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1. Introduction and statement of the results. In [CL84], Cohen
and Lenstra have built a probabilistic model to guess the frequency of some
algebraic properties of the narrow class group Cp of the ring of integers
of the quadratic fields Q(v/D), where D is a fundamental discriminant.
One of the consequences of the Cohen-Lenstra heuristics is to describe
the distribution of the values of rk,(Cp) as D ranges over the set of posi-
tive or negative discriminants, and p is a fixed odd prime. These heuristics
do not concern the special prime p = 2. In [Ge87], Gerth extended these
heuristics to the case p = 2 by considering rk,(C%). Recently Fouvry and
Kliiners [FK07] have proved Gerth’s extensions of some of the conjectures
in [CL8&4].

Let us describe the results of Fouvry and Kliiners more precisely. Let
f(D) be a real valued function defined over the set of fundamental discrim-
inants D. Then M™(f(D)) is, by definition, the mean value of f(D) over
positive fundamental discriminants D if

hm ZO<D<X f(D)
X—4o00 ZO<D<X 1

M™(f(D)) is defined similarly for negative fundamental discriminants. Con-
sider the following conjectures of Cohen—Lenstra extended to p = 2 by
Gerth:

CoNJECTURE 1 ([CL84) (C6), (C10)], [Ge8T]). For every prime number p
and every integer r > 0,

/\/l+( H (prkp(C%) _pi)) —p" and M- ( H rkp(C )) 1

0<i<r 0<i<r

= MT(f(D)).
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In [FKO7], Fouvry and Kliiners have proved that Conjecture 1 is true for
p = 2 and every integer r > 0. Let N'(h,p) denote the number of subspaces
of IE‘Z. For the proof, Conjecture 1 is modified as follows:

CONJECTURE 2. Let p be a prime number and h be a nonnegative integer.

Then ,
MF (M CR)) = p™ (N (b +1,p) = N(h, )
and
M (p"rCB)) = N (h, ).

Then they proved that Conjecture 2 is true for p = 2 and any integer
h > 0.

Another conjecture of Cohen—Lenstra, extended to p = 2 by Gerth, con-
cerns the density of the fundamental discriminants D with fixed 1k, (C3).

CoNJECTURE 3 ([CL84, (C5), (C9)], [Ge8T]). Let r be a nonnegative
integer and p be a prime number. Then the density of the positive (resp.
negative) fundamental discriminants D such that vk,(C%) = r is equal to

Moo (P) < Moo (P) ) ’

resp. —5———
Pt On, (p)nr41(p)

P (p)?
where My (t) = H?Zl(l —t77) for 0 < h < 4o0.

In [FKO06], Fouvry and Kliiners have shown that if for some prime num-
ber p, Conjecture 1 is true for every integer r > 0, then Conjecture 3 is also
true for this p for every integer r > 0. Thus, Conjecture 3 is true for p = 2
and every integer r > 0.

Let d be a square-free positive integer and consider the negative Pell
equation
(1.1) 2 — dy? = —1.

Write D for the fundamental discriminant of the quadratic field Q(v/d).
Then the solvability of the negative Pell equation (1.1)) is equivalent to
N(ep) = —1, where ep is the fundamental unit of Q(v/D) and N is the
norm map from Q(v/D) to Q. Let D be the set of special discriminants, i.e.
D={D>0:p|D=p=1or2mod4}.

For X > 1, we denote by D(X) the cardinality of D N[0, X] and by D~ (X)
the cardinality of {D € D:0 < D < X, N(ep) = —1}. Let us introduce the
constants

+00
_ 9 —2\1/2 L i i1
o= o || (1—p77) and a.—'||(1—21)—'||(1+2]) :
p=1mod4 jodd j=1

It is well known that D(X) is asymptotic to ¢; X/+/log X. In [St93], Steven-
hagen proposed the following two conjectures:
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CONJECTURE 4. As X — 400, we have D~ (X) ~ (1 — a)D(X).

CONJECTURE 5. The number of square-free positive integers d < X for
which (L.1) is solvable is asymptotic to (1 — )X, where X = %ch/\/log X.

In a recent paper [FK10], Fouvry and Kliiners have proved that as
X — 400,
(@ —0(1))D(X) <D (X) < (2/3+ o(1))D(X)

and deduced an asymptotic lower bound (o — o(1))X and an upper bound
(2/3+0(1))X for the number of square-free positive integers d (0 < d < X)
for which is solvable.

In this article we consider the analogous problems in the function field
setting. Let k := F,(T'), where ¢ is a power of an odd prime number p
and A := F,[T]. For convenience, we fix the following subsets of A: AT :=
{A € A : Aismonic}, At := {A € AT : Aissquare-free} and A :=
{P € A" : P isirreducible}. For any integer n > 0, we also write A} :=
{A € AT : degA = n}, AT° := AP N A} and Aj;m = Al N A}, Let
koo be the completion of k at oo := (1/7T) and sgn : k* — I be the sign
map such that sgn(A) is the leading coefficient of A for all 0 # A e A
Write sgii(z) := sgn(z)@D/2. For a finite extension K of k and a place
v of K lying above oo, we define 5gn, (v) := Sgn(N,/o0(2)), Where N,/
denotes the norm map from the completion K, of K at v to k. An element
x € K* is called totally positive if sgn,(z) = 1 for any v |oo. Throughout
the paper we only consider field extensions of k contained in koo (“/—1/T).
The case when ¢ = 3 mod 4 is very close to the classical case, but the case
when ¢ = 1 mod 4 is different (cf. [BJ, Lemma 2.2] or Lemma below).
Our main results in this paper concern the case when ¢ = 3 mod 4. But the
results in Sections 3 and 4 hold for any odd gq.

For any 1 # D € AT°_ let kp := k(V'D), where D := (—1)48PD_ and
Op be the integral closure of A in kp. Let Clp be the ideal class group
of Op. Let Cp be the narrow ideal class group of Op, that is, the quotient
group of fractional ideals of Op modulo principal fractional ideals generated
by totally positive elements of kp.

1.1. Results on the 4-rank of the narrow ideal class group Cp.
Let f(D) be a real valued function defined on A*°. We say that M™(f(D))
is the mean value of f(D) over ARG = {D € At°:deg D is even} if

lim ZD6A+°f( )

n—-400 ZD€A+01

neven

= M (f(D)).

We define similarly M~ (f(D)) for A3 := AT°\ AL, As in the classical

case, we formulate the following conjectures:
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CONJECTURE 6. For every prime number £ # p and every integer r > 0
we have

o Conj™(¢,r): MH([Tgeyer (*CD) — 01)) = £,

e Conj~ (¢,r): M‘(HOSKT(W“(C%) — 1)) = 1.

CONJECTURE 7. Let £ # p be a prime number and a be an integer. Then
o Conjl_ (¢, h): MF(£05eCh)) = =h(N (h + 1,£) — N'(h, £)).

o Conj__ (¢, h): M~ (£7eCh)y = N(h, 0).

CONJECTURE 8. Let r be a nonnegative integer and £ # p be a prime

number. Then the density of D € A&yS, (resp. D e Aj(ig) such that tk(C%)
=71 is equal to

Moo (£) (Tesp. 0] )
ET(T+1)77T(€)77T+1(€) grznr(g)Q
For any positive integers n and h, we define
S(n,h) := Z ohrka(Cp)
DeA°
where 1k4(Cp) = 1k2(C%) denotes the 4-rank of Cp. In §6] we shall prove

THEOREM 1.1. Assume that ¢ = 3 mod 4. For any positive integers n, h
and any positive real €, we have

N(h,2)q"(1 = 1/q) + Opc(q"n 2"+ if n is odd,
S 1) =4 27 W (4 1,2) = N (3. 2))q" (1 = 1/q) + Oneq"n=> ")

if n is even.

Since [A°| = ¢*(1 — 1/q) (cf. [Ro02, Proposition 2.1]), Theorem
immediately yields

COROLLARY 1.2. Assume that ¢ = 3 mod 4. Then the conjectures
Conjt 1(2,h) and Conj__,(2,h) are true for any positive integer h.

It can be easily shown that Proposition 1 of [FK07] remains valid in
the function field case too, that is, for a prime number ¢ # p and positive
integer 79, Conj™ (¢,7) (resp. Conj~(£,7)) is true for every 0 < r < ry if and
only if Conjt (¢,r) (resp. Conj__4(¢,7)) is true for every 0 < r < rg. Thus
Corollary implies

COROLLARY 1.3. Assume that ¢ = 3 mod 4. Then the conjectures
Conj*(2,7) and Conj~(2,7) are true for every integer r > 0.

As in Theorem 1 and 2 of [FKO06], we can show that if, for some prime
number ¢ # p, Conjecture 6 is true for every integer r > 0, then Conjec-
ture 8 is also true for this ¢ for every integer » > 0. In the proof we need



4-rank of ideal class groups 329

to replace N(X,r) = [{D : 0 < £D < X, tky(C%) = r}| by N(n,r) :=
{D € A} : 1k, (C%) = r}| and X appearing as denominators by ¢ (cf. §4
and §5 in [FK06]). Thus we have

COROLLARY 1.4. Assume that ¢ = 3 mod 4. Then Conjecture 8 is true
for £ =2 and all integers r > 0.

1.2. Results on the negative Pell equation. Let D € A"™° be of
even degree, and y be a fixed generator of Fy. We call the equation

(1.2) X2 _Dy?=y

a negative Pell equation. As in the classical case, the solvability of is
equivalent to N'(ep) € F} \ F;?, where ep is a fundamental unit of kp and
N is the norm map from kp to k. Clearly is solvable only if deg P
is even for any P € A dividing D. Note that when ¢ = 3 mod 4, the

solvability of (1.2) is the same as the solvability of X2 — DY? = —1. Let
D :={D € At :deg P is even for any P € A} dividing D}. For a positive

or

even integer n, write D(n) := [D N A} °| and D~ (n) := {D € DN AL :
N(ep) € F; \F;2}| It can be shown that
qn
D(n) ~ —.
()~ 2
Let | oo |
a:=JJa-27)=[Ja+27)"
j odd 7j=1

THEOREM 1.5. Assume that ¢ = 3 mod 4. For even integers n — 400,
(@ —0(1))D(n) <D (n) < (2/3+ 0(1))D(n).

For any positive even integer n and any positive integer h, let

S*(n, h) = Z 2hrk4(CD)’
DeDNA°

mix (12, ) = Z ohtks(Cp) | 9rka(Clp)
DeDNAL?

In we shall prove the following analogue of [FK10, Theorems 3 and 4]:

THEOREM 1.6. Assume that ¢ = 3 mod 4. For any positive integer r and
any positive real €,
h—1
§*(n,h) = [[(27 +1) - D(n) + One(g"n "),
§=0
h—1
L h) = @+ D [[@ +1) - D(n) + Ope(g™n™ " 7).
§=0
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Theorem [L.H] follows from Theorem [L.] as in the classical case. We have
an exact sequence
(1.3) 1— Fp—Cp—Clp—1,
where |Fp| < 2. It is known that |Fp| = 2 if and only if deg D is even and
N(ep) € Fi?. Thus Cp = Clp if and only if N'(ep) € F; \ F;2. By the exact
sequence (|1.3)), we have
(1.4) rkon (Cp) — 1 <1kon(Clp) < rkon(Cp) for all h > 1.
By genus theory,

tke(Cp) = w(D) — 1,

where w(D) is the number of prime divisors of D. As in the classical case

we have the following lemma.

LEMMA 1.7. Let D € A™° be of even degree with |Fp| = 2. Then the
following are equivalent:

(i) CD = Z/QZ X CZD.
(ii) There exists P € A dividing D of odd degree.

In this case C3, = Cl3,.
Therefore D € D if and only if rka(Cp) = rka(Clp). For D € D, N(ep) €
F \ F;? if and only if rkon (Cp) = rkon (Clp) for all h > 2. Thus we have
LEMMA 1.8. For D € D with rk4(Cp) = 0, we have N'(ep) € F; \ F;2.
LEMMA 1.9. Let D € D. If N(ep) € Fi \ F:?, then rky(Cp) = rky(Clp).
For any nonnegative integers a and b, we define

+0 B B
5(a,b) == lim HDeDnAy" : rk42()C(D; =a, tky(Clp) = b}\.
n—-—+0oo n

n even

By (1.4), we have 6(a,b) =0if 0 < a <bor 0 < b < a— 1. Following the
argument of §2 in [FK10] and using Theorem we get

_ [27%ax(a) ifa=b,
(1.5) d(a,b) = { (1-2"%an(a) ifa=0b+1,

where aqo(a) = aH?zl(Qj —1)7!. Thus we have

COROLLARY 1.10. For any nonnegative integer r, as even integers
n — 400,

H{D € DNAL® 1 1ky(Cp) = r}| ~ aoo(r) - D(n),
HD e DNA? :1ky(Clp) = 7} ~ 3- 27" L (1) - D(n).
Now we follow the argument of [FKI10, §1.2] to get Theorem from
Corollary and Lemmas [I.§ and
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2. 4-ranks of class groups of quadratic function fields. In this
section we give some criteria for the 4-ranks of Cp and Clp. Throughout
this section, we assume that ¢ = 3 mod 4.

2.1. Case of the narrow ideal class group Cp. For any a,b € k*,
let (alb) € {0,1} be the Hilbert symbol, that is, (alb) = 1 if and only if the
equation

22 —ay? —bz2 =0
has a nontrivial solution in k3.

LEMMA 2.1. Let a,b,c € k*. Then:

(i) (alb) = (bla), (al1) =1, (ac’|b) = (alb), (a|]—a) =1, (alb) = (a|—ab).

(ii) If (a|b) =1, then (albc) = (alc).

(iii) Leta,b € A be square-free and (a,b) =1 withb € AT. Then (alb) =1

if and only if a is a square modulo b and b is a square modulo a,
where @ = sgn(a) la.

Proof. (i) and (ii) are easy. (iii) follows from the Hasse-Minkowski prin-
ciple and the product formula for Hilbert symbols since ¢ is odd. =

LEMMA 2.2. Let B € AT be a divisor of D. Then (B|D) = (B|-D/B).

Proof. (B|-D/B) = (B|BD/B) = (B|D). u

Let D= P;--- P, where P; € AT Let p; be the unique prime ideal of

rr*®

Op lying above P;. For any nonzero ideal a of Op, let [a]; denote the image
of ain C D-

LEMMA 2.3. We have C§ = ([p1]+, -, [pi]+), where G = Gal(kp/k).

Proof. Recall that it is assumed that ¢ = 3 mod 4. Then the result fol-
lows immediately from Lemma 2.2 of [BJ]. =

Let P be the trivial class in Cp and
B:={p{---p" e, €{0,1} for 1 <i <t}

LEMMA 2.4.
(i) 24(Cp) = |{B% € Cp : B* = P}|.
(i) 24(C0) =L {b € B : a® = (a)b for suitable a and totally positive a}|.
Now we prove
PRrROPOSITION 2.5 (First criterion). We have

otka(€o) — 11{B € A™°: B|D and (B|D) = 1}|.

Proof. For a nonzero ideal a of kp let N(a) be the monic generator of
the ideal aa’, where d’ is the conjugate of a. Let N be the norm map from kp
to k. Then it is easy to see that, for every a € kp, we have N((a)) = N (a)
up to Fy.
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Let B € AT° be a divisor of D. Suppose first that (B|D) = 1, that is,
B = N(b) for some b € kp. By clearing denominators we can find a € kp
such that N'(a) = BW? with W € A*. Thus a or va is totally positive.
Then as in [FK07] we have (a) = ba?, where b is the unique ideal of kp with
N(b) = B and N(a) = W.

Now assume that a? = (a)b with b € B and a totally positive. Let B =
N(b). Then N((a)) = N(a) up to F}?, so we may assume N((a)) = N(a).
Then N (a) = N(a)?/N(b) = B- (N(a)/B)?. =

Now we are going to describe the second criterion for 2'¥4(€p) when
D € D. Let N be a maximal abelian extension of kp, unramified at all finite
places, whose Galois group Gal(N/kp) has exponent dividing 4. Write

A= Gal(N/kp) = Cp/C}, = C(4)" x C(2)*,

where C'(m) denotes the cyclic group of order m. Then Lemma 11 of [FK10]
remains valid in this case too.

We say that { Dy, Do} is a decomposition of D € AT if D = Dy D5 with
D1, Dy € AT. A decomposition { D1, Do} of D is said to be of the second type
if (D1|D32) = 1, or, equivalently the following conditions hold (cf. Lemma 6
in [FKO7], Lemma 13 in [FK10]):

<l]);> =1for P| Dy, P €A} and (%) =1for P| Dy, P € Al.
As in §3.2 of [FK10], any C(4)-extension K4 of kp unramified at finite places
corresponds to a decomposition {D1, D2} of D of the second type, i.e. Ky
is a quadratic extension of Ko = k(1/D1,+/D3). For each monic divisor D’
of D not contained in {1, Dy, Do, D}, the field K4(v/D’) contains a C(4)-
extension K/ of kp unramified at finite places and different from Ky. It is
easy to see that Ky is totally real if and only if K/ is totally real. Since we
get the same K/ if two D’s only differ by a square in Ky, there are 2¢(P)=2
C'(4)-extensions of kp unramified at finite places and corresponding to the
decomposition {Dy, Da}.

LEMMA 2.6. Let D € D and {D1, D2} be a decomposition of D of the
second type. Then there exists a nontrivial solution (x,y,z) € A® of
1'2 — D1y2 — D2Z2 =0
such that:
(i) 22, D1y?, D222 are pairwise coprime and x € A7,
(ii) degx > max {degy + %deg Dy,deg z + %deg Dg}.

Proof. (i) is clear. Suppose that degx < degy + %deg D;. Since z?

D1y? + D522, we have degy + %deg Dy = degz + %deg D5 and sgn(y)? +
sgn(z)? = 0, which cannot happen for ¢ = 3 mod 4. Thus (ii) follows. =
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Let D € D and {D;, D2} be a nontrivial decomposition of D of the sec-
ond type. Let a := x+y+/D1, where (z,y, 2) is the solution as in Lemma
and y is chosen so that deg(x +y+/D1) = deg z. We may assume « is totally
positive by multiplying it by some element a € F}. Let Ky := k(v/D1,v/Ds)
and Ky := Ka(y/a). Then Ky is a C'(4)-extension of kp unramified at finite
places and corresponding to { Dy, Dy}.

Now one can follow §3.2 of [FK10] to get the following proposition.

PROPOSITION 2.7 (Second criterion). Let D € D. Then

2k4(Co) — |{{Dy, Dy} : {D1, Dy} is a decomposition of D
of the second type}|.

2.2. Case of the ordinary ideal class group Clp. For any A € A
and P € A, we define

rr’
1 if (%) =1 and A is a fourth power modulo P,
[A,Pla:=4¢ —1 if (%) =1 and A is not a fourth power modulo P,
0 otherwise.
For B= P;--- P, € AT, we define

[A, Bly :=[A, Pi]a- - [A, Psa.

LEMMA 2.8. Let D € D and {D1, D2} be a decomposition of the second
type. Let (x,vy,2) be a solution of x? — Diy* — D22? = 0 as in Lemma 2.6
Then:

O (5,) = (&) =1

(ii) (Dil) = [D2, D1]4 and (D%) = [D1, Ds]4.
(i) ()= ("52) = ()
Proof. Straightforward. =

PROPOSITION 2.9. Let D € D and {Dy, D2} be a nontrivial decompo-
sition of D of the second type. Then the corresponding unramified C(4)-
extensions are totally real if and only if [D1, D3]y = [D2, D1]4.

Proof. Let K4 = Ka(y/a) be the C'(4)-extension of kp defined in §2.1. It
is sufficient to show that Ky is totally real if and only if [Dy, D4 = [D2, D1]4.
We can easily see that Ky is a totally real extension of k if and only if deg x
is even, and by using Lemma [Dy, Dy)4[ D2, Dy]g = (—1)9%8. Hence we
get the result. =

Now using Lemma 11 and the remark before Theorem 5 of [FKI0], we
get the following criterion:
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PROPOSITION 2.10. Let D € D. Then 2%4(Cp) s given by
%H(A’ B) € (A+,o)2 : D= AB, [A7 B]4 = [BaA]4 =1 or —1}|

Let B := F2[T] and k' := F2(T). Let 3 = v/—1 € B. Then B = A[3].
We use @ to denote the conjugate of v € k/ over k. Since ¢ = 1 mod 4, the
quartic residue symbol (—)4 can be defined on B.

LEMMA 2.11. Let P € Al be of even degree, decomposed as P = 77

1rr

with m € BY and A € A. Then:

ur

) (2);=(5):

(ii) A is a 4th power modulo P if and only if ( ) =1.

(iii) A is a square but not a 4th power modulo P if and only if ( ) —1.
v)

(iv) [A, Pla=3(1+(£))(2),-

Proof. This follows from the fact that B/(w) = A/(P) and the defini-
tions. =

A prime 7 = A + 3B € B is called privileged if sgn(B) € IF‘*2 nd
the degree of N'(7) = P € A" is even, where N is the norm map from K
to k. An element of BT is called privileged if it is a product of privileged
irreducible elements. It is clear from the definition that every D € D can be
written uniquely as D = 00 with 0 privileged. Such a factorization is called

a privileged factorization.
Using Lemma [2.11{(iv) and Proposition we get

PropoSITION 2.12. For any D € D,

o 3 (G () ()

P|B

where A, B € AT and A = aa, B = bb are privileged factorizations.

COROLLARY 2.13. For any D € D,

9tk (Cp) 1 001\’
2.1 grka(Clp) — -1
( ) 2 T 4 . 9w(D) Z 0203 4’

D=DyD1D2D3

where Dy, Dy, Do, D3 € AT and Dy = Uoﬁo,Dl = 3151,D2 = 0909 and
D3 = 0303 are privileged factorizations.

3. Character sums in A = F,[T]. The results in this section hold
true for any odd ¢g. We do not assume ¢ = 3 mod 4. Let A be an additive
character of conductor F' € A of degree f. Then ) is completely determined



4-rank of ideal class groups 335

by the additive characters A(®) : F, — C* for 0 <@ < f—1, given by
MO (a) = A(aT"). Let Tr = Trp, /v, be the trace map of Fy into F;. Since
the bilinear form («, ) := C;Pr (@B) 4 nondegenerate, each additive character
A is completely determined by \; € F q such that A () = CpT I(Mi), where
(p is a fixed primitive pth root of unity in C. Therefore we say that an
additive character A modulo F'is determined by (Mo, ..., Af—1) € Fg if

f-1 f-1
A(Z aiTi> = T g,
=0 =0

We associate an f x f matrix A to each additive character A modulo F' as
follows. For M € A, write My for the polynomial of degree < deg F' which
is congruent to M modulo F. Let cp;(M) be the coefficient of T in Mp
and cp(M) = (cpo(M),...,crp-1(M)). Write F = T/ —bp_yT/71 — ...
— b1T — bgy. For ¢ > 0, write
-1
Ti-1+ = Z €i,o1" mod F.
a=0
Then we have the recursive formula
€i+1,5 = €ij—1 + bj€ip 1,
where ¢;; = 0 for j <0, €0; =0for j < f—1, € r—1 =1and e ; = b;.
Define
>\z',j = )\/L'+j ifj<f—i,
f—1
)\i,f—i+a = Zea’j)\j for0<a <.
j=0

Let A be the f x f matrix with entries ); ;. Then we can easily see that
w3l
(3.1) MAX) = a0 eralAX)Aa) _ (Tr(er(4)der (X))

Note that A is symmetric, since A(AX) = A(X A). In fact, \; j = A\, when-
ever i + j = a + b. It is not difficult to see that an additive character A is
primitive if and only if the associated matrix A is nonsingular.

For a primitive multiplicative character xy and an additive character A of
conductor F'; we define the Gauss sum 7(x, \) by

TOGA) = Y x(M)AM).
M mod F'

For an additive character A and N € A, let Ay be the character defined by
AN(A) = A(NA). As in Lemmas 4.7 and 4.8 of [Wa97], we have the following
lemmas.
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LEMMA 3.1. Let x be a primitive multiplicative character and A an ad-
ditive character modulo F' of degree f. Then

X(NTCA) = Y X(MAMN) = 7(X, An),
M mod F

)‘(A) = ¢(F) XrgFX(A)TOO )‘)7

where ¢(F) = |(A/FA)*|.
LEMMA 3.2. Let x be a primitive multiplicative character and A an ad-
ditive character modulo F' of degree f. Then
(0, A)| = {qf/2 if A is primitive,
if A is mot primitive.
COROLLARY 3.3. Let x be a primitive multiplicative character and A an
additive character modulo F' of degree f. Then

T XaA — T(X7)\7_17XN
o) = T A S s =TT A,
q M mod F q
For an integer » > 0 and X € A, define
(A X)= > AM-NX).
NeAt
Note that a,.(A, X) =0 for r > f, unless X # 0 mod F.
LEMMA 3.4. Let the notation be as before and write
Acp(X) = (Do(X), D1(X),...,Dr_1(X)).
Then, forr < f,

OCT(A,X) _ {qTCI:[Y(Dr(X)) ’Lf Do(X) — . = Drfl(X) — O,

0 otherwise.
Proof. From (33.1)) we can easily see that

a-(\, X) = g}’ol‘r(Dr(X)) ﬁ ( Z C;‘r(aiDi(X)))

=0 CLZ'E]Fq
and the result follows. m

Now we will prove an analogue of the Pdélya inequality [Ap76, Theo-
rem 8.21], which will be used to prove Proposition

LEMMA 3.5. Let x be a primitive multiplicative character modulo F of

degree f. Then
‘ > X(N)‘ < g’
NeAt
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Proof. Note that 3y ,+ x(N) =0 for r > f. We therefore assume that
r < f. Let A be a primitive additive character modulo F'. By Lemma [3.2
and Corollary [3.3] we have, for any subset Z of A,

P3| =[S xamN < S| A-MN)|

NeZ NeZ M mod F MmodF NeZ

Let Z = Ajf. Then |} ez A(—MN)| = |a (X, M)| equals ¢" if and only if
M satisfies D;(M) =0 for 0 < i < r — 1, and 0 otherwise. Thus cp(M) =
(co(M),...,cp—1(M)) satisfies 7 linearly independent relations, and so there
are ¢/ " possible M’s with |a,.(\, M)| = ¢", which completes the proof. =

Let 1 be the Mobius function on A, i.e., for any N € A, u(N) = (—1)*(V)
if N is square-free and p(N) = 0 otherwise. For M = B[, P{* with P; € A}
and § € Fy, define the Jacobi symbol by

() () e (5)

7

where (%) is the Legendre symbol. We prove the following analogue of

[FK07, Lemma 15).

PROPOSITION 3.6. Let apr and by be complex numbers of modulus less
than 1 for M,N € A™. Then

N m-+n —m —-n
XS aenrm) (g )| < i,
MeAL Neat
Proof. Let
A= X awnraneo (35)]
M
MeAt NeAf
Then using the Cauchy—Schwarz inequality, we have

A<y 1y | D aMbNMZ(M)MQ(N)G\;)

2

MeA), MeAl,  NeAb
N 2
< ¥ wan| ¥ maren ()
Meafk, NeAt
m 2 2 2 N1Ny
=9 Z H (M) Z Z bN1bN2:u (Nl):u’ (NZ) M
MeAL Ni€A} NocAt

:qm‘ Z Z b, by p® (N1) i (Na) Z M2(M)<N]1\iv2 ‘

Ni€AL NocAf MeAf
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ThUS,
= E E Ny NQ,U 1)1 2 E H 7‘ '-

N1€AL NaoeAd MeA},

<o Y Yy o X won(X))

NieAY NoeAl Neaj, ~Meaf,

<22t N pA(My) Y (M) Y <MiVM2>-

2

MieAf, Ma€EAS, NeAd,
If M1 = MQ, then
> (3mm) ="
My My '
NeAd,

From Lemma [3.5] for My # Ms, we have

> (Mi\f%) <q™

NeAd,

Therefore,
A4 < 2q2m+2n(qmq2n + (q2m _ qm)qm) < q5m+2n + q3m+4n'

Hence
A< qm+n(q(m—2n)/4+q—m/4)‘

Now by interchanging M and N, we get
A< qm+n(q(n—2m)/4+q—n/4)'
It is easy to see that
min{q(mf2n)/4 +q7m/47q(n72m)/4 +q7n/4} < qu/4 _i_qfn/él'

Hence we get the result. m

We remark that since Proposition holds for any ¢, we do not need
any analogue of Proposition 9 of [FK10].
We quote the following estimate of character sums for later use.

PROPOSITION 3.7 ([Hs98, Theorem 2.1]). Let x be a nontrivial character
modulo M. Then
qn/2
| ()| < (degm+ )L
PeAf

irr,n

COROLLARY 3.8. For any positive real number €,

‘ Z X(P)‘<<e 3ne
PeAt

irr,n
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4. A Brun—Titchmarsh theorem for multiplicative functions
over A. Again ¢ is an arbitrary power of an odd prime. In this section
A, B,C (resp. L, M, N) usually denote polynomials (resp. monic polynomi-
als) in A = [F,[T], and P, Q) denote monic irreducible polynomials in A unless
otherwise stated.

LEMMA 4.1. Forq > 3,
m+1

1 q
E < .
deg P m?
deg P<m

Proof. 1t is known [Ro02, Proposition 2.1] that the number of monic
irreducible polynomials of degree n is less than ¢"/n for n > 1 and equal
to g for n = 1. Thus we have

1 =g
Z deg P = n2’
deg P<m n=1
It suffices to show that
m.o n m—+1
@ 4
P
n=1
This is trivially true for m = 1, 2. Now use induction on m to get the result. =
Let p(N) := max{degP : P € Af P|N} and ¢(N) := min{deg P :

rr?

Pe A;r, P | N}. For any integers m,n > 1, let
U(n,m) = Z 1.

deg N=n

p(N)<m

LEMMA 4.2. For all sufficiently large n,
W (n, log, n) < qlatn/1o8,,

Proof. For any § > 0, we have

1 1 1
_ nd )
gj(n’ m) o q” Z q5degN = qn H <1 + qﬁdegP + q25degP + - >

deg N=n deg P<m
p(N)<m )
_.nd
_qn H <1+q§degP_1>
deg P<m
1 1
< exp|ndlogq+ 5 Z I Plogq
deg P<m 8

1 1
— gt 2deg P<m deg P
m—+1

< ¢t (by Lemma [4.1]).
Now take m = log,n and 6 = 1/log,n to get the result. =
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Let P be an infinite subset of A;f . For each integer m > 1, we let

1rr°
H P.

PeP
deg P<m

We have the following analogue of [HR74, Theorem 3.4].

PROPOSITION 4.3. Suppose that (L, P) = 1 for any P € P. Then for
any m > 2,

{N :deg N =n,N = Amod L and (N,P(m)) = 1}|

1 q
1— q- degP) quegL

n
<
Hdeg P<m,PgP (

+ 2,

where X < ¢*™.

Let
&(n,m; L, A) := Z 1.
deg N=n
N=Amod L
q(N)zm
LEMMA 4.4. Suppose that (A, L) = 1 with deg L < n and m > 1. Then
qn 2m
&(n,m; L, A) < +q7,
¢(L)m

where ¢(L) is the number of polynomials of degree < deg L prime to L.
Proof. This follows from Proposition by taking P = {P € A} :
P{L}. =
Consider the class M of functions f on A which are nonnegative multi-
plicative and satisfy the following two conditions:

(i) There exists a positive constant A; such that
f(PY < Ay forall Pe Al and ¢>1.

rr

(ii) For every € > 0, there exists a positive constant As = As(e) such
that
f(N) < Ag|N|¢ forall N € A.

One can follow exactly the same method as in [Sh80] to get the following
lemmas.

LEMMA 4.5. Let f € /\/l Then as n — +00,

Z degN<<e <Z degP>

deg N<n deg P<n
(N,L)= PiL

uniformly in L.
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LEMMA 4.6. Let f € M. Then as m — 400,

f(N) 1
Z qd(egN < Z degP - f§T>

deg N>m/2 degP<m
p(N)<m/r PAL
(N,L)=1

uniformly in L and r, provided that 1 < r < m/logm.
Proof. Almost the same proof as in [Sh8() Lemma 4] gives

Z degN <exp< Z degp (6 —1)logqg+241¢4™ (16))

deg N>n deg P<m
p(N)<m/' PiL
(N,L)=1

Now take n = m/2,m’ = m/r and 6 = 1 — r/(4mlog, q), and the result
follows. m

THEOREM 4.7. Let f € M, 0 < a < 1/2 and (A,L) = 1 with deg A <
deg L. Then as n — 400,

> i< dmeo( S 56)
deg N=n deg P<n
N=Amod L PIL

provided that deg L < (1 — a)n.

Proof. Let z = {5n. Equip Alrr with a total order “<” satisfying P < @
if degP < deg@Q. Let Z = Z(n,A,L) := {N € A} : N = Amod L}. For
each N € Z, we express N in the form

N=P"---P7P .- P = ByDy,

where P; < Pj for i < j and By = Py - Pfgj is chosen so that
deg By <z < deg(BNPS”l).
We divide Z into the following four subsets Z;, 1 < i < 4:
21 ={N € Z:q(Dn) > z/2},
Zy={N € Z:q(Dy) < z/2 and deg By < z/2},
Z3={N € Z:q(Dy) <logn and deg By > z/2},
Zy={N € Z:logn < q(Dyn) < z/2 and deg By > z/2}.
First for Z1, one can easily show that
ST AN < Y f(B)B(n—deg B,2/2 L, A).

Nez,y deg B<z
(B,L)=1
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Then
2qn deg B
Z f(N) < Z f(B ( (D) —|—qz> (by Lemma [4.4)
Nez; deg B<z
(B,L)=1
2q
< <Z¢ > Z degB
de gB<z
(B,L)=1
2q™
< <q+q )exp( Z degp> (by Lemma [4.5).
Z¢(L) deg P<z

To each N € Z,, there correspond P and s such that P* || N,deg P < z/2
and sdeg P > z/2. Let sp be the least positive integer s satisfying s deg P >
z/2, so that sp > 2, and so

spdeg P > max{2deg P, z/2}.
Thus,
Y gmrs X Y g
q3pdegP - q q2degP <4q ’
deg P<z/2 deg P<z/4 z/4<deg P<z/2
It follows that
q"
Y et g,
NeZo

For N € Z3, there exists B such that B|N, z/2 < deg B < z and p(B) <
log n. Then

RIS SRD S

NeZ3 z/2<deg B<z deg N=n
w<an Sty
qTL
= > <ngquegB + 0(1)>
z/2<deg B<z
p(B)<logn
< ¢ —22y(z,log, n) + O(¢%)
- qdequ » 108, q
" g+1 1
< qdequ z (by Lemmaand log, n < 1 for large n).

Since f € M, we have f(N) < (qdegN)a/80 < ¢#/8, so that

Z f degL _Z/S'

NeZUZ3
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Lastly,

o< > 3 F(Dy).

NezZy z/2<deg B<z deg N=n
N=Amod L
BN=B,q(Dn)2p(B)
log n<q(Dn )</

Put ro = [z/logn], so that z/(rg+ 1) < logn. Let 2 < r < ry. Consider
those N for which z/(r + 1) < ¢(Dy) < z/r. For such N, we have p(By) =
p(B) < (Dy) < =/r, and

n (r+1)n 10(r+1) _20r

Dpy) < < -
! N)_Q(DN)_ 2 T a “a°

so that f(Dy) < AT(DN) < AL, where A5 = A%O/a. Then

Srms Yo Y sme(n-des, ).
NezZy 2<r<rg z/2<deg B<z Tt

p(B)<z/r

(B,L)=1

where A’ = AB and BB =1 mod L. Applying Lemma we have

Zf(N)s<Z(;’:L) q2Z> > DAy > q"iff])g

Nezy 2<r<ro z/2<deg B<z
p(B)<z/r
(B,L)=1

qn 2z
< (m@)*q >
xexp( Z degp> Z rAQexp(—{()logr)

deg P<z 2<r<ro
PiL

qn 2z

< <z<z><L> i )e"p( 2 degP)
deg P<z
PiL
Now deg L < (1 — a)n implies

deg L n(l—a+3a/10) n
q2z<q q3zz<q < a

o(L) ¢(L)z ¢(L)z

Therefore

eXp( Z degP>

deg P<z
PiL

ST+ > FIN) <3

Nez; NezZy
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COROLLARY 4.8. Let v be a positive real number. Then

Z ,Yw(N) <, qnn'y/2—1'

NeD
deg N=n

1 1
Z qdegP < ﬁ’

deg P=n

1 logn
Z qdegP < 2
deg P<n
deg P even
Applying Theorem to f(N) = v“N) and summing over all A with
(A,L) =1 and deg A < deg L, we get the result. m

Proof. Since

we have

5. Proof of Theorem|[I.1] In this section, we assume that ¢ = 3 mod 4.
We are going to study the sum

S(n,h)y = Y 2hralCn)
DeA°

for a positive integer h and for positive even (odd) integers n — +oo. We
can closely follow the arguments of [FK0T7, §5] (resp. [FKO07, §6]) if n is odd
(resp. even).

The following lemma can be easily deduced from Lemma [2.1](iii), Lem-
ma [2.2] and Proposition [2.5

LEMMA 5.1. For any D € A,
orka(Cp) — H{(A,B) € (A")?: D = AB, (=1)1*9eD A 4s a square

modulo B and B is a square modulo A}|.
Then as in [FKOT, §5, §6], we also have
LEMMA 5.2. Let D € A}°. Then if n is odd,

1 Dy\ (D1 [ Do\ (D
ks (Cp) _ 2N E) (=
2 21+w(D) 2 <D0><D3><D3><D0>’

D=DoD1D2Ds

and if n is even,

e, 5 GG
214w(D) D—DuD.DyDs Ds Dy Ds Ds Dy

where D; € AT° for 0 < i < 3.
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We replace the indices 0, 1, 2, 3 by their expansions in base 2: 00,01,10, 11,
viewed as elements of F3. For u = (u1,us) and v = (v1,v2) € F3, write
@1(u,v) := (ug +v1)(u1 +v2) and A\ (u) := ujus. Then as in [FKO7, §5, §6],
we have

(5.1) 2ka(p)

1 -1 A1 (a)\ 14+deg D
= 2l+w(D) Z <H (Du> )

D=DooDo1D10D11 “ueF3 (u,v)€F3
Here all Dy, are in AT°.
To solve the h-fold equation
1 h
(5.2) p= [] oW, =---= T p%.,.
u)eF? u(h) eF32
we let
1 h
Dyoy  um = ng(Dl(l()l)’ e 7D|(J(2‘L))'

Then this parametrizes the solutions of (5.2)) as

@) _
Du(l) - H H DU<1)7"'7U<i)7"'7u(h)

1<j<h u(i) cF2
J#

with [T, <<, Hu(j)ng Dy, um = D. Raising (5.1)) to the hth power with
these changes of variables, we get

1
hrka(Cp) _
(53) 2 9h(1+w(D))

< X I (oo

Dy~ u®,u® e

20y
,,,,,

> A (uM) 44 Ay (u®) }1+deg D

> @1 (uD v By (uP) v (R)

Dy um
T (e

a0 @) D,y v

v y®

3oy

Summing ((5.3]) over all D € A we get
(5.4)  S(n,h)

5 ) ) )

(Du)€D(n,h) u ,
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where D (n, h) is the set of 4"-tuples (Dy) of coprime square-free monic
polynomials with u = (u®,... u) ¢ F2h satisfying > deg Dy, = n, and
where
Ap(u) == A (M) 4 Ay (),
For any positive integers m and ¢, let p(m,¢) denote the number of all

square-free monic polynomials of degree m with ¢ irreducible factors. Then
it is known (cf. [BJ, §1]) that

q"zéligg@'zil Lo <qm(loi m)“)_

It is not hard to show that there exists a constant by such that for any
positive integers m and ¢, we have

p(m, f) =

(5.5) p(m, 0) < bOE (logmﬂJFbO).

Let
2 := ed"(logn + by).

Let 7,(IN) be the number of ways of writing the monic polynomial N as a
product of A monic polynomials. Note that 7,,(N) = h*W) for N € At°,
Let

-1 Ap(u)y 1+n D Dp(u,v)
G
(Du)€Di(n,h) u u u wy v

where 1 (n, h) is the subset of D(n,h) consisting of those (D) such that
w(Dy) > 2 for some u € F3". Write N = [], Du. Then we have

O <Y mp (N2 = Y gheV

NeA? NeA?
N<w(N) 2<w(N)

Using (5.5)) and Stirling’s formula, we get
2h(logn + b
of <<Z< Oin °>> :
<L e
Thus, from the choice of {2, we get
(5.6) I < q"/n,

for every h > 1.
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Let a = (au)yepzn With ay nonnegative integers and Zungh ay = n, and
A be the set of all such a’s. For a € A, let

S(n,h,a) :=27" Z (HQ‘hW(DU))

(Du)e®(n,h,a) u

_1\ () 1Hn Dy Dp(u,v)
((z) ) o)

where D (n,h,a) is the subset of ©®(n,h) consisting of (D,) such that
deg Dy = ay and w(Dy) < 2. Then, by (5.6]), we have

(5.7) St h) =3 S(n, hya) + 0 (f:) .

acA
Now we define three families of a’s whose contributions to the right hand
side of (5.7)) are negligible. We introduce two numbers

n* = 4(1 + 4" log,n and n™ := n",

where 7(h) will be defined later. The first family A; is the subset of A
consisting of (ay) satisfying the condition:

(5.8) at most 2% — 1 of the ay’s are larger than n**
LEMMA 5.3. For any positive real 7,

> W < gt
NeA°

Proof The left hand side is
q" vlogn _q "1
h) = 1 = T
g p(n, b)Y < E nexp(’yogn) q"n "

PROPOSITION 5.4. We have

(5.9) 3" [8(n, ha)| < grn® 2"
acA;
Proof. First note that

> 1S(n,h,a)

acA;
< ) Yo Y (20D N (V)2 e,
0<r<2"—1 g (nee)t"—r MeAy” NeAS®,

Now by Lemma [5.3

(5.10) SN2 = 5 (r2 Py (N)  grompr2 =1,

NeAT”", NeAT”",
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Thus
SoSmhal< Y Y D gy
acA; 0<r<2h—1 < (e )4t —r MeAt®
_ 1
< ¥ $ LS e
0<r<2h-1 m< (n**)4" ! Meat?
< qn Z nr2’h—l Z m2h l
0<r<2h—1 <(nrx)4h
Since
—h —h h h
Z n? "« 2 and m? 1t < (n*)%",
0<r<2h—1 m< (e )at
we have

3" [S(n, hya)| < ¢"n¥ T2 g
acA;

Taking n(h) = 8 "¢ for a small positive real ¢, we see that the sum over
A is negligible.
We say that Dy and Dy (or u and v) are linked if
Dp(u,v) + Pp(v,u) = 1.
The second family As is the subset of A consisting of (ay)’s such that

Ay, ay > n* for some linked indices u and v. Following the idea of [FKOT,
p. 476] with Proposition we can show that, for a € Ag,

1S(n, h,a)| < ¢""""/4.
Since there are O(n4h) possible a’s, we have
(5.11) > 18(n,h,a)| < ¢"/n.
acAs

The third family Ag is the subset of A consisting of (ay) & Ag such that
1 <ay < n* and n** < ay for some linked indices u and v. Let a € Ag.

Then as in [FKOT7, §5.3] one can show that
D
2 u
> (I (52)

S(n,ha)| < > > >
w(Dy)=¢

(Dw)wauy Dv 1<6<02

The inner sum satisfies, writing Dy = P - - - P, with deg P; < deg P41,
D P,
2 u 2 (4
> (M) (), X (S n o) (5)
w(Dy)=¢ w P, Pp_q1' Py w#u

<. qaufédeng(n**)fc <. qau*TLg,Tn*Cﬁ(h)’
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for any positive real number ¢ (by Corollary . Hence

(5.12) |S(n, h,a)| < ¢"n="),

Summing over a € Ag in (5.12]), we get

(5.13) Z |S(n,h,a)| < g"n¥" o) « q"/n,
acAs

by taking c large.
Let Ay := A\ (A;jUA3UAg3). Then it can be deduced from (5.7)), (5.9)),
(5.12) and (5.13) that
(5.14) S(n,h) = > S(n,h,a)+O(g"n>"M=27"),
acAy
The family A, is characterized by the following conditions (cf. [FK07, Propo-
sitions 2 and 3]); for any a € Ay,

o U ={u:ay>n""} is a mazimal subset of unlinked indices,

e ay, =0 forudld.

Let U be any subset of 2" unlinked indices in F%h, that is, I/ is a maximal
subset of unlinked indices (cf. [FKO7, Lemma 18]). An element a € A is said
to be admissible for U, written a € A(U), if

(i) ay >n* if and only if u € U,
(ii) ay =0 if and only if u ¢ Y.

For a € A(U), since we assumed ¢ = 3 mod 4 and by the quadratic reci-
procity law, we have

S(n,h,a) =2"" Z ( H Q_hW(Du))

(Du)e®D(n,h,a) ueld
X (H(—l)au/\h(U)>l+n H (—1)2uav@n(uy),
ueld u,vel

Since Ay is the disjoint union of the A(U)’s, where U runs over all maximal
subsets of unlinked indices, we have

ZS(n,h,a):Z Z S(n,h,a).

acAy U acA(l)

Let H(U) be the set of all h = (hy)uey With hy € {0,1}and >, o, hu=n
mod 2. For h € H(U) we write a ~; h if a € A(U) and ay = hy mod 2 for
all u € Y. Then

Z S(n,h,a) = Z S(n,U,h),

acA(U) heH(U)
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where

S(n,U,h) Zth

a~yh

Let D (n,U, h) be the set of 2"-tuples (Dy)uecy of coprime square-free monic
polynomials such that ), deg Dy = n and deg Dy = hy mod 2, w(Dy)
< 2 for all u € Y. Then

S(n,U,h)=27"gh) Y [z,

(Dw)€D(nU,h) ueld

where

B(h) = (H(_l)hu)\h(u)>1+n H (_1)huh\,¢h(u,v)'

ueld u,veld

LEMMA 5.5. Let m be a positive integer and hi,hy € {0,1} with
h1 + ho = m mod 2. Then, for any A € A,

_ 1 _
> p?(ADDg)27 M = 3 3 p?(ADDy)27
deg D;=h; mod 2 deg D1+deg Da=m
deg D(1D+d§g)D2g:m w(D1D2)=¢
w(D1D2)=
(log m/2")"! q" (logm/2")"
0] —_— (@)
* (m -1 )7 t—2m )

where the sums are over monic polynomials.

Proof. Assume first that A = 1. When m is odd, the result follows
without error term by just changing the order. Now assume that m is even.
Let pa(m,£) be the number of all monic square-free polynomials of degree
m with £ irreducible factors all of whose degrees are even. It is known that

g™ (logm)*~! N O<qm(log m)“)
m

p(m- ) = () T

Then, for hy = hy =1,
> 2 (D1Dy) = (p(m, £) — pa(m, £))21,

deg D;=h; mod 2
deg D1+deg Da=m
w(D1D2)=¢

and for hy = ho =0,

Z 12 (D1Ds) = (p(m, £) — pa(m, €))2° + py(m, £)2°

deg D;=h; mod 2
deg D1+deg Da=m
w(D1D2)=¢
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Now since

> p?(D1Dy) = p(m, £)2",
deg D1+deg Do=m
w(D1D2)=¢

we get the result when A = 1.

When deg A > 1, it is clear that the number of square-free monic polyno-
mials of degree m with £ irreducible factors, which are not relatively prime

to A, is
qm/lﬂogOn-—l)V2>
(L—2){(m—1) '

Ofp(om 1,61 =0

Thus the result follows in this case too. =
COROLLARY 5.6. Let m be a positive integer and hy,hy € {0,1} with

h1 4+ hs = m mod 2. Then, for any A € A,

Z ,LL2(AD1D2)2_hw(D1D2)

deg D;=h; mod 2
deg D1+deg Da=m

1 m
=3 > /ﬁ(ADng)QMJrO( d )

ml—Q*h
deg D1+deg Da=m

where the sums are over monic polynomials.

Proof. The result follows from Lemma by summing over ¢ and the
fact that

(e}

2= logm)t-1 —h
;( (E—g1)|) =m? +0(1). m

LEMMA 5.7. For0 < a <1,

1
> s <"
d<n

12«

Proof. This follows from the inequality

1 1 @ 1\“ 1 @
- <= .
(Y < () (L) erocasis

PROPOSITION 5.8. For any h € H(U) we have, for h =1,

B(h —hw(Da §
S(nvuah) = 22h<_13_h Z MQ(HDU) H2 b )—i_0<nl€2h>7

(Du)ueu
> deg Du=n
and, for h > 1,
S( Uh)—m Z 2 HD>H2—hw(Du)+O o
mUL )= 92h—1+h K u npl—21-" )"
(Du)ueu u u

S~ deg Du=n
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Proof. We only prove the case when n is odd. The case when n is even
is very similar and we leave it to the reader. For h = 1, the result follows
from Corollary since n is odd. Now assume that h > 1. By similar
computations to those leading to (5.6]), we can write

S(nU.h)=27"(m) Y ,ﬁ( I1 Du> [T 27" + 0(‘{5).

(Du)ueu ueld ueld
>~ deg Du=n
deg Du=hy mod 2

Write i = {1,2,...,2"} for simplicity. Write D} = Djy1 -+ Don, d; = deg D;
and d; = deg D} to simplify the notation. By Lemma we have

Z /.1,2 (DlD/1>2—hw(D1)—hw(D’1)

D1,D),
di+dj=n
=2 Z Z ,u2(D1D'1)2_h”(D1)_hw(D'1)
D1,di=h1 mod 2 D},d|=n—d;
=4 Z Z Z ,u,2(D1DQD’Q)Q—hw(Dl)—hw(Dz)—hw(D;)

Dl,dl Ehl mod 2 DQ,dQEhZ mod 2 Dé,dézn—dl —d2
n—dj
+ 2 :2—hw(D1)O <q1_2h> .
Dy (TL - dl)

Now

7’l

2hw(D1)O< > d 7 2 hw( D1)0< >
e R N PR
n—dy n
q q q
- +0 —o[ -2 ).
¥ e o) - ()

Continuing this process, we get the result. =

Now
Z 12 ( H Du) H 9—hw(Du)
(Du)ueu u u
>~ deg Du=n "
= D HAN) T (W27 0<q>
NeAf "
+ O( Z Z 9—hw(D) Z 2—hw(M)(2h _ 1)W(M)>
d<n** deg D=d deg M=n—d
S0 +O< n) +0< 3 ?d,h g h)
NeAt d<n** di=2"" (n —d)?
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-y M2<N>+o(qn> +0< > 0" e (nnl**)2-h>

NeAl d<n**
n n** 2-h
- ¥ o) +o(v(2m) )
Neaf " (n —n™)
_ 2 q° _ (11 q"
- %ﬂ (N)+O<n<1n(h>>2h> — ¢ (1 q> +O<n(1n(h))2h>'
NeA,

Hence

_h_oh n 1 q"
(5.15) S(n,U,h) = 2'7""2"3(h)q (1 - q) - O<n(1—2h>'
Summing over h € H(/) in (5.15)), we get

_ ol—h-2h nf, 1 q"
(5.16) Z S(n,h,a) =2 v(U)q (1 q) + O<n(1—n(h))2h)’

acA(lU)
where
14+n
s 5 ([ I e
(hu)eHU) ueld u,veld

Now we sum over all the maximal subsets U of unlinked indices in (5.16)
and choose 7(h) = 8 "¢ to obtain

PROPOSITION 5.9. For every integer h > 1 and every positive real €,

st0) = (1= )20 (0] + ot ),
U

where the sum is over all the maximal subsets U of unlinked indices.

If ¢ = 3 mod 4, the argument of [FK07, §5.6, §6.1] works in our case too:
N (h,2 if n is odd,
2 S e = {0 o
27" (N(h+1,2) = N(h,2)) ifn is even,

u
where N(h,2) is the number of subspaces of F4.
Finally,
N(h,2)¢"(1 —1/q) + O(q”niQ_h“) if n is odd,
S(n,h) =S 27"(N(h +1,2) — N(h, 2))q"(1 — 1/q) + O(q"n=2"+<)
if n is even,
with finishes the proof of Theorem
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6. Proof of Theorem [1.6} In this section we also assume that ¢ = 3
mod 4. We are going to study the sums

S*(n, h) := Z 9hka(Cp)
DeDNAY?

Shix(n, h) o= Z ohtka(Cp) . 9rka(Clp)
DeDNAL®

for a positive integer h and for positive even integes n — +o0.

6.1. For r,s € Q:={0,1,2,3}, we define /11(7’ s)tobelif s =1r+2
and 0 otherwise. For D € D, from Lemma [5.2| and by using the quadratic
reciprocity law, we get

1 k1(r,s)
rk4(C _
(6.1) orka(Cp) — ST (D) > 11 ( > :

D=DyD1D2D3 r,scQ

where D; € DU {1} for 0 <i < 3. Then as in §5, we have

kn(r,s)
69 P ZHH( I

where r = (r1,...,7m),s = (51,...,8,) € Q" ku(r,s) = ri(ry,s1) +
-+ k1 (rp, sp) and the sum is over all the 4"-tuples (Dy) of coprime square-
free monic polynomials such that [[, Dy = D. Summing over all
D e DDA,J{’O, we get

n(r,s)

(63)  S*(n,h)=2"" (H2 hWDr)HH< > ’

(Dr)ED* (’I’L,h) r

where ©*(n, h) is the set of all the 4"-tuples (D;) of square-free monic
and coprime polynomials such that D, € DU {1} and ), deg D, = n. Let
D7 (n, h) be the subset of ®*(n, h) consisting of all (D, ) such that w(Dy) > 2
for some r € Q", and

D kp(r,s)
st 2 (T (R) "
r S s

(Dr)eDi(n,h) T
Then, by the same argument used to obtain , we get
(6.4) X< q¢"/n.
We say that D, and Dg (or r and s) are linked if kp(r,s) + kp(s,r) =1
mod 2. We identify Q with IF%, as in Then Q" can be identified

with F2" and unlinked indices in Q" are just unlinked indices in F3" as
in §5| (cf. [FK10L, §7.6]). With this identification, A denotes the set of all
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q

4h-tuples (ar)peon of nonnegative integers such that > a, = n. As in §5
for a € A, we define

(6.5) S*(n,h,a):=27" Z (H 2—hw(Dr)) H H <gz> lih(l‘,S)7

(Dr)e®*(n,h,a) r
where ©*(n, h,a) be the subset of ©*(n, h) consisting of all (D,) such that
deg Dy = ay and w(Dy) < £ for all r € Q". Then, by (6.4)), we have
(6.6) S*(n,h) =Y _ §*(n,h,a) + O(q"/n).
acA
Moreover, by similar computations to those proving (5.9)), (5.12)) and (5.13)),

we get the inequalities

(6.7) 37 8 (n, ha)| < gtnt W2
acA;

> 18*(n,h,a)| < q"/n and > [S*(n,h,a)| < ¢"/n.

acAs acAg
For (6.7), we use the inequality (which follows from Corollary

Z TT(N)2—hw(N) _ Z (T2_h)w(N) < qn—mnﬂ*hfl_l

NeDnA NeDnA®
instead of (5.10) in the proof of Proposition Then we obtain
(6.8) S*(n,h) = Y §*(n,h,a) + Ope(g™n2 " ).
acAy

Let U be any maximal subset of unlinked indices. Since A4 is the disjoint
union of the A(U)’s, we can write

(6.9) > 5*(n,h,a) ZZS*nh
acAy u aGA
By definition and the quadratic reciprocity law, for a € A(U), we have
(6.10) S*(n.hoa)=2"" Y ( I1 2—’W<Dr>).
(Dy)e€D*(n,h,a)  reU

For a € A(U), let D*(n,U,a) be the set of all the 2"-tuples (Dy)reys of
coprime square-free monic polynomials such that D, € DU{1}, deg Dy = a,
and w(Dy) < {2 for all r € Y. Then we can rewrite (6.10) as

S*(n,h,a) =27 Z ( H 2*h”(D”)).
(Dy)€D*(nU,a) reld

Let ©*(n,U) be the set of all the 2"-tuples (Dy)czs of coprime square-free
monic and coprime polynomials such that D, € DU{1} and ) . deg D, = n,
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and let

S*nu):=27" Y (H2 hao(Dr) )

(Dr)e®@*(nU) relU
Write D =[], Dy. Then

(6.11) S Uy =27" " (D)2 =27 . D(n).
DeDNAL°
By the same techniques used to obtain and (| ., we also have
(6.12) SnU)= 3 S*(nha +Oh€(” 27
acA*(U)

Now , , and yield

PROPOSITION 6.1. For every integer h > 1 and every positive real €,

(613)  S"(n,h) =27 D) (31) + Onelgmn" ),
u
where the sum is over all the maximal subsets U of unlinked indices.

By using the fact that (cf. [FK10, Lemmas 41 and 42])

h—1
dor=2"T]@ +1)
u j=1

we get
h—1 .
. 1
(6.14) S*(n,h) = [[(27 +1) - D(n) + Ope(g"n>""),
j=1
which completes the proof of the first part of Theorem
6.2. Now we consider the sum S*. (n,h). Let
9hrks(Cp) 2001 2
3 —
som= Y T T (M),
DeDNA° D=DoD1D2Ds3

where D; € DU{1} and D; = 9,0; is a privileged factorization for 0 < i < 3.
Then it follows from Corollary [2.13] that

(6.15) Skix(n h) = 38*(n,h +1) + 1S°(n, h).
The equality (6.2]) implies
9htka(Cp)

0001 2
6.16 I § —
(6.16) 2w(D) <0203>4
D=DyD1D2Dsg

kp(r,s) 0051 2
wmm DEII(E) G,

(Dy) d r
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where the sum is over (Dy),cor and d = (Dg, D1, D2, D3) such that
(6.17) D= HDr = DoD1D4Ds.

For i € Q and r € Q", let D, ; = gcd(Dy, D;). These parametrize the
solutions of (6.17) by writing Dy = [[; Dy; and D; = [[, Dy, with the

conditions
11D =D
r g

Summing (6.16]) over all D € DN A, we get
(6.18)  S°(n, h)

=27 ) (H2—<h+1)w<Drl>{HH( >nh<r,s>}

(Dy,i)€®%(n,h) 1 ri s,j

() Hom () )
() o)

where D°(n, h) is the set of 4"*1-tuples (D, ;) of coprime square-free monic
polynomials such that Dy ; € DU{1} and ) deg Dy ; = n, and where D, ; =
0p,i0r; is a privileged factorization.

To bound the number of prime divisors of the summation variables, we
replace the constant {2 in §5| by

2 = ed" L (logn + by).

Then as in (5.6), the contribution XY of the (Dy;) € D°(n,h) such that
w(Dy ;) > 2 for some (r,4) to the right hand side of is O(q"/n).

Let A° be the set of all 4*F!-tuples (ar,i) (r,i)cont1 of nonnegative integers
such that Zr,i ar; =mn. For ae€ A°, let

(6.19)  S°(n,h,a)

D.. kp(r,s)
=9h 3 (H 2—(h+1)w(Dr,z-)> { 111 (D”> }
S,J

(Dr,i)€D°(n,ha) 1yt ri s,j

() Him G
() Him G

Rod
\_/
W~
H,_/
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where ©°(n, h,a) is the subset of ©®°(n, h) consisting of all (D, ;) such that
deg Dy = ay; and w(Dy;) < §2' for all (r,4) € Q"1 Then we have

LEMMA 6.2. For any integer h > 0 and any positive €,

(6.20) S°(n,h) = Y 8°(n,h,a) + Ope(g"n2 " 7).
acA°
LEMMA 6.3. We have
(6.21) > 15°(n,hya)| = O(g" /n),

a

where the sum is over those a = (ar;) € A° satisfying
Z ar0 + Z ar1 >0 and Z ar2 + Z ar3 > 0.
r r r r

Proof. We can follow the proof of Lemma 46 in [FKI0|, replacing
(log X)loo'lok by 4log,n. =

By the quartic reciprocity law, Lemmas [6.3] and symmetry, we have

S°(n,h) =2 Y §°(n,hya) + Ope(q™n2 "),
acAg

where A{ is the subset of A® consisting of (ay;) such that ay2 = ay3 = 0.
For a € A§, since Dy 2 = Dy 3 =1 for all (Dy;) € ©°(n, h,a), we have

S°(n, h,a)
- - w(Dy r rODrl wn (1)
=2 h%}%(l}z (h+1)w(Dr,0 Dy 1 ){HH( sODsl> }

where Dy; € D U {1} are coprime, deg D,; = a,; and w(Dy;) < (2 for
all (r,i) € Q" x {0,1}. Since the error term involved in the condition
w(Dy;) > (2 for some (r,7) is O(¢"™/n), we have

(6.22)  S°(n,h)=2"("DF"$" (H27<h+1>w<0r,00r,1>)

DrODrl r

rDr kn(r,s)
AT (Gps) ot

where Dy o, Dy 1 € DU {1} are coprime and satisfy

Z deg Dy o + Z deg Dy 1 = n.
r r



4-rank of ideal class groups 359

Setting Dy = Dy oDy 1 (we have ow(Dr) possibilities), we modify (6.22]) into

o= (o) (T (5) ™)

+Opelg™n "7,
where Dy € DU {1} are coprime and ) . deg Dy = n. Then implies
(6.23) SO(n h) —25’*(n h) + Ope(g"n2" 7).
By inserting into , we get
Sty h) = %S*(n, h+ 1) + 58%(n,h) + Opc(g"n 2" 7).
Therefore, by and the equality

h h—1 -
1 . 1 . AN
5‘1_[(23+1)+§1_[(2J+1):(2 5thrl
J=0 J=0 J=0
we have
h-1 s
Smix(nsh) = 2"+ 1) [T +1)-D(n) + Ope(¢"n ),
j=0

which finishes the proof of the second part of Theorem
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