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1. Introduction and statement of the results. In [CL84], Cohen
and Lenstra have built a probabilistic model to guess the frequency of some
algebraic properties of the narrow class group CD of the ring of integers
of the quadratic fields Q(

√
D), where D is a fundamental discriminant.

One of the consequences of the Cohen–Lenstra heuristics is to describe
the distribution of the values of rkp(CD) as D ranges over the set of posi-
tive or negative discriminants, and p is a fixed odd prime. These heuristics
do not concern the special prime p = 2. In [Ge87], Gerth extended these
heuristics to the case p = 2 by considering rkp(C2

D). Recently Fouvry and
Klüners [FK07] have proved Gerth’s extensions of some of the conjectures
in [CL84].

Let us describe the results of Fouvry and Klüners more precisely. Let
f(D) be a real valued function defined over the set of fundamental discrim-
inants D. Then M+(f(D)) is, by definition, the mean value of f(D) over
positive fundamental discriminants D if

lim
X→+∞

∑
0<D<X f(D)∑

0<D<X 1
=M+(f(D)).

M−(f(D)) is defined similarly for negative fundamental discriminants. Con-
sider the following conjectures of Cohen–Lenstra extended to p = 2 by
Gerth:

Conjecture 1 ([CL84, (C6), (C10)], [Ge87]). For every prime number p
and every integer r ≥ 0,

M+
( ∏

0≤i<r
(prkp(C2D) − pi)

)
= p−r and M−

( ∏
0≤i<r

(prkp(C2D) − pi)
)

= 1.
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In [FK07], Fouvry and Klüners have proved that Conjecture 1 is true for
p = 2 and every integer r ≥ 0. Let N (h, p) denote the number of subspaces
of Fhp . For the proof, Conjecture 1 is modified as follows:

Conjecture 2. Let p be a prime number and h be a nonnegative integer.
Then

M+(ph rkp(C2D)) = p−h(N (h+ 1, p)−N (h, p))

and
M−(ph rkp(C2D)) = N (h, p).

Then they proved that Conjecture 2 is true for p = 2 and any integer
h ≥ 0.

Another conjecture of Cohen–Lenstra, extended to p = 2 by Gerth, con-
cerns the density of the fundamental discriminants D with fixed rkp(C2

D).

Conjecture 3 ([CL84, (C5), (C9)], [Ge87]). Let r be a nonnegative
integer and p be a prime number. Then the density of the positive (resp.
negative) fundamental discriminants D such that rkp(C2

D) = r is equal to

η∞(p)
pr(r+1)ηr(p)ηr+1(p)

(
resp.

η∞(p)
pr2ηr(p)2

)
,

where ηh(t) :=
∏h
j=1(1− t−j) for 0 ≤ h ≤ +∞.

In [FK06], Fouvry and Klüners have shown that if for some prime num-
ber p, Conjecture 1 is true for every integer r ≥ 0, then Conjecture 3 is also
true for this p for every integer r ≥ 0. Thus, Conjecture 3 is true for p = 2
and every integer r ≥ 0.

Let d be a square-free positive integer and consider the negative Pell
equation

(1.1) x2 − dy2 = −1.

Write D for the fundamental discriminant of the quadratic field Q(
√
d).

Then the solvability of the negative Pell equation (1.1) is equivalent to
N (εD) = −1, where εD is the fundamental unit of Q(

√
D) and N is the

norm map from Q(
√
D) to Q. Let D be the set of special discriminants, i.e.

D = {D > 0 : p |D ⇒ p ≡ 1 or 2 mod 4}.
For X > 1, we denote by D(X) the cardinality of D ∩ [0, X] and by D−(X)
the cardinality of {D ∈ D : 0 < D < X, N (εD) = −1}. Let us introduce the
constants

c1 :=
9

8π

∏
p≡1mod 4

(1− p−2)1/2 and α :=
∏
j odd

(1− 2−j) =
+∞∏
j=1

(1 + 2−j)−1.

It is well known that D(X) is asymptotic to c1X/
√

logX. In [St93], Steven-
hagen proposed the following two conjectures:
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Conjecture 4. As X → +∞, we have D−(X) ∼ (1− α)D(X).

Conjecture 5. The number of square-free positive integers d < X for
which (1.1) is solvable is asymptotic to (1−α)X , where X = 4

3c1X/
√

logX.

In a recent paper [FK10], Fouvry and Klüners have proved that as
X → +∞,

(α− o(1))D(X) ≤ D−(X) ≤ (2/3 + o(1))D(X)

and deduced an asymptotic lower bound (α − o(1))X and an upper bound
(2/3 + o(1))X for the number of square-free positive integers d (0 < d ≤ X)
for which (1.1) is solvable.

In this article we consider the analogous problems in the function field
setting. Let k := Fq(T ), where q is a power of an odd prime number p
and A := Fq[T ]. For convenience, we fix the following subsets of A: A+ :=
{A ∈ A : A is monic}, A+,o := {A ∈ A+ : A is square-free} and A+

irr :=
{P ∈ A+ : P is irreducible}. For any integer n ≥ 0, we also write A+

n :=
{A ∈ A+ : degA = n}, A+,o

n := A+,o ∩ A+
n and A+

irr,n := A+
irr ∩ A+

n . Let
k∞ be the completion of k at ∞ := (1/T ) and sgn : k∗∞ → F∗q be the sign
map such that sgn(A) is the leading coefficient of A for all 0 6= A ∈ A.
Write sgn(x) := sgn(x)(q−1)/2. For a finite extension K of k and a place
ν of K lying above ∞, we define sgnν(x) := sgn(Nν/∞(x)), where Nν/∞
denotes the norm map from the completion Kν of K at ν to k∞. An element
x ∈ K∗ is called totally positive if sgnν(x) = 1 for any ν |∞. Throughout
the paper we only consider field extensions of k contained in k∞(q−1

√
−1/T ).

The case when q ≡ 3 mod 4 is very close to the classical case, but the case
when q ≡ 1 mod 4 is different (cf. [BJ, Lemma 2.2] or Lemma 2.6 below).
Our main results in this paper concern the case when q ≡ 3 mod 4. But the
results in Sections 3 and 4 hold for any odd q.

For any 1 6= D ∈ A+,o, let kD := k(
√
D̄), where D̄ := (−1)degDD, and

OD be the integral closure of A in kD. Let ClD be the ideal class group
of OD. Let CD be the narrow ideal class group of OD, that is, the quotient
group of fractional ideals of OD modulo principal fractional ideals generated
by totally positive elements of kD.

1.1. Results on the 4-rank of the narrow ideal class group CD.
Let f(D) be a real valued function defined on A+,o. We say thatM+(f(D))
is the mean value of f(D) over A+,o

even := {D ∈ A+,o : degD is even} if

lim
n→+∞
n even

∑
D∈A+,o

n
f(D)∑

D∈A+,o
n

1
=M+(f(D)).

We define similarly M−(f(D)) for A+,o
odd := A+,o \ A+,o

even. As in the classical
case, we formulate the following conjectures:
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Conjecture 6. For every prime number ` 6= p and every integer r ≥ 0
we have

• Conj+(`, r): M+(
∏

0≤i<r(`
rk`(C2D) − `i)) = `−r.

• Conj−(`, r): M−(
∏

0≤i<r(`
rk`(C2D) − `i)) = 1.

Conjecture 7. Let ` 6= p be a prime number and a be an integer. Then

• Conj+mod(`, h): M+(`h rk`(C2D)) = `−h(N (h+ 1, `)−N (h, `)).
• Conj−mod(`, h): M−(`h rk`(C2D)) = N (h, `).

Conjecture 8. Let r be a nonnegative integer and ` 6= p be a prime
number. Then the density of D ∈ A+,o

even (resp. D ∈ A+,o
odd) such that rk`(C2

D)
= r is equal to

η∞(`)
`r(r+1)ηr(`)ηr+1(`)

(
resp.

η∞(`)
`r2ηr(`)2

)
.

For any positive integers n and h, we define

S(n, h) :=
∑

D∈A+,o
n

2h rk4(CD),

where rk4(CD) = rk2(C2
D) denotes the 4-rank of CD. In §6, we shall prove

Theorem 1.1. Assume that q ≡ 3 mod 4. For any positive integers n, h
and any positive real ε, we have

S(n, h) =


N (h, 2)qn(1− 1/q) +Oh,ε(qnn−2−h+ε) if n is odd,

2−h(N (h+ 1, 2)−N (h, 2))qn(1− 1/q) +Oh,ε(qnn−2−h+ε)
if n is even.

Since |A+,o
n | = qn(1 − 1/q) (cf. [Ro02, Proposition 2.1]), Theorem 1.1

immediately yields

Corollary 1.2. Assume that q ≡ 3 mod 4. Then the conjectures
Conj+mod(2, h) and Conj−mod(2, h) are true for any positive integer h.

It can be easily shown that Proposition 1 of [FK07] remains valid in
the function field case too, that is, for a prime number ` 6= p and positive
integer r0, Conj+(`, r) (resp. Conj−(`, r)) is true for every 0 ≤ r ≤ r0 if and
only if Conj+mod(`, r) (resp. Conj−mod(`, r)) is true for every 0 ≤ r ≤ r0. Thus
Corollary 1.2 implies

Corollary 1.3. Assume that q ≡ 3 mod 4. Then the conjectures
Conj+(2, r) and Conj−(2, r) are true for every integer r ≥ 0.

As in Theorem 1 and 2 of [FK06], we can show that if, for some prime
number ` 6= p, Conjecture 6 is true for every integer r ≥ 0, then Conjec-
ture 8 is also true for this ` for every integer r ≥ 0. In the proof we need
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to replace N(X, r) = |{D : 0 < ±D < X, rkp(C2
D) = r}| by N(n, r) :=

|{D ∈ A+,o
n : rkp(C2

D) = r}| and X appearing as denominators by qn (cf. §4
and §5 in [FK06]). Thus we have

Corollary 1.4. Assume that q ≡ 3 mod 4. Then Conjecture 8 is true
for ` = 2 and all integers r ≥ 0.

1.2. Results on the negative Pell equation. Let D ∈ A+,o be of
even degree, and γ be a fixed generator of F∗q . We call the equation

(1.2) X2 −DY 2 = γ

a negative Pell equation. As in the classical case, the solvability of (1.2) is
equivalent to N (εD) ∈ F∗q \ F∗2q , where εD is a fundamental unit of kD and
N is the norm map from kD to k. Clearly (1.2) is solvable only if degP
is even for any P ∈ A+

irr dividing D. Note that when q ≡ 3 mod 4, the
solvability of (1.2) is the same as the solvability of X2 − DY 2 = −1. Let
D := {D ∈ A+,o :degP is even for any P ∈ A+

irr dividing D}. For a positive
even integer n, write D(n) := |D ∩ A+,o

n | and D−(n) := |{D ∈ D ∩ A+,o
n :

N (εD) ∈ F∗q \ F∗2q }|. It can be shown that

D(n) ∼ qn√
n
.

Let

α :=
∏
j odd

(1− 2−j) =
+∞∏
j=1

(1 + 2−j)−1.

Theorem 1.5. Assume that q ≡ 3 mod 4. For even integers n→ +∞,

(α− o(1))D(n) ≤ D−(n) ≤ (2/3 + o(1))D(n).

For any positive even integer n and any positive integer h, let

S∗(n, h) :=
∑

D∈D∩A+,o
n

2h rk4(CD),

S∗mix(n, h) :=
∑

D∈D∩A+,o
n

2h rk4(CD) · 2rk4(ClD).

In §6, we shall prove the following analogue of [FK10, Theorems 3 and 4]:

Theorem 1.6. Assume that q ≡ 3 mod 4. For any positive integer r and
any positive real ε,

S∗(n, h) =
h−1∏
j=0

(2j + 1) · D(n) +Oh,ε(qnnε−2−h−1
),

S∗mix(n, h) = (2h−1 + 1)
h−1∏
j=0

(2j + 1) · D(n) +Oh,ε(qnnε−2−h−2
).
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Theorem 1.5 follows from Theorem 1.6 as in the classical case. We have
an exact sequence

(1.3) 1→ FD → CD → ClD → 1,

where |FD| ≤ 2. It is known that |FD| = 2 if and only if degD is even and
N (εD) ∈ F∗2q . Thus CD = ClD if and only if N (εD) ∈ F∗q \ F∗2q . By the exact
sequence (1.3), we have

(1.4) rk2h(CD)− 1 ≤ rk2h(ClD) ≤ rk2h(CD) for all h ≥ 1.

By genus theory,
rk2(CD) = ω(D)− 1,

where ω(D) is the number of prime divisors of D. As in the classical case
we have the following lemma.

Lemma 1.7. Let D ∈ A+,o be of even degree with |FD| = 2. Then the
following are equivalent:

(i) CD ∼= Z/2Z× ClD.
(ii) There exists P ∈ A+

irr dividing D of odd degree.

In this case C2
D
∼= Cl2D.

Therefore D ∈ D if and only if rk2(CD) = rk2(ClD). For D ∈ D, N (εD) ∈
F∗q \ F∗2q if and only if rk2h(CD) = rk2h(ClD) for all h ≥ 2. Thus we have

Lemma 1.8. For D ∈ D with rk4(CD) = 0, we have N (εD) ∈ F∗q \ F∗2q .

Lemma 1.9. Let D ∈ D. If N (εD) ∈ F∗q \ F∗2q , then rk4(CD) = rk4(ClD).

For any nonnegative integers a and b, we define

δ(a, b) := lim
n→+∞
n even

|{D ∈ D ∩ A+,0
n : rk4(CD) = a, rk4(ClD) = b}|

D(n)
.

By (1.4), we have δ(a, b) = 0 if 0 ≤ a < b or 0 ≤ b < a − 1. Following the
argument of §2 in [FK10] and using Theorem 1.6, we get

(1.5) δ(a, b) =
{

2−aα∞(a) if a = b,
(1− 2−a)α∞(a) if a = b+ 1,

where α∞(a) = α
∏a
j=1(2j − 1)−1. Thus we have

Corollary 1.10. For any nonnegative integer r, as even integers
n→ +∞,

|{D ∈ D ∩ A+,o
n : rk4(CD) = r}| ∼ α∞(r) · D(n),

|{D ∈ D ∩ A+,o
n : rk4(ClD) = r}| ∼ 3 · 2−r−1α∞(r) · D(n).

Now we follow the argument of [FK10, §1.2] to get Theorem 1.5 from
Corollary 1.10 and Lemmas 1.8 and 1.9.



4-rank of ideal class groups 331

2. 4-ranks of class groups of quadratic function fields. In this
section we give some criteria for the 4-ranks of CD and ClD. Throughout
this section, we assume that q ≡ 3 mod 4.

2.1. Case of the narrow ideal class group CD. For any a, b ∈ k∗,
let (a|b) ∈ {0, 1} be the Hilbert symbol , that is, (a|b) = 1 if and only if the
equation

x2 − ay2 − bz2 = 0

has a nontrivial solution in k3.

Lemma 2.1. Let a, b, c ∈ k∗. Then:

(i) (a|b) = (b|a), (a|1) = 1, (ac2|b) = (a|b), (a|−a) = 1, (a|b) = (a|−ab).
(ii) If (a|b) = 1, then (a|bc) = (a|c).

(iii) Let a, b ∈ A be square-free and (a, b) = 1 with b ∈ A+. Then (a|b) = 1
if and only if a is a square modulo b and b is a square modulo ã,
where ã = sgn(a)−1a.

Proof. (i) and (ii) are easy. (iii) follows from the Hasse–Minkowski prin-
ciple and the product formula for Hilbert symbols since q is odd.

Lemma 2.2. Let B ∈ A+ be a divisor of D. Then (B|D̄) = (B|−D̄/B).

Proof. (B|−D̄/B) = (B|BD̄/B) = (B|D̄).

Let D = P1 · · ·Pt, where Pi ∈ A+
irr. Let pi be the unique prime ideal of

OD lying above Pi. For any nonzero ideal a of OD, let [a]+ denote the image
of a in CD.

Lemma 2.3. We have CGD = 〈[p1]+, . . . , [pt]+〉, where G = Gal(kD/k).

Proof. Recall that it is assumed that q ≡ 3 mod 4. Then the result fol-
lows immediately from Lemma 2.2 of [BJ].

Let P be the trivial class in CD and

B := {pe11 · · · p
et
t : ei ∈ {0, 1} for 1 ≤ i ≤ t}.

Lemma 2.4.

(i) 2rk4(CD) = |{B2 ∈ CD : B4 = P}|.
(ii) 2rk4(CD) = 1

2 |{b∈B : a2 = (a)b for suitable a and totally positive a}|.
Now we prove

Proposition 2.5 (First criterion). We have

2rk4(CD) = 1
2 |{B ∈ A+,o : B |D and (B|D̄) = 1}|.

Proof. For a nonzero ideal a of kD let N(a) be the monic generator of
the ideal aa′, where a′ is the conjugate of a. Let N be the norm map from kD
to k. Then it is easy to see that, for every a ∈ kD, we have N((a)) = N (a)
up to F∗q .
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Let B ∈ A+,o be a divisor of D. Suppose first that (B|D̄) = 1, that is,
B = N (b) for some b ∈ kD. By clearing denominators we can find a ∈ kD
such that N (a) = BW 2 with W ∈ A+. Thus a or γa is totally positive.
Then as in [FK07] we have (a) = ba2, where b is the unique ideal of kD with
N(b) = B and N(a) = W .

Now assume that a2 = (a)b with b ∈ B and a totally positive. Let B =
N(b). Then N((a)) = N (a) up to F∗2q , so we may assume N((a)) = N (a).
Then N (a) = N(a)2/N(b) = B · (N(a)/B)2.

Now we are going to describe the second criterion for 2rk4(CD) when
D ∈ D. Let N be a maximal abelian extension of kD, unramified at all finite
places, whose Galois group Gal(N/kD) has exponent dividing 4. Write

A := Gal(N/kD) = CD/C4
D
∼= C(4)r × C(2)s,

where C(m) denotes the cyclic group of order m. Then Lemma 11 of [FK10]
remains valid in this case too.

We say that {D1, D2} is a decomposition of D ∈ A+,o if D = D1D2 with
D1, D2 ∈ A+. A decomposition {D1, D2} of D is said to be of the second type
if (D1|D2) = 1, or, equivalently the following conditions hold (cf. Lemma 6
in [FK07], Lemma 13 in [FK10]):(

D1

P

)
= 1 for P |D2, P ∈ A+

irr and
(
D2

P

)
= 1 for P |D1, P ∈ A+

irr.

As in §3.2 of [FK10], any C(4)-extension K4 of kD unramified at finite places
corresponds to a decomposition {D1, D2} of D of the second type, i.e. K4

is a quadratic extension of K2 = k(
√
D1,
√
D2). For each monic divisor D′

of D not contained in {1, D1, D2, D}, the field K4(
√
D′) contains a C(4)-

extension K′4 of kD unramified at finite places and different from K4. It is
easy to see that K4 is totally real if and only if K′4 is totally real. Since we
get the same K′4 if two D′’s only differ by a square in K2, there are 2ω(D)−2

C(4)-extensions of kD unramified at finite places and corresponding to the
decomposition {D1, D2}.

Lemma 2.6. Let D ∈ D and {D1, D2} be a decomposition of D of the
second type. Then there exists a nontrivial solution (x, y, z) ∈ A3 of

x2 −D1y
2 −D2z

2 = 0

such that:

(i) x2, D1y
2, D2z

2 are pairwise coprime and x ∈ A+.
(ii) deg x ≥ max

{
deg y + 1

2 degD1,deg z + 1
2 degD2

}
.

Proof. (i) is clear. Suppose that deg x < deg y + 1
2 degD1. Since x2 =

D1y
2 + D2z

2, we have deg y + 1
2 degD1 = deg z + 1

2 degD2 and sgn(y)2 +
sgn(z)2 = 0, which cannot happen for q ≡ 3 mod 4. Thus (ii) follows.
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Let D ∈ D and {D1, D2} be a nontrivial decomposition of D of the sec-
ond type. Let α := x+y

√
D1, where (x, y, z) is the solution as in Lemma 2.6

and y is chosen so that deg(x+y
√
D1) = deg x. We may assume α is totally

positive by multiplying it by some element a ∈ F∗q . Let K2 := k(
√
D1,
√
D2)

and K4 := K2(
√
α). Then K4 is a C(4)-extension of kD unramified at finite

places and corresponding to {D1, D2}.
Now one can follow §3.2 of [FK10] to get the following proposition.

Proposition 2.7 (Second criterion). Let D ∈ D. Then

2rk4(CD) = |{{D1, D2} : {D1, D2} is a decomposition of D
of the second type}|.

2.2. Case of the ordinary ideal class group ClD. For any A ∈ A
and P ∈ A+

irr, we define

[A,P ]4 :=


1 if

(
A
P

)
= 1 and A is a fourth power modulo P ,

−1 if
(
A
P

)
= 1 and A is not a fourth power modulo P ,

0 otherwise.
For B = P1 · · ·Ps ∈ A+, we define

[A,B]4 := [A,P1]4 · · · [A,Ps]4.

Lemma 2.8. Let D ∈ D and {D1, D2} be a decomposition of the second
type. Let (x, y, z) be a solution of x2 −D1y

2 −D2z
2 = 0 as in Lemma 2.6.

Then:

(i)
(
z
D1

)
=
( y
D2

)
= 1.

(ii)
(
x
D1

)
= [D2, D1]4 and

(
x
D2

)
= [D1, D2]4.

(iii)
(
D
x

)
=
(
D1D2
x

)
=
(−1
x

)
.

Proof. Straightforward.

Proposition 2.9. Let D ∈ D and {D1, D2} be a nontrivial decompo-
sition of D of the second type. Then the corresponding unramified C(4)-
extensions are totally real if and only if [D1, D2]4 = [D2, D1]4.

Proof. Let K4 = K2(
√
α) be the C(4)-extension of kD defined in §2.1. It

is sufficient to show that K4 is totally real if and only if [D1, D2]4 = [D2, D1]4.
We can easily see that K4 is a totally real extension of k if and only if deg x
is even, and by using Lemma 2.8, [D1, D2]4[D2, D1]4 = (−1)deg x. Hence we
get the result.

Now using Lemma 11 and the remark before Theorem 5 of [FK10], we
get the following criterion:
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Proposition 2.10. Let D ∈ D. Then 2rk4(ClD) is given by
1
2 |{(A,B) ∈ (A+,o)2 : D = AB, [A,B]4 = [B,A]4 = 1 or −1}|.

Let B := Fq2 [T ] and k′ := Fq2(T ). Let β =
√
−1 ∈ B. Then B = A[β].

We use v̄ to denote the conjugate of v ∈ k′ over k. Since q2 ≡ 1 mod 4, the
quartic residue symbol (−)4 can be defined on B.

Lemma 2.11. Let P ∈ A+
irr be of even degree, decomposed as P = ππ̄

with π ∈ B+
irr and A ∈ A. Then:

(i)
(
A
π

)2
4

=
(
A
P

)
.

(ii) A is a 4th power modulo P if and only if
(
A
π

)
4

= 1.
(iii) A is a square but not a 4th power modulo P if and only if

(
A
π

)
4

= −1.
(iv) [A,P ]4 = 1

2

(
1 +

(
A
P

))(
A
π

)
4
.

Proof. This follows from the fact that B/(π) = A/(P ) and the defini-
tions.

A prime π = A + βB ∈ B+
irr is called privileged if sgn(B) ∈ F∗2q and

the degree of N (π) = P ∈ A+
irr is even, where N is the norm map from k′

to k. An element of B+ is called privileged if it is a product of privileged
irreducible elements. It is clear from the definition that every D ∈ D can be
written uniquely as D = dd̄ with d privileged. Such a factorization is called
a privileged factorization.

Using Lemma 2.11(iv) and Proposition 2.10, we get

Proposition 2.12. For any D ∈ D,

2rk4(ClD) =
2rk4(CD)

2
+

1
4 · 2ω(D)

∑
D=AB

(
a

b

)2

4

∏
P |A

(
1+
(
B

P

))∏
P |B

(
1+
(
A

P

))
,

where A,B ∈ A+ and A = aā, B = bb̄ are privileged factorizations.

Corollary 2.13. For any D ∈ D,

(2.1) 2rk4(ClD) =
2rk4(CD)

2
+

1
4 · 2ω(D)

∑
D=D0D1D2D3

(
d0d̄1

d2d̄3

)2

4

,

where D0, D1, D2, D3 ∈ A+ and D0 = d0d̄0, D1 = d1d̄1, D2 = d2d̄2 and
D3 = d3d̄3 are privileged factorizations.

3. Character sums in A = Fq[T ]. The results in this section hold
true for any odd q. We do not assume q ≡ 3 mod 4. Let λ be an additive
character of conductor F ∈ A of degree f . Then λ is completely determined
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by the additive characters λ(i) : Fq → C∗ for 0 ≤ i ≤ f − 1, given by
λ(i)(α) = λ(αT i). Let Tr = TrFq/Fp be the trace map of Fq into Fp. Since

the bilinear form 〈α, β〉 := ζ
Tr(αβ)
p is nondegenerate, each additive character

λ(i) is completely determined by λi ∈ Fq such that λ(i)(α) = ζ
Tr(αλi)
p , where

ζp is a fixed primitive pth root of unity in C. Therefore we say that an
additive character λ modulo F is determined by (λ0, . . . , λf−1) ∈ Ffq if

λ
( f−1∑
i=0

αiT
i
)

=
f−1∏
i=0

ζTr(αiλi)
p .

We associate an f × f matrix Λ to each additive character λ modulo F as
follows. For M ∈ A, write MF for the polynomial of degree < degF which
is congruent to M modulo F . Let cF,i(M) be the coefficient of T i in MF

and cF (M) = (cF,0(M), . . . , cF,f−1(M)). Write F = T f − bf−1T
f−1 − · · ·

− b1T − b0. For i ≥ 0, write

T f−1+i ≡
f−1∑
a=0

εi,aT
a mod F.

Then we have the recursive formula

εi+1,j = εi,j−1 + bjεi,f−1,

where εi,j = 0 for j < 0, ε0,j = 0 for j < f − 1, ε0,f−1 = 1 and ε1,j = bj .
Define

λi,j = λi+j if j < f − i,

λi,f−i+a =
f−1∑
j=0

εa,jλj for 0 ≤ a < i.

Let Λ be the f × f matrix with entries λi,j . Then we can easily see that

(3.1) λ(AX) = ζ
Tr(

Pf−1
a=0 cF,a(AX)λa)

p = ζTr(cF (A)ΛcF (X)t)
p .

Note that Λ is symmetric, since λ(AX) = λ(XA). In fact, λi,j = λa,b when-
ever i + j = a + b. It is not difficult to see that an additive character λ is
primitive if and only if the associated matrix Λ is nonsingular.

For a primitive multiplicative character χ and an additive character λ of
conductor F , we define the Gauss sum τ(χ, λ) by

τ(χ, λ) :=
∑

M modF

χ(M)λ(M).

For an additive character λ and N ∈ A, let λN be the character defined by
λN (A) = λ(NA). As in Lemmas 4.7 and 4.8 of [Wa97], we have the following
lemmas.
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Lemma 3.1. Let χ be a primitive multiplicative character and λ an ad-
ditive character modulo F of degree f . Then

χ(N)τ(χ, λ) =
∑

M modF

χ(M)λ(MN) = τ(χ, λN ),

λ(A) =
1

φ(F )

∑
χmodF

χ(A)τ(χ, λ),

where φ(F ) = |(A/FA)∗|.
Lemma 3.2. Let χ be a primitive multiplicative character and λ an ad-

ditive character modulo F of degree f . Then

|τ(χ, λ)| =
{
qf/2 if λ is primitive,
0 if λ is not primitive.

Corollary 3.3. Let χ be a primitive multiplicative character and λ an
additive character modulo F of degree f . Then

χ(N) =
τ(χ,A)
qf

∑
M modF

χ(M)λ(−MN) =
τ(χ, λ)τ(χ, λN )

qf
.

For an integer r ≥ 0 and X ∈ A, define

αr(λ,X) :=
∑
N∈A+

r

λ(−NX).

Note that αr(λ,X) = 0 for r ≥ f , unless X 6≡ 0 mod F .

Lemma 3.4. Let the notation be as before and write

ΛcF (X) = (D0(X), D1(X), . . . , Df−1(X)).

Then, for r < f ,

αr(λ,X) =
{
qrζ

Tr(Dr(X))
p if D0(X) = · · · = Dr−1(X) = 0,

0 otherwise.
Proof. From (3.1) we can easily see that

αr(λ,X) = ζTr(Dr(X))
p

r−1∏
i=0

( ∑
ai∈Fq

ζTr(aiDi(X))
p

)
and the result follows.

Now we will prove an analogue of the Pólya inequality [Ap76, Theo-
rem 8.21], which will be used to prove Proposition 3.6.

Lemma 3.5. Let χ be a primitive multiplicative character modulo F of
degree f . Then ∣∣∣ ∑

N∈A+
r

χ(N)
∣∣∣ ≤ qf/2.
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Proof. Note that
∑

N∈A+
r
χ(N) = 0 for r ≥ f . We therefore assume that

r < f . Let λ be a primitive additive character modulo F . By Lemma 3.2
and Corollary 3.3 we have, for any subset Z of A,

qf/2
∣∣∣ ∑
N∈Z

χ(N)
∣∣∣ =

∣∣∣ ∑
N∈Z

∑
M modF

χ(M)λ(−MN)
∣∣∣≤ ∑

M modF

∣∣∣ ∑
N∈Z

λ(−MN)
∣∣∣.

Let Z = A+
r . Then |

∑
N∈Z λ(−MN)| = |αr(λ,M)| equals qr if and only if

M satisfies Di(M) = 0 for 0 ≤ i ≤ r − 1, and 0 otherwise. Thus cF (M) =
(c0(M), . . . , cf−1(M)) satisfies r linearly independent relations, and so there
are qf−r possible M ’s with |αr(λ,M)| = qr, which completes the proof.

Let µ be the Möbius function on A, i.e., for any N ∈ A, µ(N) = (−1)ω(N)

if N is square-free and µ(N) = 0 otherwise. For M = β
∏
i P

ei
i with Pi ∈ A+

irr
and β ∈ F∗q , define the Jacobi symbol by(

N

M

)
:=
∏
i

(
N

Pi

)ei
and

(
N

1

)
:= 1,

where
(
N
P

)
is the Legendre symbol. We prove the following analogue of

[FK07, Lemma 15].

Proposition 3.6. Let aM and bN be complex numbers of modulus less
than 1 for M,N ∈ A+. Then∣∣∣∣ ∑

M∈A+
m

∑
N∈A+

n

aMbNµ
2(M)µ2(N)

(
N

M

)∣∣∣∣� qm+n(q−m/4 + q−n/4).

Proof. Let

∆ =
∣∣∣∣ ∑
M∈A+

m

∑
N∈A+

n

aMbNµ
2(M)µ2(N)

(
N

M

)∣∣∣∣.
Then using the Cauchy–Schwarz inequality, we have

∆2 ≤
∑

M∈A+
m

1
∑

M∈A+
m

∣∣∣∣ ∑
N∈A+

n

aMbNµ
2(M)µ2(N)

(
N

M

)∣∣∣∣2

≤ qm
∑

M∈A+
m

µ2(M)
∣∣∣∣ ∑
N∈A+

n

bNµ
2(N)

(
N

M

)∣∣∣∣2
= qm

∑
M∈A+

m

µ2(M)
∣∣∣∣ ∑
N1∈A+

n

∑
N2∈A+

n

bN1bN2µ
2(N1)µ2(N2)

(
N1N2

M

)∣∣∣∣
= qm

∣∣∣∣ ∑
N1∈A+

n

∑
N2∈A+

n

bN1bN2µ
2(N1)µ2(N2)

∑
M∈A+

m

µ2(M)
(
N1N2

M

)∣∣∣∣.
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Thus,

∆4 ≤ q2m
∣∣∣∣ ∑
N1∈A+

n

∑
N2∈A+

n

bN1bN2µ
2(N1)µ2(N2)

∑
M∈A+

m

µ2(M)
(
N1N2

M

)∣∣∣∣2

≤ q2m
∑

N1∈A+
n

∑
N2∈A+

n

1
∑

N∈A+
2n

2
( ∑
M∈A+

m

µ2(M)
(
N

M

))2

≤ 2q2(m+n)
∑

M1∈A+
m

µ2(M1)
∑

M2∈A+
m

µ2(M2)
∑

N∈A+
2n

(
N

M1M2

)
.

If M1 = M2, then ∑
N∈A+

2n

(
N

M1M2

)
= q2n.

From Lemma 3.5, for M1 6= M2, we have∑
N∈A+

2n

(
N

M1M2

)
≤ qm.

Therefore,

∆4 ≤ 2q2m+2n(qmq2n + (q2m − qm)qm)� q5m+2n + q3m+4n.

Hence
∆� qm+n(q(m−2n)/4 + q−m/4).

Now by interchanging M and N , we get

∆� qm+n(q(n−2m)/4 + q−n/4).

It is easy to see that

min{q(m−2n)/4 + q−m/4, q(n−2m)/4 + q−n/4} ≤ q−m/4 + q−n/4.

Hence we get the result.

We remark that since Proposition 3.6 holds for any q, we do not need
any analogue of Proposition 9 of [FK10].

We quote the following estimate of character sums for later use.

Proposition 3.7 ([Hs98, Theorem 2.1]). Let χ be a nontrivial character
modulo M . Then ∣∣∣ ∑

P∈A+
irr,n

χ(P )
∣∣∣ ≤ (degM + 1)

qn/2

n
.

Corollary 3.8. For any positive real number ε,∣∣∣ ∑
P∈A+

irr,n

χ(P )
∣∣∣�ε q

2n/3n−ε.
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4. A Brun–Titchmarsh theorem for multiplicative functions
over A. Again q is an arbitrary power of an odd prime. In this section
A,B,C (resp. L,M,N) usually denote polynomials (resp. monic polynomi-
als) in A = Fq[T ], and P,Q denote monic irreducible polynomials in A unless
otherwise stated.

Lemma 4.1. For q ≥ 3, ∑
degP≤m

1
degP

≤ qm+1

m2
.

Proof. It is known [Ro02, Proposition 2.1] that the number of monic
irreducible polynomials of degree n is less than qn/n for n > 1 and equal
to q for n = 1. Thus we have∑

degP≤m

1
degP

≤
m∑
n=1

qn

n2
.

It suffices to show that
m∑
n=1

qn

n2
≤ qm+1

m2
.

This is trivially true for m = 1, 2. Now use induction on m to get the result.

Let p(N) := max{degP : P ∈ A+
irr, P |N} and q(N) := min{degP :

P ∈ A+
irr, P |N}. For any integers m,n ≥ 1, let

Ψ(n,m) :=
∑

degN=n
p(N)≤m

1.

Lemma 4.2. For all sufficiently large n,

Ψ(n, logq n) ≤ q(q+1)n/logq n.

Proof. For any δ > 0, we have

Ψ(n,m) = qnδ
∑

degN=n
p(N)≤m

1
qδ degN

≤ qnδ
∏

degP≤m

(
1 +

1
qδ degP

+
1

q2δ degP
+ · · ·

)

= qnδ
∏

degP≤m

(
1 +

1
qδ degP − 1

)

≤ exp
(
nδ log q +

1
δ

∑
degP≤m

1
degP

log q
)

= q
nδ+ 1

δ

P
degP≤m

1
degP

≤ qnδ+
qm+1

δm2 (by Lemma 4.1).

Now take m = logq n and δ = 1/logq n to get the result.



340 S. Bae and H. Jung

Let P be an infinite subset of A+
irr. For each integer m ≥ 1, we let

P(m) :=
∏
P∈P

degP≤m

P.

We have the following analogue of [HR74, Theorem 3.4].

Proposition 4.3. Suppose that (L,P ) = 1 for any P ∈ P. Then for
any m ≥ 2,

|{N : degN = n,N ≡ A mod L and (N,P(m)) = 1}|

≤ 1∏
degP≤m,P 6∈P(1− q− degP )

qn

mqdegL
+Σ,

where Σ < q2m.

Let
Φ(n,m;L,A) :=

∑
degN=n

N≡AmodL
q(N)≥m

1.

Lemma 4.4. Suppose that (A,L) = 1 with degL < n and m ≥ 1. Then

Φ(n,m;L,A) ≤ qn

φ(L)m
+ q2m,

where φ(L) is the number of polynomials of degree < degL prime to L.

Proof. This follows from Proposition 4.3 by taking P = {P ∈ A+
irr :

P -L}.
Consider the class M of functions f on A which are nonnegative multi-

plicative and satisfy the following two conditions:

(i) There exists a positive constant A1 such that

f(P `) ≤ A`1 for all P ∈ A+
irr and ` ≥ 1.

(ii) For every ε > 0, there exists a positive constant A2 = A2(ε) such
that

f(N) ≤ A2|N |ε for all N ∈ A.
One can follow exactly the same method as in [Sh80] to get the following

lemmas.

Lemma 4.5. Let f ∈M. Then as n→ +∞,∑
degN≤n
(N,L)=1

f(N)
qdegN

� exp
( ∑

degP≤n
P -L

f(P )
qdegP

)

uniformly in L.
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Lemma 4.6. Let f ∈M. Then as m→ +∞,∑
degN≥m/2
p(N)≤m/r
(N,L)=1

f(N)
qdegN

� exp
( ∑

degP≤m
P -L

f(P )
qdegP

− r log r
10

)

uniformly in L and r, provided that 1 < r ≤ m/logm.

Proof. Almost the same proof as in [Sh80, Lemma 4] gives∑
degN≥n
p(N)≤m′
(N,L)=1

f(N)
qdegN

� exp
( ∑

degP≤m
P -L

f(P )
qdegP

− n(δ − 1) log q + 2A1q
m′(1−δ)

)
.

Now take n = m/2,m′ = m/r and δ = 1 − r/(4m logr q), and the result
follows.

Theorem 4.7. Let f ∈ M, 0 < α < 1/2 and (A,L) = 1 with degA <
degL. Then as n→ +∞,∑

degN=n
N≡AmodL

f(N)� qn

nφ(L)
exp
( ∑

degP≤n
P -L

f(P )
qdegP

)

provided that degL < (1− α)n.

Proof. Let z = α
10n. Equip A+

irr with a total order “<” satisfying P < Q
if degP < degQ. Let Z = Z(n,A,L) := {N ∈ A+

n : N ≡ A mod L}. For
each N ∈ Z, we express N in the form

N = P s11 · · ·P
sj
j P

sj+1

j+1 · · ·P
s`
` = BNDN ,

where Pi < Pj for i < j and BN = P s11 · · ·P
sj
j is chosen so that

degBN ≤ z < deg(BNP
sj+1

j+1 ).

We divide Z into the following four subsets Zi, 1 ≤ i ≤ 4:

Z1 = {N ∈ Z : q(DN ) > z/2},
Z2 = {N ∈ Z : q(DN ) ≤ z/2 and degBN ≤ z/2},
Z3 = {N ∈ Z : q(DN ) ≤ log n and degBN > z/2},
Z4 = {N ∈ Z : log n < q(DN ) ≤ z/2 and degBN > z/2}.

First for Z1, one can easily show that∑
N∈Z1

f(N)�
∑

degB≤z
(B,L)=1

f(B)Φ(n− degB, z/2;L,A).
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Then∑
N∈Z1

f(N)�
∑

degB≤z
(B,L)=1

f(B)
(

2qn−degB

zφ(L)
+ qz

)
(by Lemma 4.4)

≤
(

2qn

zφ(L)
+ q2z

) ∑
degB≤z
(B,L)=1

f(B)
qdegB

≤
(

2qn

zφ(L)
+ q2z

)
exp
( ∑

degP≤z

f(P )
qdegP

)
(by Lemma 4.5).

To each N ∈ Z2, there correspond P and s such that P s ‖N, degP ≤ z/2
and s degP > z/2. Let sP be the least positive integer s satisfying s degP >
z/2, so that sP ≥ 2, and so

sP degP ≥ max{2 degP, z/2}.

Thus, ∑
degP≤z/2

1
qsP degP

≤
∑

degP≤z/4

q−z/2 +
∑

z/4<degP≤z/2

1
q2 degP

� q−z/4.

It follows that ∑
N∈Z2

1� qn

qdegL
q−z/4 + qz/2.

For N ∈ Z3, there exists B such that B |N , z/2 < degB ≤ z and p(B) ≤
log n. Then∑

N∈Z3

1 ≤
∑

z/2<degB≤z
p(B)≤logn

∑
degN=n

N≡AmodL
N≡0modB

1

=
∑

z/2<degB≤z
p(B)≤logn

(
qn

qdegLqdegB
+O(1)

)

≤ qn

qdegL
q−z/2Ψ(z, logq n) +O(qz)

� qn

qdegL
q−z/2 (by Lemma 4.2 and

q + 1
logq n

<
1
4

for large n).

Since f ∈M, we have f(N)� (qdegN )α/80 ≤ qz/8, so that∑
N∈Z2∪Z3

f(N)� qn

qdegL
q−z/8.
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Lastly, ∑
N∈Z4

f(N) ≤
∑

z/2<degB≤z

∑
degN=n

N≡AmodL
BN=B, q(DN )≥p(B)
logn<q(DN )≤z/2

f(DN ).

Put r0 = [z/log n], so that z/(r0 + 1) < log n. Let 2 ≤ r ≤ r0. Consider
those N for which z/(r + 1) < q(DN ) ≤ z/r. For such N , we have p(BN ) =
p(B) ≤ q(DN ) < z/r, and

ω(DN ) ≤ n

q(DN )
≤ (r + 1)n

z
<

10(r + 1)
α

<
20r
α
,

so that f(DN ) ≤ Aω(DN )
1 ≤ Ar5, where A5 = A

20/α
1 . Then∑

N∈Z4

f(N) ≤
∑

2≤r≤r0

Ar5
∑

z/2<degB≤z
p(B)<z/r
(B,L)=1

f(B)Φ
(
n− degB,

z

r + 1
;L,A′

)
,

where A′ ≡ AB and BB ≡ 1 mod L. Applying Lemma 4.4, we have∑
N∈Z4

f(N) ≤
(

qn

zφ(L)
+ q2z

) ∑
2≤r≤r0

(r + 1)Ar5
∑

z/2<degB≤z
p(B)<z/r
(B,L)=1

f(B)
qdegB

�
(

qn

zφ(L)
+ q2z

)
× exp

( ∑
degP≤z
P -L

f(P )
qdegP

) ∑
2≤r≤r0

rAr5 exp
(
− r

10
log r

)

�
(

qn

zφ(L)
+ q2z

)
exp
( ∑

degP≤z
P -L

f(P )
qdegP

)
.

Now degL < (1− α)n implies

q2z <
qdegL

φ(L)
q3zz <

qn(1−α+3α/10)

φ(L)z
<

qn

φ(L)z
.

Therefore∑
N∈Z1

f(N) +
∑
N∈Z4

f(N)� qn

φ(L)z
exp
( ∑

degP≤z
P -L

f(P )
qdegP

)
.
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Corollary 4.8. Let γ be a positive real number. Then∑
N∈D

degN=n

γω(N) �γ q
nnγ/2−1.

Proof. Since ∑
degP=n

1
qdegP

� 1
n
,

we have ∑
degP≤n

degP even

1
qdegP

� log n
2

.

Applying Theorem 4.7 to f(N) = γω(N) and summing over all A with
(A,L) = 1 and degA < degL, we get the result.

5. Proof of Theorem 1.1. In this section, we assume that q ≡ 3 mod 4.
We are going to study the sum

S(n, h) =
∑

D∈A+,o
n

2h rk4(CD)

for a positive integer h and for positive even (odd) integers n → +∞. We
can closely follow the arguments of [FK07, §5] (resp. [FK07, §6]) if n is odd
(resp. even).

The following lemma can be easily deduced from Lemma 2.1(iii), Lem-
ma 2.2 and Proposition 2.5.

Lemma 5.1. For any D ∈ A+,o
n ,

2rk4(CD) = 1
2 |{(A,B) ∈ (A+)2 : D = AB, (−1)1+degDA is a square

modulo B and B is a square modulo A}|.

Then as in [FK07, §5, §6], we also have

Lemma 5.2. Let D ∈ A+,o
n . Then if n is odd,

2rk4(CD) =
1

21+ω(D)

∑
D=D0D1D2D3

(
D2

D0

)(
D1

D3

)(
D0

D3

)(
D3

D0

)
,

and if n is even,

2rk4(CD) =
1

21+ω(D)

∑
D=D0D1D2D3

(
−1
D3

)(
D2

D0

)(
D1

D3

)(
D0

D3

)(
D3

D0

)
,

where Di ∈ A+,o for 0 ≤ i ≤ 3.
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We replace the indices 0,1,2, 3 by their expansions in base 2: 00,01,10,11,
viewed as elements of F2

2. For u = (u1, u2) and v = (v1, v2) ∈ F2
2, write

Φ1(u,v) := (u1 + v1)(u1 + v2) and λ1(u) := u1u2. Then as in [FK07, §5, §6],
we have

(5.1) 2rk4(CD)

=
1

21+ω(D)

∑
D=D00D01D10D11

(∏
u∈F2

2

(
−1
Du

)λ1(u))1+degD ∏
(u,v)∈F4

2

(
Du

Dv

)Φ1(u,v)

.

Here all Du are in A+,o.
To solve the h-fold equation

(5.2) D =
∏

u(1)∈F2
2

D
(1)

u(1) = · · · =
∏

u(h)∈F2
2

D
(h)

u(h) ,

we let

Du(1),...,u(h) := gcd(D(1)

u(1) , . . . , D
(h)

u(h)).

Then this parametrizes the solutions of (5.2) as

D
(i)

u(i) =
∏

1≤j≤h
j 6=i

∏
u(j)∈F2

2

Du(1),...,u(i),...,u(h)

with
∏

1≤j≤h
∏

u(j)∈F2
2
Du(1),...,u(h) = D. Raising (5.1) to the hth power with

these changes of variables, we get

(5.3) 2h rk4(CD) =
1

2h(1+ω(D))

×
∑

D
u(1),...,u(h)

{ ∏
u(1),...,u(h)

(
−1

Du(1),...,u(h)

)λ1(u(1))+···+λ1(u(h))}1+degD

×
∏

u(1),...,u(h)

v(1),...,v(h)

(
Du(1),...,u(h)

Dv(1),...,v(h)

)Φ1(u(1),v(1))+···+Φ1(u(h),v(h))

.

Summing (5.3) over all D ∈ A+,o
n , we get

(5.4) S(n, h)

= 2−h
∑

(Du)∈D(n,h)

(∏
u

2−hω(Du)
)(∏

u

(
−1
Du

)λh(u))1+n∏
u,v

(
Du

Dv

)Φh(u,v)

,
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where D(n, h) is the set of 4h-tuples (Du) of coprime square-free monic
polynomials with u = (u(1), . . . ,u(h)) ∈ F2h

2 satisfying
∑

degDu = n, and
where

λh(u) := λ1(u(1)) + · · ·+ λ1(u(h)),

Φh(u,v) := Φ1(u(1),v(1)) + · · ·+ Φ1(u(h),v(h)).

For any positive integers m and `, let p(m, `) denote the number of all
square-free monic polynomials of degree m with ` irreducible factors. Then
it is known (cf. [BJ, §1]) that

p(m, `) =
qm(logm)`−1

(`− 1)!m
+O

(
qm(logm)`−2

m

)
.

It is not hard to show that there exists a constant b0 such that for any
positive integers m and `, we have

(5.5) p(m, `) ≤ b0
qm

m

(logm+ b0)`

`!
.

Let

Ω := e4h(log n+ b0).

Let τh(N) be the number of ways of writing the monic polynomial N as a
product of h monic polynomials. Note that τh(N) = hω(N) for N ∈ A+,o.
Let

Σ1 := 2−h
∑

(Du)∈D1(n,h)

(∏
u

2−hω(Du)
)(∏

u

(
−1
Du

)λh(u))1+n∏
u,v

(
Du

Dv

)Φh(u,v)

,

where D1(n, h) is the subset of D(n, h) consisting of those (Du) such that
ω(Du) > Ω for some u ∈ F2h

2 . Write N =
∏

uDu. Then we have

Σ1 �
∑

N∈A+,o
n

Ω≤ω(N)

τ4h(N)2−hω(N) =
∑

N∈A+,o
n

Ω≤ω(N)

2hω(N).

Using (5.5) and Stirling’s formula, we get

Σ1 �
qn

n

∑
Ω≤`

(
2h(log n+ b0)

`/e

)`
.

Thus, from the choice of Ω, we get

(5.6) Σ1 � qn/n,

for every h ≥ 1.
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Let a = (au)u∈F2h
2

with au nonnegative integers and
∑

u∈F2h
2
au = n, and

A be the set of all such a’s. For a ∈ A, let

S(n, h,a) := 2−h
∑

(Du)∈D(n,h,a)

(∏
u

2−hω(Du)
)

×
(∏

u

(
−1
Du

)λh(u))1+n∏
u,v

(
Du

Dv

)Φh(u,v)

,

where D(n, h,a) is the subset of D(n, h) consisting of (Du) such that
degDu = au and ω(Du) ≤ Ω. Then, by (5.6), we have

(5.7) S(n, h) =
∑
a∈A

S(n, h,a) +O

(
qn

n

)
.

Now we define three families of a’s whose contributions to the right hand
side of (5.7) are negligible. We introduce two numbers

n∗ := 4(1 + 4h) logq n and n∗∗ := nη(h),

where η(h) will be defined later. The first family A1 is the subset of A
consisting of (au) satisfying the condition:

(5.8) at most 2h − 1 of the au’s are larger than n∗∗.

Lemma 5.3. For any positive real γ,∑
N∈A+,o

n

γω(N) � qnnγ−1.

Proof. The left hand side is
n∑
h=1

p(n, h)γh �
∞∑
h=1

qn

n

(γ log n)h

h!
=
qn

n
exp(γ log n) = qnnγ−1.

Proposition 5.4. We have

(5.9)
∑
a∈A1

|S(n, h,a)| � qnn8hη(h)−2−h .

Proof. First note that∑
a∈A1

|S(n, h,a)|

≤
∑

0≤r≤2h−1

∑
m≤(n∗∗)4h−r

∑
M∈A+,o

m

τ4h−r(M)2−hω(M)
∑

N∈A+,o
n−m

τr(N)2−hω(N).

Now by Lemma 5.3,

(5.10)
∑

N∈A+,o
n−m

τr(N)2−hω(N) =
∑

N∈A+,o
n−m

(r2−h)ω(N) � qn−mnr2
−h−1.
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Thus∑
a∈A1

|S(n, h,a)| �
∑

0≤r≤2h−1

∑
m≤(n∗∗)4h−r

∑
M∈A+,o

m

2hω(M)qn−mnr2
−h−1

� qn
∑

0≤r≤2h−1

nr2
−h−1

∑
m≤(n∗∗)4h

1
qm

∑
M∈A+,o

m

2hω(M)

� qn
∑

0≤r≤2h−1

nr2
−h−1

∑
m≤(n∗∗)4h

m2h−1.

Since ∑
0≤r≤2h−1

nr2
−h−1 � n−2−h and

∑
m≤(n∗∗)4h

m2h−1 � (n∗∗)8
h
,

we have ∑
a∈A1

|S(n, h,a)| � qnn8hη(h)−2−h .

Taking η(h) = 8−hε for a small positive real ε, we see that the sum over
A1 is negligible.

We say that Du and Dv (or u and v) are linked if

Φh(u,v) + Φh(v,u) = 1.

The second family A2 is the subset of A consisting of (au)’s such that
au, av ≥ n∗ for some linked indices u and v. Following the idea of [FK07,
p. 476] with Proposition 3.6, we can show that, for a ∈ A2,

|S(n, h,a)| � qn−n
∗/4.

Since there are O(n4h) possible a’s, we have

(5.11)
∑
a∈A2

|S(n, h,a)| � qn/n.

The third family A3 is the subset of A consisting of (au) 6∈ A2 such that
1 ≤ av < n∗ and n∗∗ ≤ au for some linked indices u and v. Let a ∈ A3.
Then as in [FK07, §5.3] one can show that

|S(n, h,a)| �
∑

(Dw)w 6=u,v

∑
Dv

∑
1≤`≤Ω

1
2h`

∣∣∣∣ ∑
ω(Du)=`

µ2
(∏

w

Dw

)(Du

Dv

)∣∣∣∣.
The inner sum satisfies, writing Du = P1 · · ·P` with degPi ≤ degPi+1,∣∣∣∣ ∑

ω(Du)=`

µ2
(∏

w

Dw

)(Du

Dv

)∣∣∣∣≤ ∑
P1,··· ,P`−1

∣∣∣∣∑
P`

µ2
(
P1 · · ·P`

∏
w 6=u

Dw

)(P`
Dv

)∣∣∣∣
�c q

au− 1
3

degP`(n∗∗)−c �c q
au−n

∗∗
3` n−cη(h),
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for any positive real number c (by Corollary 3.8). Hence

(5.12) |S(n, h,a)| � qnn−cη(h).

Summing over a ∈ A3 in (5.12), we get

(5.13)
∑
a∈A3

|S(n, h,a)| � qnn4h−cη(h) � qn/n,

by taking c large.
Let A4 := A\ (A1∪A2∪A3). Then it can be deduced from (5.7), (5.9),

(5.12) and (5.13) that

(5.14) S(n, h) =
∑
a∈A4

S(n, h,a) +O(qnn8hη(h)−2−h).

The family A4 is characterized by the following conditions (cf. [FK07, Propo-
sitions 2 and 3]); for any a ∈ A4,

• U = {u : au > n∗∗} is a maximal subset of unlinked indices,
• au = 0 for u 6∈ U .

Let U be any subset of 2h unlinked indices in F2h
2 , that is, U is a maximal

subset of unlinked indices (cf. [FK07, Lemma 18]). An element a ∈ A is said
to be admissible for U , written a ∈ A(U), if

(i) au > n∗∗ if and only if u ∈ U ,
(ii) au = 0 if and only if u 6∈ U .

For a ∈ A(U), since we assumed q ≡ 3 mod 4 and by the quadratic reci-
procity law, we have

S(n, h,a) = 2−h
∑

(Du)∈D(n,h,a)

( ∏
u∈U

2−hω(Du)
)

×
( ∏

u∈U
(−1)auλh(u)

)1+n ∏
u,v∈U

(−1)auavΦh(u,v).

Since A4 is the disjoint union of the A(U)’s, where U runs over all maximal
subsets of unlinked indices, we have∑

a∈A4

S(n, h,a) =
∑
U

∑
a∈A(U)

S(n, h,a).

Let H(U) be the set of all h = (hu)u∈U with hu ∈ {0, 1} and
∑

u∈U hu≡ n
mod 2. For h ∈ H(U) we write a ∼U h if a ∈ A(U) and au ≡ hu mod 2 for
all u ∈ U . Then ∑

a∈A(U)

S(n, h,a) =
∑

h∈H(U)

S(n,U ,h),
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where
S(n,U ,h) =

∑
a∼Uh

S(n, h,a).

Let D(n,U ,h) be the set of 2h-tuples (Du)u∈U of coprime square-free monic
polynomials such that

∑
u∈U degDu = n and degDu ≡ hu mod 2, ω(Du)

≤ Ω for all u ∈ U . Then

S(n,U ,h) = 2−hβ(h)
∑

(Du)∈D(n,U ,h)

∏
u∈U

2−hω(Du),

where

β(h) =
( ∏

u∈U
(−1)huλh(u)

)1+n ∏
u,v∈U

(−1)huhvΦh(u,v).

Lemma 5.5. Let m be a positive integer and h1, h2 ∈ {0, 1} with
h1 + h2 ≡ m mod 2. Then, for any A ∈ A,∑

degDi≡himod 2
degD1+degD2=m

ω(D1D2)=`

µ2(AD1D2)2−h` =
1
2

∑
degD1+degD2=m

ω(D1D2)=`

µ2(AD1D2)2−h`

+O

(
qm

m

(logm/2h)`−1

(`− 1)!

)
+O

(
qm(logm/2h)`−2

(`− 2)!m

)
,

where the sums are over monic polynomials.

Proof. Assume first that A = 1. When m is odd, the result follows
without error term by just changing the order. Now assume that m is even.
Let p2(m, `) be the number of all monic square-free polynomials of degree
m with ` irreducible factors all of whose degrees are even. It is known that

p2(m, `) =
qm(logm)`−1

(`− 1)!2`−1m
+O

(
qm(logm)`−2

m

)
.

Then, for h1 = h2 = 1,∑
degDi≡himod 2

degD1+degD2=m
ω(D1D2)=`

µ2(D1D2) = (p(m, `)− p2(m, `))2`−1,

and for h1 = h2 = 0,∑
degDi≡himod2

degD1+degD2=m
ω(D1D2)=`

µ2(D1D2) = (p(m, `)− p2(m, `))2`−1 + p2(m, `)2`.
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Now since ∑
degD1+degD2=m

ω(D1D2)=`

µ2(D1D2) = p(m, `)2`,

we get the result when A = 1.
When degA ≥ 1, it is clear that the number of square-free monic polyno-

mials of degree m with ` irreducible factors, which are not relatively prime
to A, is

O(p(m− 1, `− 1)) = O

(
qm−1(log(m− 1))`−2

(`− 2)!(m− 1)

)
.

Thus the result follows in this case too.

Corollary 5.6. Let m be a positive integer and h1, h2 ∈ {0, 1} with
h1 + h2 ≡ m mod 2. Then, for any A ∈ A,∑

degDi≡himod 2
degD1+degD2=m

µ2(AD1D2)2−hω(D1D2)

=
1
2

∑
degD1+degD2=m

µ2(AD1D2)2−h` +O

(
qm

m1−2−h

)
,

where the sums are over monic polynomials.

Proof. The result follows from Lemma 5.5 by summing over ` and the
fact that

∞∑
`=1

(2−h logm)`−1

(`− 1)!
= m2−h +O(1).

Lemma 5.7. For 0 < α < 1,∑
d≤n

1
dα(n− d)α

� n1−2α.

Proof. This follows from the inequality(
1
d

+
1

n− d

)α
≤
(

1
d

)α
+
(

1
n− d

)α
for 0 < α < 1.

Proposition 5.8. For any h ∈ H(U) we have, for h = 1,

S(n,U ,h) =
β(h)

22h−1+h

∑
(Du)u∈UP
degDu=n

µ2
(∏

u

Du

)∏
u

2−hω(Du) +O

(
qn

n1−2−h

)
,

and, for h > 1,

S(n,U ,h) =
β(h)

22h−1+h

∑
(Du)u∈UP
degDu=n

µ2
(∏

u

Du

)∏
u

2−hω(Du) +O

(
qn

n1−21−h

)
.



352 S. Bae and H. Jung

Proof. We only prove the case when n is odd. The case when n is even
is very similar and we leave it to the reader. For h = 1, the result follows
from Corollary 5.6, since n is odd. Now assume that h > 1. By similar
computations to those leading to (5.6), we can write

S(n,U ,h) = 2−hβ(h)
∑

(Du)u∈UP
degDu=n

degDu≡hu mod 2

µ2
( ∏

u∈U
Du

) ∏
u∈U

2−hω(Du) +O

(
qn

n

)
.

Write U = {1, 2, . . . , 2h} for simplicity. Write D′i = Di+1 · · ·D2h , di = degDi

and d′i = degD′i to simplify the notation. By Lemma 5.5, we have∑
D1,D′1
d1+d′1=n

µ2(D1D
′
1)2−hω(D1)−hω(D′1)

= 2
∑

D1,d1≡h1 mod 2

∑
D′1,d

′
1=n−d1

µ2(D1D
′
1)2−hω(D1)−hω(D′1)

= 4
∑

D1,d1≡h1 mod2

∑
D2,d2≡h2 mod 2

∑
D′2,d

′
2=n−d1−d2

µ2(D1D2D
′
2)2−hω(D1)−hω(D2)−hω(D′2)

+
∑
D1

2−hω(D1)O

(
qn−d1

(n− d1)1−2−h

)
.

Now∑
D1

2−hω(D1)O

(
qn−d1

(n−d1)1−2−h

)
=
∑
d1

∑
`

p(d1, `)2−hω(D1)O

(
qn−d1

(n−d1)1−2−h

)

=
∑
d1

qd1

d1−2−h
1

+O

(
qn−d1

(n− d1)1−2−h

)
= O

(
qn

n1−21−h

)
.

Continuing this process, we get the result.

Now∑
(Du)u∈UP
degDu=n

µ2
(∏

u

Du

)∏
u

2−hω(Du)

=
∑
N∈A+

n

µ2(N)τ2h(N)2−hω(N) +O

(
qn

n

)
+O

( ∑
d≤n∗∗

∑
degD=d

2−hω(D)
∑

degM=n−d
2−hω(M)(2h − 1)ω(M)

)
=

∑
N∈A+

n

µ2(N) +O

(
qn

n

)
+O

( ∑
d≤n∗∗

qd

d1−2−h

qn−d

(n− d)2−h

)
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=
∑
N∈A+

n

µ2(N) +O

(
qn

n

)
+O

( ∑
d≤n∗∗

qn
1

d1−2−h

1
(n− n∗∗)2−h

)

=
∑
N∈A+

n

µ2(N) +O

(
qn

n

)
+O

(
qn
(

n∗∗

(n− n∗∗)

)2−h)

=
∑
N∈A+

n

µ2(N) +O

(
qn

n(1−η(h))2−h

)
= qn

(
1− 1

q

)
+O

(
qn

n(1−η(h))2−h

)
.

Hence

(5.15) S(n,U ,h) = 21−h−2hβ(h)qn
(

1− 1
q

)
+O

(
qn

n(1−η(h))2−h

)
.

Summing over h ∈ H(U) in (5.15), we get

(5.16)
∑

a∈A(U)

S(n, h,a) = 21−h−2hγ(U)qn
(

1− 1
q

)
+O

(
qn

n(1−η(h))2−h

)
,

where

γ(U) =
∑

(hu)∈H(U)

( ∏
u∈U

(−1)huλh(u)
)1+n ∏

u,v∈U
(−1)huhvΦh(u,v).

Now we sum over all the maximal subsets U of unlinked indices in (5.16)
and choose η(h) = 8−hε to obtain

Proposition 5.9. For every integer h ≥ 1 and every positive real ε,

S(n, h) = qn
(

1− 1
q

)
21−h−2h

(∑
U
γ(U)

)
+O(qnn−2−h+ε),

where the sum is over all the maximal subsets U of unlinked indices.

If q ≡ 3 mod 4, the argument of [FK07, §5.6, §6.1] works in our case too:

21−h−2h
∑
U
γ(U) =

{N (h, 2) if n is odd,

2−h(N (h+ 1, 2)−N (h, 2)) if n is even,

where N (h, 2) is the number of subspaces of Fh2 .
Finally,

S(n, h) =


N (h, 2)qn(1− 1/q) +O(qnn−2−h+ε) if n is odd,

2−h(N (h+ 1, 2)−N (h, 2))qn(1− 1/q) +O(qnn−2−h+ε)
if n is even,

with finishes the proof of Theorem 1.1.
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6. Proof of Theorem 1.6. In this section we also assume that q ≡ 3
mod 4. We are going to study the sums

S∗(n, h) :=
∑

D∈D∩A+,o
n

2h rk4(CD),

S∗mix(n, h) :=
∑

D∈D∩A+,o
n

2h rk4(CD) · 2rk4(ClD)

for a positive integer h and for positive even integes n→ +∞.

6.1. For r, s ∈ Q := {0, 1, 2, 3}, we define κ1(r, s) to be 1 if s = r + 2
and 0 otherwise. For D ∈ D, from Lemma 5.2 and by using the quadratic
reciprocity law, we get

(6.1) 2rk4(CD) =
1

21+ω(D)

∑
D=D0D1D2D3

∏
r,s∈Q

(
Dr

Ds

)κ1(r,s)

,

where Di ∈ D ∪ {1} for 0 ≤ i ≤ 3. Then as in §5, we have

(6.2) 2h rk4(CD) =
1

2h(1+ω(D))

∑
(Dr)

∏
r

∏
s

(
Dr

Ds

)κh(r,s)

,

where r = (r1, . . . , rh), s = (s1, . . . , sh) ∈ Qh, κh(r, s) = κ1(r1, s1) +
· · ·+κ1(rh, sh) and the sum is over all the 4h-tuples (Dr) of coprime square-
free monic polynomials such that

∏
rDr = D. Summing (6.2) over all

D ∈ D ∩ A+,o
n , we get

(6.3) S∗(n, h) = 2−h
∑

(Dr)∈D∗(n,h)

(∏
r

2−hω(Dr)
)∏

r

∏
s

(
Dr

Ds

)κh(r,s)

,

where D∗(n, h) is the set of all the 4h-tuples (Dr) of square-free monic
and coprime polynomials such that Dr ∈ D ∪ {1} and

∑
r degDr = n. Let

D∗1(n, h) be the subset of D∗(n, h) consisting of all (Dr) such that ω(Dr) > Ω
for some r ∈ Qh, and

Σ∗1 := 2−h
∑

(Dr)∈D∗1(n,h)

(∏
r

2−hω(Dr)
)∏

r

∏
s

(
Dr

Ds

)κh(r,s)

.

Then, by the same argument used to obtain (5.6), we get

(6.4) Σ∗1 � qn/n.

We say that Dr and Ds (or r and s) are linked if κh(r, s) + κh(s, r) ≡ 1
mod 2. We identify Q with F2

2, as in §5. Then Qh can be identified
with F2h

2 , and unlinked indices in Qh are just unlinked indices in F2h
2 as

in §5 (cf. [FK10, §7.6]). With this identification, A denotes the set of all
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4h-tuples (ar)r∈Qh of nonnegative integers such that
∑

r ar = n. As in §5,
for a ∈ A, we define

(6.5) S∗(n, h,a) := 2−h
∑

(Dr)∈D∗(n,h,a)

(∏
r

2−hω(Dr)
)∏

r

∏
s

(
Dr

Ds

)κh(r,s)

,

where D∗(n, h,a) be the subset of D∗(n, h) consisting of all (Dr) such that
degDr = ar and ω(Dr) ≤ Ω for all r ∈ Qh. Then, by (6.4), we have

(6.6) S∗(n, h) =
∑
a∈A

S∗(n, h,a) +O(qn/n).

Moreover, by similar computations to those proving (5.9), (5.12) and (5.13),
we get the inequalities

(6.7)
∑
a∈A1

|S∗(n, h,a)| � qnn8hη(h)−2−h−1
,

∑
a∈A2

|S∗(n, h,a)| � qn/n and
∑
a∈A3

|S∗(n, h,a)| � qn/n.

For (6.7), we use the inequality (which follows from Corollary 4.8)∑
N∈D∩A+,o

n−m

τr(N)2−hω(N) =
∑

N∈D∩A+,o
n−m

(r2−h)ω(N) � qn−mnr2
−h−1−1

instead of (5.10) in the proof of Proposition 5.4. Then we obtain

(6.8) S∗(n, h) =
∑
a∈A4

S∗(n, h,a) +Oh,ε(qnnε−2−h−1
).

Let U be any maximal subset of unlinked indices. Since A4 is the disjoint
union of the A(U)’s, we can write

(6.9)
∑
a∈A4

S∗(n, h,a) =
∑
U

∑
a∈A(U)

S∗(n, h,a).

By definition and the quadratic reciprocity law, for a ∈ A(U), we have

(6.10) S∗(n, h,a) = 2−h
∑

(Dr)∈D∗(n,h,a)

(∏
r∈U

2−hω(Dr)
)
.

For a ∈ A(U), let D∗(n,U ,a) be the set of all the 2h-tuples (Dr)r∈U of
coprime square-free monic polynomials such that Dr ∈ D∪{1}, degDr = ar
and ω(Dr) ≤ Ω for all r ∈ U . Then we can rewrite (6.10) as

S∗(n, h,a) = 2−h
∑

(Dr)∈D∗(n,U ,a)

(∏
r∈U

2−hω(Dr)
)
.

Let D∗(n,U) be the set of all the 2h-tuples (Dr)r∈U of coprime square-free
monic and coprime polynomials such that Dr ∈ D∪{1} and

∑
r degDr = n,
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and let
S∗(n,U) := 2−h

∑
(Dr)∈D∗(n,U)

(∏
r∈U

2−hω(Dr)
)
.

Write D =
∏

rDr. Then

(6.11) S∗(n,U) = 2−h
∑

D∈D∩A+,o
n

τ2h(D)2−hω(D) = 2−h · D(n).

By the same techniques used to obtain (6.4) and (6.7), we also have

(6.12) S∗(n,U) =
∑

a∈A∗(U)

S∗(n, h,a) +Oh,ε(qnnε−2−h−1
).

Now (6.8), (6.9), (6.11) and (6.12) yield

Proposition 6.1. For every integer h ≥ 1 and every positive real ε,

(6.13) S∗(n, h) = 2−h · D(n)
(∑
U

1
)

+Oh,ε(qnnε−2−h−1
),

where the sum is over all the maximal subsets U of unlinked indices.

By using the fact that (cf. [FK10, Lemmas 41 and 42])∑
U

1 = 2h ·
h−1∏
j=1

(2j + 1),

we get

(6.14) S∗(n, h) =
h−1∏
j=1

(2j + 1) · D(n) +Oh,ε(qnnε−2−h−1
),

which completes the proof of the first part of Theorem 1.6.

6.2. Now we consider the sum S∗mix(n, h). Let

S�(n, h) :=
∑

D∈D∩A+,o
n

2h rk4(CD)

2ω(D)

∑
D=D0D1D2D3

(
d0d̄1

d2d̄3

)2

4

,

where Di ∈ D∪{1} and Di = did̄i is a privileged factorization for 0 ≤ i ≤ 3.
Then it follows from Corollary 2.13 that

(6.15) S∗mix(n, h) = 1
2S
∗(n, h+ 1) + 1

4S
�(n, h).

The equality (6.2) implies

(6.16)
2h rk4(CD)

2ω(D)

∑
D=D0D1D2D3

(
d0d̄1

d2d̄3

)2

4

=
1

2h · 2(h+1)ω(D)

∑
(Dr)

∑
d

∏
r

∏
s

(
Dr

Ds

)κh(r,s)(
d0d̄1

d2d̄3

)2

4

,
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where the sum is over (Dr)r∈Qh and d = (D0, D1, D2, D3) such that

(6.17) D =
∏
r

Dr = D0D1D2D3.

For i ∈ Q and r ∈ Qh, let Dr,i := gcd(Dr, Di). These parametrize the
solutions of (6.17) by writing Dr =

∏
iDr,i and Di =

∏
rDr,i with the

conditions ∏
r

∏
i

Dr,i = D.

Summing (6.16) over all D ∈ D ∩ A+,o
n , we get

(6.18) S�(n, h)

= 2−h
∑

(Dr,i)∈D�(n,h)

(∏
r,i

2−(h+1)ω(Dr,i)
){∏

r,i

∏
s,j

(
Dr,i

Ds,j

)κh(r,s)}

×
{∏

r

∏
s

(
dr,0

ds,2

)2

4

}{∏
r

∏
s

(
dr,0

ds,3

)2

4

}
×
{∏

r

∏
s

(
dr,1

ds,2

)2

4

}{∏
r

∏
s

(
dr,1

ds,3

)2

4

}
,

where D�(n, h) is the set of 4h+1-tuples (Dr,i) of coprime square-free monic
polynomials such that Dr,i ∈ D∪{1} and

∑
degDr,i = n, and where Dr,i =

dr,idr,i is a privileged factorization.
To bound the number of prime divisors of the summation variables, we

replace the constant Ω in §5 by

Ω′ := e4h+1(log n+ b0).

Then as in (5.6), the contribution Σ�1 of the (Dr,i) ∈ D�(n, h) such that
ω(Dr,i) > Ω′ for some (r, i) to the right hand side of (6.18) is O(qn/n).

Let A� be the set of all 4h+1-tuples (ar,i)(r,i)∈Qh+1 of nonnegative integers
such that

∑
r,i ar,i = n. For a ∈ A�, let

(6.19) S�(n, h,a)

:= 2−h
∑

(Dr,i)∈D�(n,h,a)

(∏
r,i

2−(h+1)ω(Dr,i)
){∏

r,i

∏
s,j

(
Dr,i

Ds,j

)κh(r,s)}

×
{∏

r

∏
s

(
dr,0

ds,2

)2

4

}{∏
r

∏
s

(
dr,0

ds,3

)2

4

}
×
{∏

r

∏
s

(
dr,1

ds,2

)2

4

}{∏
r

∏
s

(
dr,1

ds,3

)2

4

}
,
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where D�(n, h,a) is the subset of D�(n, h) consisting of all (Dr,i) such that
degDr,i = ar,i and ω(Dr,i) ≤ Ω′ for all (r, i) ∈ Qh+1. Then we have

Lemma 6.2. For any integer h ≥ 0 and any positive ε,

(6.20) S�(n, h) =
∑
a∈A�

S�(n, h,a) +Oh,ε(qnnε−2−h−2
).

Lemma 6.3. We have

(6.21)
∑
a

|S�(n, h,a)| = O(qn/n),

where the sum is over those a = (ar,i) ∈ A� satisfying∑
r

ar,0 +
∑
r

ar,1 > 0 and
∑
r

ar,2 +
∑
r

ar,3 > 0.

Proof. We can follow the proof of Lemma 46 in [FK10], replacing
(logX)100·10k by 4 logq n.

By the quartic reciprocity law, Lemmas 6.2, 6.3, and symmetry, we have

S�(n, h) = 2
∑
a∈A�0

S�(n, h,a) +Oh,ε(qnnε−2−h−2
),

where A�0 is the subset of A� consisting of (ar,i) such that ar,2 = ar,3 = 0.
For a ∈ A�0, since Dr,2 = Dr,3 = 1 for all (Dr,i) ∈ D�(n, h,a), we have

S�(n, h,a)

= 2−h
∑
Dr,0

∑
Dr,1

(∏
r

2−(h+1)ω(Dr,0Dr,1)
){∏

r

∏
s

(
Dr,0Dr,1

Ds,0Ds,1

)κh(r,s)}
,

where Dr,i ∈ D ∪ {1} are coprime, degDr,i = ar,i and ω(Dr,i) ≤ Ω′ for
all (r, i) ∈ Qh × {0, 1}. Since the error term involved in the condition
ω(Dr,i) > Ω′ for some (r, i) is O(qn/n), we have

(6.22) S�(n, h) = 2−(h−1)
∑
Dr,0

∑
Dr,1

(∏
r

2−(h+1)ω(Dr,0Dr,1)
)

×
{∏

r

∏
s

(
Dr,0Dr,1

Ds,0Ds,1

)κh(r,s)}
+Oh,ε(qnnε−2−h−2

),

where Dr,0, Dr,1 ∈ D ∪ {1} are coprime and satisfy∑
r

degDr,0 +
∑
r

degDr,1 = n.
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Setting Dr = Dr,0Dr,1 (we have 2ω(Dr) possibilities), we modify (6.22) into

S�(n, h) = 2−(h−1)
∑
Dr

(∏
r

2−hω(Dr)
){∏

r

∏
s

(
Dr

Ds

)κh(r,s)}
+Oh,ε(qnnε−2−h−2

),

where Dr ∈ D ∪ {1} are coprime and
∑

r degDr = n. Then (6.3) implies

(6.23) S�(n, h) = 2S∗(n, h) +Oh,ε(qnnε−2−h−2
).

By inserting (6.23) into (6.15), we get

S∗mix(n, h) = 1
2S
∗(n, h+ 1) + 1

2S
∗(n, h) +Oh,ε(qnnε−2−h−2

).

Therefore, by (6.14) and the equality

1
2

h∏
j=0

(2j + 1) +
1
2

h−1∏
j=0

(2j + 1) = (2h−1 + 1)
1
2

h−1∏
j=0

(2j + 1),

we have

S∗mix(n, h) = (2h−1 + 1)
h−1∏
j=0

(2j + 1) · D(n) +Oh,ε(qnnε−2−h−2
),

which finishes the proof of the second part of Theorem 1.6.
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