proof of the theorems is to first solve (∗) in
the finite residue ring O/pγ (for a suitable exponent γ), and then lift this
solution to K via a version of Hensel’s lemma.

A solution x ∈ ON is called primitive if at least one coordinate xj is a
unit in O. Define the integer Φ(R, k, ν) as minimal with the property that
any system (∗) with N > Φ(R, k, ν) has a primitive solution modulo pν .

The Chevalley–Warning theorem (see [2, Lemma 4]) states that any sys-
tem of homogeneous polynomials over a finite field has a non-trivial zero
if the number of variables exceeds the sum of the polynomials’ degrees. In
the special case of systems of diagonal equations, the Chevalley–Warning
theorem gives

(1) Φ(R, k, 1) ≤ Rk.

For general moduli a, b ≥ 1 one has the relation

(2) Φ(R, k, a+ b) + 1 ≤ (Φ(R, k, a) + 1) · (Φ(R, k, b) + 1).

This is shown using a well-known “contraction” argument (see examples in
[4] and [11]). The idea is to construct a primitive solution modulo pa+b in
N = (Φ(R, k, a) + 1) · (Φ(R, k, b) + 1) variables as follows: First divide the
left hand side of (∗) into Φ(R, k, a) + 1 subsystems of diagonal forms, each
in Φ(R, k, b) + 1 variables, and solve each system primitively modulo pb.
Then multiply each of these solutions by a new variable to form a system of
diagonal forms in Φ(R, k, a)+1 variables. Since every coefficient is a multiple
of pb, to solve this new system primitively modulo pa+b is basically to solve
it modulo pa. This results in a primitive solution modulo pa+b to (∗) which
proves (2).

Let A = (aij) be the coefficient matrix of (∗). A solution x ∈ ON is called
non-singular if the matrix (aijxkj ) has rank R modulo p, or equivalently, if
the columns of A corresponding to the indices j with xj 6≡ 0 (mod p) have
rank R modulo p.

The following strong version of Hensel’s lemma is a natural generalisa-
tion of [5, Lemma 9], from p-adic to p-adic fields. The definition of γ here
is somewhat better than the value 2eτ + 1 often found in the literature (al-
though Alemu [1] has a result for one equation similar to the lemma below).
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Lemma 1. Let e be the ramification index of K over Qp and define

γ :=


1 for τ = 0,
e(τ + 1) for τ > 0 and p 6= 2,
e(τ + 2) for τ > 0 and p = 2.

The system (∗) then has a non-trivial solution in K if it has a non-singular
solution modulo pγ.

Proof. We first show that a unit u ∈ O∗ is a kth power if u ≡ ξk (mod pγ)
for some ξ ∈ O∗. This is the standard Hensel’s lemma for τ = 0, so we may
assume τ > 0. Then multiplication x 7→ k ·x maps pe onto k ·pe = peτ+e = pγ

for p 6= 2, and p2e onto k · p2e = pγ for p = 2. For any n > e/(p− 1), the p-
adic exponential function and the p-adic logarithm are inverse isomorphisms
between the additive group pn and the multiplicative group 1+pn ([9, Kapitel
II, Satz 5.5]). It follows that exponentiation x 7→ xk maps 1 + pe (for p 6= 2)
and 1 + p2e (for p = 2) onto 1 + pγ . The diagram shows the situation for
p 6= 2:

1 + pe
x 7→xk // //

log

��

1 + pγ

pe
x 7→k·x // // pγ

exp

OO

Therefore, the elements of the set ξk · (1+pγ) = ξk+pγ , to which u belongs,
are all kth powers.

Now let x = (x1, . . . , xN ) be a non-singular solution to (∗) modulo pγ . We
may assume x1, . . . , xR 6≡ 0 (mod p) and that the first R columns of A have
rank R modulo p, i.e. form a non-singular matrix modulo p. Row operations
on A will not change the solution set, so we may assume

A =


a11 0 a1,R+1 . . . a1N

. . .
...

...
0 aRR aR,R+1 . . . aRN


with a11, . . . , aRR 6≡ 0 (mod p). For each i = 1, . . . , R we have xki ≡
ui (mod pγ) with ui = −(ai,R+1x

k
R+1 + · · ·+ aiNx

k
N )/aii. By the above, the

equation Xk = ui has a solution x′i because it has the solution xi modulo
pγ . We conclude that (x′1, . . . , x

′
R, xR+1, . . . , xN ) solves (∗).

The notion of a p-normalised system of diagonal equations over Qp was
introduced in [5]. It is shown there that any system of the form (∗) over
Qp has a non-trivial solution provided that any p-normalised system has a
non-trivial solution. All of this is easily generalised to π-normalised systems
with p-adic coefficients (see [7] for details).



396 D. Brink et al.

Let µ(d) be the maximal number of columns of the coefficient matrix A
which, when considered modulo p, lie in a d-dimensional subspace of FNq .
The key property of π-normalised systems is the inequality

(3) µ(d) ≤ N − (R− d)N/Rk for d = 0, . . . , R− 1.

This is [5, Lemma 11] combined with [2, eq. (9)]. An equivalent statement
of this inequality is that any matrix having R − d rows which are linear
combinations of the rows of A, independent modulo p, contains at least
(R− d)N/Rk columns which are non-zero modulo p.

The following slight strengthening of [2, Lemma 2] essentially gives one
extra non-singular submatrix.

Lemma 2. Suppose (∗) is π-normalised and has more than k(tR − 1)
variables, where t is arbitrary. Then the coefficient matrix A contains t
disjoint R×R submatrices which are non-singular modulo p.

Proof. For every d = 0, . . . , R − 1, the assumption N > k(tR − 1) com-
bined with (3) implies µ(d) ≤ N − (R − d)t since µ(d) is integral. Now the
conclusion follows by a combinatorial result of Aigner (see [8, Lemma 1] or
the comment before [2, Lemma 2]).

Next, we extend and improve [2, Lemma 5] using the same idea of proof.

Lemma 3. Suppose (∗) is π-normalised and has more than Rk·Φ(R, k, ν)
− k(R − 1)2 variables, where ν is arbitrary. Then (∗) has a non-singular
solution modulo pν .

Proof. Suppose first that (∗) has N = k(tR− 1) + 1 variables for some t
to be defined later. Then, by Lemma 2, A has t disjoint R×R submatrices
which are non-singular modulo p. Discard all variables not belonging to
one of these t submatrices. Then we have tR variables left. In each of all
but one of the t submatrices, replace all R variables by one new variable.
Then we have a new system with t − 1 + R variables. This system, by
definition, has a primitive solution modulo pν if t − 1 + R > Φ(R, k, ν),
hence if t = Φ(R, k, ν)−R+ 2. Not all the new variables of this solution can
be zero modulo p since the columns corresponding to the old variables form a
non-singular submatrix modulo p and so are linearly independent modulo p.
Therefore, “inflating” the new variables again gives a non-singular solution
to our original system (∗) in N = Rk · Φ(R, k, ν)− k(R− 1)2 + 1 variables,
and the lemma is proved.

Recall that Γ (R, k) is the minimal integer such that any system (∗) with
N > Γ (R, k) has a non-trivial solution. From Lemmas 1 and 3 it follows
that

(4) Γ (R, k) ≤ Rk · Φ(R, k, γ)− k(R− 1)2
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since any bound on Γ (R, k) may be proved under the assumption that (∗)
is π-normalised. For degree k not divisible by p, (4) and (1) give

(5) Γ (R, k) ≤ (Rk)2 − k(R− 1)2,

which extends [2, Theorem 3].
Now, Theorem 2 follows from (4) and the following lemma.

Lemma 4. With γ defined as in Lemma 1, we have

Φ(R, k, γ) ≤

{
p(p− 1)−1nRk for p > 2,
4nRk for p = 2.

Proof. To bound Φ(R, k, γ), we must find a primitive solution modulo
pγ to (∗). The additive group of the finite residue ring O/pγ is equal to the
direct sum of n cyclic subgroups of order pγ/e,

O/pγ = Zλ1 ⊕ · · · ⊕ Zλn.

This can be seen for example by counting the number of elements of any
given order in both groups and noting that these numbers are the same (see
also [1] for a different proof and a more general statement). Writing each
coefficient aij of (∗) as a Z-linear combination of the λi’s, we see that it
suffices to solve nR congruences

(6) ci1X
k
1 + · · ·+ ciNX

k
N ≡ 0 (mod pγ/e), i = 1, . . . , nR,

with coefficients cij ∈ Z. We shall only look for solutions x ∈ TN where
T = {x ∈ Qp | xp = x} is the set of Teichmüller representatives. Since
{xk | x ∈ T} = {x(k,p−1) | x ∈ T}, we may in (6) replace the exponent
k by (k, p − 1). Now, by a theorem of Schanuel [10], the system (6) has a
non-trivial solution x ∈ TN if N > nR(k, p−1)(pγ/e−1)(p−1)−1. Recalling
k = pτm, we see that (k, p − 1) divides m and conclude that Φ(R, k, γ) is
bounded by nR(k, p − 1)pτ+1(p − 1)−1 ≤ p(p − 1)−1nRk for p 6= 2, and by
4nRk for p = 2.

The next two lemmas and the final proof of Theorem 1 are much inspired
by the ideas presented in Skinner [11].

Lemma 5. Any a ∈ O can be written as

a ≡ cp
τ

0 + πcp
τ

1 + π2cp
τ

2 + · · ·+ πp
τ−1cp

τ

pτ−1 (mod p)

with cj ∈ O and π being a prime element of O.

Proof. IfR⊂O is a set of representatives for O/p, then so is {rpτ |r∈R},
because the map x 7→ xp

τ
is a bijection Fq → Fq. Hence, with suitable

rn ∈ R, we can write
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a =
∞∑
n=0

rp
τ

n π
n =

pτ−1∑
j=0

πj
∞∑
i=0

rp
τ

j+ipτπ
ipτ ≡

pτ−1∑
j=0

πj
( ∞∑
i=0

rj+ipτπ
i
)pτ

(mod p),

which proves the lemma.

Lemma 6. Φ(R, k, e) ≤ Φ(Rpτ ,m, e).

Proof. We have to find a primitive solution x ∈ ON to the R congruences

ai1X
k
1 + · · ·+ aiNX

k
N ≡ 0 (mod p), i = 1, . . . , R.

Write each polynomial in this system as a sum of pτ polynomials using the
above lemma on each coefficient a = aij . Thus it suffices to find a primitive
solution to Rpτ congruences

cp
τ

i1X
k
1 + · · ·+ cp

τ

iNX
k
N ≡ 0 (mod p), i = 1, . . . , Rpτ .

Since

cp
τ

i1X
k
1 + · · ·+ cp

τ

iNX
k
N ≡ (ci1Xm

1 + · · ·+ ciNX
m
N )p

τ
(mod p),

it suffices to find a primitive solution to the Rpτ congruences

ci1X
m
1 + · · ·+ ciNX

m
N ≡ 0 (mod p), i = 1, . . . , Rpτ .

Such a solution exists by definition for N > Φ(Rpτ ,m, e).

We can finally prove Theorem 1. Clearly, Φ(Rpτ ,m, e) is bounded by
Γ (Rpτ ,m), which is in turn bounded by (Rk)2 −m(Rpτ − 1)2 by (5) since
m is not divisible by p. For τ = 0 we already have the bound (5) which is
superior to the one given in Theorem 1. So assume τ > 0. Then Lemma 6
implies

(7) Φ(R, k, e) < (Rk)2.

From (4), (2), and (7) it now follows that

Γ (R, k) ≤ Rk ·Φ(R, k, γ) ≤ Rk ·(Φ(R, k, e)+1)γ/e ≤ (Rk)2γ/e+1 ≤ (Rk)2τ+5.

This concludes the proof of Theorem 1.
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